
HAL Id: hal-00723185
https://hal.science/hal-00723185

Submitted on 7 Aug 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

Relabeling Algorithms on Dynamic Graphs
Florent Marchand de Kerchove

To cite this version:
Florent Marchand de Kerchove. Relabeling Algorithms on Dynamic Graphs. [Internship report]
Université du Havre. 2012. �hal-00723185�

https://hal.science/hal-00723185
https://hal.archives-ouvertes.fr

Relabeling Algorithms On Dynamic Graphs

Author:
Florent MARCHAND DE KERCHOVE

Supervisor:
Frédéric GUINAND

a
b

c

d

e

f

g
R∗()= a

b

c

d

e

f

g

Research report
March – June 2012

University of Le Havre

Acknowledgments

Invaluable thanks go to my supervisor, Frédéric Guinand, for his guidance and insight
stemming from expertise. Your honest advice was always the most helpful; I’ll be sure to
take heed of it.

Then I would like to sincerely thank my lab mates. Alexis, for our many philosophical,
somewhat metaphysical, and mostly fruitful discussions. Guillaume, for bringing your
distinctive opinions to the table. Thibaut, for coping with my frequent, ludicrous teasing.
Merwan, for your exquisite tastes in herbal tea, and for sharing a desk with me for so
long, without complaining once.

Lastly, my dearest thanks go to Marie, for her understanding and patience during the
long hours I spent on this report.

Revision 1.0.2 on 7 August 2012.

Colophon

This report was drafted with Org mode 7.8.11 under GNU Emacs 24.1.1.
It is typeset in Bitstream Charter using LATEX. All diagrams were made
using the TikZ package. No mustaches were harmed in the making of this
report.

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 Unported License.

i

Abstract

Distributed algorithms executed over dynamic graphs are difficult to study due
to the limited knowledge of decentralized algorithms, the uncertainty dynamism in
graphs entails, and the myriad of competing and immature models. One particular
framework combining relabeling systems and evolving graphs struck us as both el-
egant and sound [CCF12]. We use this framework to ground our contributions to
the domain of distributed algorithms, which are threefold: (1) we provide a suffi-
cient condition for the decentralized counting algorithm by Casteigts [Cas07], (2) we
define conditions with stronger guarantees, (3) we give a novel counting algorithm
which has the property of local detection of termination. In addition, we outline
algorithms for the naming problem using the same framework.

Contents

1 Context 1
1.1 Dynamic graphs . 1
1.2 Distributed algorithms and local computation 2
1.3 Related work . 3

2 Preliminaries 3
2.1 Graph relabelings . 3
2.2 Evolving graphs . 5
2.3 Relabelings over evolving graphs . 6
2.4 Distributed algorithm analysis . 6
2.5 Scope of analysis . 8

3 Contributions 8
3.1 Sufficient condition for the decentralized counting algorithm 9
3.2 Combination of algorithms . 12
3.3 Tight necessary and sufficient conditions . 14
3.4 Counting with identifiers . 15

4 Algorithms for the naming problem 18
4.1 Local resolution . 18
4.2 Centralized naming . 19
4.3 Random walking counter . 19
4.4 Tree method . 20

5 Perspectives 21
5.1 Analysis of maintenance algorithms . 22
5.2 Algorithmic complexity . 22
5.3 Mechanization . 22

ii

1 Context

1.1 Dynamic graphs

Dynamic graphs arose from a need to include time into graph-based models. Graphs
are powerful mathematical structures, suited to numerous theoretical and real-world
applications. Indeed, if one wants to study a set of things and the relationships between
these things, a graph is probably the most suited abstraction for that end. As far as
we know, the concept of graph was first used by Euler to solve the “Seven Bridges of
Könisberg” problem, where one must find a circuit crossing each of the seven bridges
once and only once [Eul41]. Although the first recorded use of the term “graph” appeared
150 years later in [Syl78].

However, for all their usefulness in a static context, graphs are not sufficient when
it comes to modeling dynamic relationships between things. Consider, and we will refer
to this example countless times in this report, the relationships in an ad-hoc network of
mobile devices. A mobile device is capable of establishing a communication link with
another device in the network when they are within range of each other’s sensors. We
consider networks of homogeneous devices of identical sensors, thus communication be-
tween mobile devices is assumed to be bidirectional 1. We can use a graph to abstract
this mobile network: the mobile devices will be our graph’s nodes, and the communi-
cation links between the devices will be our graph’s edges. This abstraction is perfectly
valid when we look at only a snapshot of the mobile network, an instantaneous capture of
the devices and their communication links. However, these devices are mobile, i.e. they
move freely in the environment in which they are situated. When two mobile devices
move out of range of each other, they are suddenly unable to communicate, breaking the
link between them. If we want to fully study this mobile network using graphs, we need
to account for the disappearance (and appearance) of edges. In other words, we now
must work with a dynamic set of edges.

That is precisely the notion introduced by Harary and Gupta [HG97]. In this paper,
the authors define four basic kinds of dynamic graphs, depending on where the dynamic
lies:

• If the set of nodes is dynamic, i.e. nodes may be added or removed, we have a
node-dynamic graph. When a node disappears, its incident edges are removed from
the graph as well.

• If the set of edges is dynamic, we have an edge-dynamic graph.

• If the weights on nodes are dynamic, i.e. they change with time, we have a node
weighted dynamic graph.

• If the weights on edges are dynamic, we have an edge weighted dynamic graph.

The authors note that all combinations of the above basic types can occur. In our
mobile network example, if we assume that mobile devices can appear and disappear,
then we need a graph that has a dynamic set of nodes as well as a dynamic set of edges.

Once we have properly defined the dynamic of our network, we still need a frame-
work with which to study this dynamic. Harary and Gupta, still in the same article, sug-
gest two approaches to study dynamic graphs. The first one is to model dynamic graphs
as a logic program, arguing that this is a natural model, on the basis that logic program-
ming is a relational programming paradigm, and graphs are relations. In addition, the

1In practice, environmental hazards will affect the communicating range of the mobile devices (walls and
other obstacles, weather, etc.), such that communication may become unidirectional.

1

ability of logic programs to handle nondeterminism is ideal to deal with combinatorial
searches and algorithms. To our knowledge, this model did not garner a strong following,
despite its legitimacy.

The second model, however, had more impact in the field. Straightforwardly, a dy-
namic graph can be decomposed as a discrete sequence of static graphs. Each static
graph is a snapshot of the dynamic graph at a given time. These static graphs can then be
studied by all the mathematical tools already at our disposal. This is precisely the view
adopted by Ferreira and his “evolving graph” model [Fer04].

Born in the context of mobile ad-hoc networks, the formalism of evolving graphs
is a mathematical tool to analyze a sequence of static graphs captured from the same
dynamic network. It introduces new concepts required by the incorporation of time, like
the one of a path over time, called a journey. Our contribution is deeply rooted in this
formalism, and as a matter of fact we will make use of the definitions presented in this
seminal article [Fer04].

1.2 Distributed algorithms and local computation

Armed with a sound mathematical basis for modeling mobile networks, we must now
turn to characterizing distributed algorithms on these networks.

Distributed algorithm are designed to work on a heterogeneous set of hardware de-
vices, without requiring a central entity to control them. The algorithm is shared by all
nodes in a network, but each will execute it independently and concurrently. Typically,
there is no synchronization between nodes, and information is only shared via messages.
Since nodes can only send messages directly to adjacent nodes, communication with dis-
tant nodes is always indirect. Thus, nodes can never be sure of the algorithmic state of a
non-adjacent node. This is a first cause of difficulty in designing distributed algorithms, in
contrast to algorithms driven by a central entity. A centralized algorithm has information
on the whole graph, and can act on any node without delay. A second difficulty arises
from the fact that nodes do not have access to information on the network as a whole,
such as topological information (network size, diameter, . . .). Distributed algorithms are
thus constrained by both local computation and local knowledge.

Fundamental problems of distributed programming include:

Counting Finding out the number of nodes of a network. We will focus mainly on this
problem in this report.

Leader election It is often desirable in a network to elect a leading node, in order to
reestablish a central authority. The network leader can then command the other
nodes to execute some computation, and to return their results back to the leader.
In turn, the leader is polled for results by a user, abstracting the distributed aspect
of the computation. By using a leader, one can take advantage of the wealth of
knowledge concerning algorithms for centralized networks.

Spanning tree Spanning trees are a practical structure for distributed networks. Com-
munication can be achieved without redundancy, and some problems, like leader
election, can be reduced to finding a spanning tree (the root of the tree can be
chosen as the leader).

Termination detection Discovering when all nodes have completed their execution of
an algorithm, without the help of a central authority. Detecting termination is
essential in order to exploit the computation results, and to start another algorithm.

While these problems have been studied thoroughly for static networks, the combi-
nation of distributed algorithms and dynamic graphs is still a nascent research area. We

2

focused our efforts on these problems because they are well-defined, abstract, though
practically relevant, all the while being still open for improvement when applied to dy-
namic networks.

1.3 Related work

Distributed algorithms have been extensively studied in the past [CR79; Ang80; GHS83;
NS93], and still are an active research area [OW05; KLO10]. This interest resulted in
a large number of models to characterize distributed algorithms, and the communica-
tion networks they are usually executed on. These models are seldom compatible in
their assumptions on synchronizations protocols and mobility models for example. As a
consequence, algorithms that are elaborated for distinct, specific models are not easily
comparable to each other. This diversity called for higher-order theoretical frameworks,
where the intrinsic properties of distributed algorithms can be analyzed without getting
dragged into implementation details.

We focus on the model introduced by Casteigts [Cas07], where graph relabeling sys-
tems [LMS99] are coupled with evolving graphs [Fer04]. Though alternatives do exist
[Ang+06], we felt they were still too restrictive in their approach, whereas the model we
consider is more general. This framework was later extended by Casteigts et al. [CCF09;
CCF12]. While these works are fairly recent, there have already been a couple follow-ups
[Pig+10; FGA11]; this report can be inscribed along those.

2 Preliminaries

Our contributions build upon the work established by Casteigts et al. [CCF12]. Therefore,
the concepts of local computation, graph relabelings and evolving graphs are required to
fully understand the next section.

For the sake of clarity and completeness, we reproduce here the definitions by Casteigts
et al. [CCF12] needed to express our results. Readers already familiar with these con-
cepts may skip this section and refer to it when the need arises.

2.1 Graph relabelings

Graph relabelings [LMS99] are a formalism where distributed algorithms are represented
as a set of local interaction rules. These rules are independent from any communication
protocol. Abstracting the effective communication allows us to specify and reason about
important properties of distributed algorithms, such as correctness and termination, with-
out limiting these results to a specific implementation.

As the name implies, a graph relabeling system is first and foremost a graph with
labels on its vertices and edges. These labels are used by the interaction rules of the
relabeling algorithm. An interaction rule is defined as a transition from one pattern of
vertices and edges and their associated labels (preconditions), to another such pattern
(actions). Since graph relabeling systems were introduced to characterize properties of
local computation, interaction rules are local: they involve a limited set of connected
vertices and edges. In this paper, we only consider interaction rules between pairs of
vertices; see Figure 1 for the commonly-used scopes of computation.

We now give a formal definition of graph relabeling systems in the context of mobile
networks. Let G = (VG , EG) be a finite undirected loopless graph, with VG as the set of
nodes in our network, and EG representing the set of communication links between them.
Two vertices u and v are neighbors if and only if they share a common edge (u, v) in EG .

3

Figure 1: Scopes of local computation. Nodes in the scope of preconditions are filled in
white, while nodes affected by the actions are filled in black (reproduced from Casteigts
et al. [CCF12]).

Let λ : VG ∪ EG → L∗ be a mapping that associates every vertex and edge from G with
one or several labels from an alphabet L. The label of a given vertex or edge u, at a given
time t is denoted by λt(u). The pair (G,λ) is the labeled graph, written G.

A complete algorithm is defined by the triplet {L, I , P}, where I is the set of initial
states, and P is a set of relabeling rules. Since we are interested in distributed algorithms,
where every node in the network will execute the same identical algorithm, the set of
rules P is the same for all vertices.

Algorithm 1 (or A1 for short) is an example of a complete algorithm expressed in
the formalism of graph relabelings. Each vertex can be in one of two states: I and N ,
standing for informed and non-informed respectively. Initially, only the emitter vertex
has the I state. Then, repeated application of the rule diffuses the information in the
network. This is a simple and general information propagation algorithm.

Algorithm 1: Information propagation

Initial states: I for the emitter, N for every other node

I N I I
r1:

The algorithm works in the following way. Since rules are patterns, each node looks
for another node in order to match the rule’s preconditions (the left-hand side of the
rule). When a pair matches, both nodes modify their labels in the way described by the
right-hand side of the rule. Figure 2 gives a step-by-step example of executing Algo-
rithm 1 on a static graph.

I N

N N

r1

I N

I N

r1

I I

I N

r1

I I

I I

Figure 2: Example execution of the information propagation relabeling algorithm on a
static graph. Here, all nodes are informed at the end. Note that this is only one possible
execution sequence of the algorithm for this graph; others appear when matching pairs
of nodes are selected in a different order.

Note that, from a node’s perspective, when two or more neighbor nodes match a
rule’s preconditions, only one rule can be applied at a time. Depending on the order the

4

rules are applied to these matching pairs, the algorithm may have different outcomes.

2.2 Evolving graphs

2.2.1 Definition

Evolving graphs were introduced by Ferreira [Fer04] as a model for dynamic networks.
In this model, the evolution of the network topology is simply recorded as a sequence of
static graphs, where each static graph can be seen as a snapshot of the network at a given
time.

a b

c

G1

a b

c

G2

a b

c

G3

a b

c

G4

a b

c

1,4

2

2,3

{G1, G2, G3, G4}

Figure 3: An evolving graph is a sequence of static graphs. On the lower hand-side is a
compact representation of an evolving graph. Edges are labeled with the date of their
presence.

Formally, an evolving graph is a triplet (G, SG , ST) = G, where:

• ST is the sequence of dates used to capture the static graphs. T can be anything
meaningful to the network: discrete (T⊂ N) and continuous (T⊂ R) time systems
are common.

• SG is the sequence of undirected static graphs Gi = (Vi , Ei), where Gi is a snapshot
of the network topology during an interval [t i , t i+1).

• G is the union of all Gi in SG , called the underlying graph of G.

We will use the simple notations V and E to denote the sets of vertices and edges
of the underlying graph G. A vertex (resp. edge) u is in V (resp. E) if and only if it
belongs to at least one static graph in SG . In addition, we will use the notation G[ta ,tb)
when taking a temporal subgraph G′ = (G′, S′G , S′T) of G = (G, SG , ST), where G′ ⊆ G,
S′G = {Gi ∈ SG : t i ∈ [ta, tb)}, and S′T = {t i ∈ ST ∩ [ta, tb)}.

2.2.2 Basic concepts

First, we consider a presence function ρ : E × T→ {0, 1} that indicates whether a given
edge is present at a given date. For e ∈ E and t ∈ [t i , t i+1), with t i and t i+1 being two
consecutive dates in ST, ρ(e, t) = 1 ⇐⇒ e ∈ Ei .

5

A journey is a path over time between two vertices. Formally, a journey in G is a
sequence of couples J = {(e1,σ1), (e2,σ2), . . . , (ek,σk)} where {e1, e2, . . . , ek} is a walk in
G, {σ1,σ2, . . . ,σk} is a non-decreasing sequence of dates from T, and ρ(ei ,σi) = 1 for
all i ≤ k. A strict journey only contains couples (ei ,σi) taken from distinct graphs of the
sequence SG .

For any u, v in V , if a journey from u to v exists in G, we write u v, or u
st
 v in

the case of a strict journey. We assume that u u for all u in V . Note that a journey is
not necessarily symmetrical, even if edges are undirected, because time intervals create
a new level of direction. The horizon of a node u is the set {v ∈ V : u v}, thus u is
included in its own horizon.

A network is connected over time if and only if ∀u, v ∈ V , u v ∧ v u. In other
words, there is a round-trip journey between any two nodes. This property is especially
useful for algorithms where acknowledgments of sent data are needed.

2.3 Relabelings over evolving graphs

Now we combine graph relabelings and evolving graphs to create an analysis framework
for distributed algorithms on dynamic networks.

Let G = (G, SG , ST) be an evolving graph. The static graph in SG that covers the
time interval [t i , t i+1) is written Gi; we have Gi ∈ SG and t i , t i+1 ∈ ST. The labeled graph
(Gi ,λt i+ε), denoted G i , represents the state of the network just after the topological event
of date t i , and G i[denotes the labeled graph (Gi−1,λt i−ε) representing the network state
just before that event. Thus, G i = Eventt i

(G i[).
Between two consecutive topological events, any number of relabelings may take

place. For a given algorithm A and two consecutive dates t i , t i+1 ∈ ST, we denote by
RA[ti ,ti+1)

one of the possible relabeling sequence induced by A on the graph Gi during the
period [t i , t i+1). We have G i+1[= RA[ti ,ti+1)

(G i).
Let us call tk the date of the last static graph in SG . A complete execution sequence

from t0 to tk is then given by an alternated sequence of relabeling steps and topological
events:

X = RA[tk−1,tk)
◦ Eventtk−1

◦ · · · ◦ Eventt i
◦ RA[ti−1,ti)

◦ · · · ◦ Eventt1
◦ RA[t0,t1)

(G0)

We already mentioned that the order of execution of the rules is not deterministic,
since it depends on implementation details concerning the selection of pairs of nodes
matching a rule’s preconditions. We denote by χA/G the set of all possible execution se-
quences of an algorithm A over an evolving graph G. An example execution of a relabeling
algorithm over an evolving graph is given in Figure 4.

2.4 Distributed algorithm analysis

A distributed algorithm can have multiple outcomes for the same graph. We usually
want the algorithm to be complete: it should achieve its goal in all cases. For exam-
ple, the propagation algorithm (Algorithm 1) should inform all nodes in the network.
Unfortunately, all networks will not necessarily allow the algorithm to complete. If the
network contains at least two connected components, then only one of them will have all
of its nodes informed, since there is only one informed node initially, and information is
propagated along edges.

Hence, we find a first way of analyzing distributed algorithm: by characterizing
graphs on which they are complete, and graphs on which they can not reach their goal

6

I
N

N

N

r1

I
N

I

N

event

I
N

I

N

r1

I
I

I

N

event

I
I

I

N

r1

I
I

I

I

Figure 4: Execution of the information propagation relabeling algorithm on an evolving
graph. This time, the execution is a sequence of intertwined relabeling steps and topolog-
ical events. In future diagrams, we will combine relabeling steps and topological events
for the sake of brevity; thus we will only show the sequence of labeled graphs.

at all. A condition on graphs ensuring the completeness of algorithm A will be called
a sufficient condition for A. Conversely, a necessary condition for A defines the class of
graphs on which A will always fail.

Formal definitions of these concepts follow.

2.4.1 Objectives of an algorithm

Given an algorithm A and a labeled graph G, the state one wishes to reach can be given
by a logic formula P on the labels of vertices (and edges, if appropriate). In the case of
the propagation algorithm, such a terminal state could be that all nodes are informed,

P1(G) = ∀v ∈ V,λ(v) = I

The objective OA is then defined as the fact of verifying the desired property by the
end of the execution, that is, on the final labeled graph, after the last relabeling step.

OA1
= P1(Gk[)

2.4.2 Necessary conditions

Given an algorithm A, its objective OA and an evolving graph property CN , the property
CN is a (topology-related) necessary condition for OA if and only if:

∀G,¬CN (G) =⇒ ¬OA

Proving this result comes to prove that ∀G,¬CN (G) =⇒ @X ∈ χA/G|P(Gk[). (The
desired state is not reachable by the end of the execution (time k), unless the condition
is verified).

7

2.4.3 Sufficient conditions

Symmetrically, an evolving graph property CS is a (topology-related) sufficient condition
for A if and only if:

∀G, CS(G) =⇒ OA

Proving this result comes to prove that ∀G, CS(G) =⇒ ∀X ∈ χA/G|P(Gk[).
Because we have not made any assumptions on the synchronization between nodes,

we have no way of ensuring that a rule will effectively be applied. Therefore, we must
formulate a progression hypothesis that will allow us to characterize sufficient conditions.

Progression Hypothesis 1. In every time interval [t i , t i+1), with t i in ST, each vertex is
able to apply at least one relabeling rule with each of its neighbors, provided the rule pre-
conditions are already satisfied at time t i (and still satisfied at the time the rule is applied).

2.4.4 Analysis of the propagation algorithm

Casteigts et al. show [CCF12] that the information propagation algorithm has the fol-
lowing necessary and sufficient conditions.

Condition 1. ∃u ∈ V : ∀v ∈ V, u v.
(There is a node that can reach all the others by a journey.)

Condition 2. ∃u ∈ V : ∀v ∈ V, u
st
 v.

2.5 Scope of analysis

When dealing with mobile networks, it is often desirable to maintain a property or struc-
ture over time, instead of merely reaching it. For example, maintaining a spanning tree,
or an elected leader, or an accurate estimation of the graph size. Although analyzing
such maintenance algorithms with the framework of relabelings over evolving graph is
possible [Pig+10], we will not do so in this report.

Another aspect of mobile networks we will not consider explicitly is the appearance
and disappearance of nodes during algorithm execution. Actually, this aspect is implicitly
handled by the formalism of evolving graphs. Recall that evolving graphs are a post-
mortem view of the mobile network; in a given evolving graph, all the nodes that can
appear or disappear belong to V . As such, even if a node can be seen as “appearing” from
another node’s viewpoint, for us it was present all along.

3 Contributions

In this section, we present our core contributions to the analysis of distributed algorithms
on dynamic graphs.

First, we provide a sufficient condition for the decentralized counting algorithm from
Casteigts [Cas07]. A necessary condition for this algorithm was formulated in Casteigts
et al. [CCF12], but a sufficient condition was left open. We then introduce the concept
of tight conditions, to strengthen the guarantees offered by necessary and sufficient con-
ditions. We review the conditions and algorithms introduced so far with respect to this
tightness criterion. Then, we combine the counting and information propagation algo-
rithms to obtain a distributed counting algorithm where all nodes are informed of the
final count. Finally, we propose another counting algorithm for dynamic networks where
nodes have unique identifiers and can locally infer termination.

8

3.1 Sufficient condition for the decentralized counting algorithm

3.1.1 Decentralized counting algorithm

This decentralized counting algorithm was first proposed in Casteigts’ thesis [Cas07],
along with other variants.

Algorithm 2: Decentralized counting

Initial states: (C , 1) for every node

(C , i) (C , j) (C , i+ j) F
r1:

This is an example of a truly distributed algorithm: all nodes have the same initial
state, and all nodes execute the same algorithm. Each node has two labels: a state
indicator (C of F), and a counter. Initially, a node starts in the “counting” state (C),
with a counter of value 1. The counter indicates the number of counted nodes so far by
its holder, hence they all begin at 1. When two nodes in the counting state meet and
apply rule 1, one of them transitions to the “counted” state (F), and the other updates
the value of its counter by summing the counters of both nodes. Ultimately, the goal is to
have the last node remaining in the counting state to hold the total number of nodes in
the network as the value of its counter. Figure 5 gives an example execution sequence.

(C , 1)
(C , 1)

(C , 1)

(C , 1)

r1

(C , 1)
F

(C , 2)

(C , 1)

r1

(C , 3)
F

F

(C , 1)

Figure 5: Example execution of the decentralized counting algorithm. If we consider this
to be the whole execution sequence, then the counting was not successful: two nodes
remain in the counting state. For these two nodes to apply rule 1 and merge, there
must be an edge between them; this is the intuition behind a sufficient condition for this
algorithm.

Casteigts showed [Cas07] that this algorithm has the following invariant. Let C
(resp. F) be the set of nodes in state “C” (resp. “F”), and V be the set of all nodes. Then
|C |+ |F | = |V | holds at any time of the computation. It follows that if C = {u} (only
one counting node remains), then u’s counter value is equal to |V |.

We can express the objective of this algorithm as the property that only one counting
node remains at the end of the computation. Formally:

P2 = ∃u ∈ V : ∀v ∈ V \ {u},λ(u) = C ∧λ(v) = F

OA2
= P2(Gk[)

9

The necessary condition to this algorithm was then shown to be:

Condition 3. ∃v ∈ V : ∀u ∈ V, u v.
(There is a node reachable by all the others.)

3.1.2 Sufficient condition

Let us now prove that Condition 4 is a sufficient condition for Algorithm 2.

Condition 4. The underlying graph G is complete. Precisely: ∀u, v ∈ V , u 6= v =⇒ (u, v) ∈
E.

First, note the following properties of Algorithm 2.

Lemma 1. ∀t i , t j ∈ ST, j ≤ i, ∀u ∈ V , λt i
(u) = C =⇒ λt j

(u) = C.
(“C” labels never change until they disappear.)

Proof. Counters can only disappear from a vertex by application of r1. Any counter still
present at t i ∈ ST \ {t0} must have been there from the beginning.

Lemma 2. ∀t i , t j ∈ ST, j ≥ i, ∀u ∈ V , λt i
(u) = F =⇒ λt j

(u) = F.
(“F” labels never change once they appear.)

Proof. No rule can apply to a vertex with a “F” label, thus its label can never change once
it becomes “F”.

Lemma 3. Under Progression Hypothesis 1, ∀t i ∈ ST \{tk}, ∀(u, v) ∈ Ei , λt i
(u) = λt i

(v) =
C =⇒ F ∈ λt i+1[

({u, v}).
(If two counters share an edge, at least one of them will disappear.)

Proof. During the relabeling step R[t i ,t i+1), either r1 is applied to (u, v), or r1 can not be
applied because preconditions on the labels are not met anymore after an intermediary
relabeling. In the first case, one counter disappears from one vertex of {u, v}; in the
second case, one vertex of {u, v} already lost its counter. In both cases, F ∈ λt i+1[

({u, v}).

We can now show that Condition 4 (C2) is sufficient for Algorithm 2 to fulfill its
objective.

Proposition 1. Condition 4 is sufficient on G to guarantee that Algorithm 2 will reach its
objective OA2

.

Proof. (By contradiction). Assume OA2
is not satisfied: for some execution sequence

X ∈ χA2/G
, there are at least two final counters in Gk. Let u and v be two nodes with such

counters: u, v ∈ V , u 6= v, λtk
(u) = λtk

(v) = C . Since G is complete (by Condition 4),
(u, v) ∈ Ei , for some t i ∈ ST. By Lemma 1, λt i

(u) = λt i
(v) = C . Then, by Lemma 3, either

λt i+1[
(u) = F or λt i+1[

(v) = F , and in both cases we have F ∈ λtk
({u, v}) by Lemma 2,

leading to a contradiction. Hence, C2 =⇒ OA2
.

10

(C , n)

(C , m)

Final step tk

(C , i)

(C , j)

Some step t i

r1
(C , i+ j)

F

Step t i[

Figure 6: Illustration of the sufficient condition proof. If the final step tk has two nodes
in the counting state, and since the underlying graph is complete, there must have been
an edge between these two nodes at some step t i . If two nodes share an edge at some
step t i , then they inevitably apply rule 1. Thus only one counter remains, even though
we assumed there were two.

F1 : ∃u ∈ V : ∀v ∈ V, u v
F2 : ∀u, v ∈ V, u v
F3 : ∃u ∈ V : ∀v ∈ V, u

st
 v

F4 : ∀u, v ∈ V, u
st
 v

F5 : ∃u ∈ V : ∀v ∈ V \ {u}, (u, v) ∈ E
F6 : ∀u, v ∈ V, u 6= v, (u, v) ∈ E
F7 : ∃u ∈ V : ∀v ∈ V, v u

F6 F4 F2 F7

F5 F3 F1

Figure 7: Classification of graphs (reproduced from Casteigts et al. [CCF12]).

3.1.3 Comparison of counting algorithms

In Casteigts et al. [CCF12], a classification of graphs is given. Each condition (necessary
or sufficient) defines a class of graphs: all the graphs satisfying the condition are part of
this class. Classes of graphs can then be compared to each other, via the partial order
induced by inclusion. Figure 7 illustrates the relationships between seven conditions.

Under this classification, Condition 4 gives class F6, one the of narrowest, whereas
the necessary condition to the decentralized counting algorithm is represented by F7,
one of the largest. Theses classes allow us to compare the decentralized counting to
other counting algorithms, on the basis of their requirements. An algorithm with a looser
sufficient condition (inducing a larger class of graphs) is less specific, i.e. applicable to
more graphs.

We can thus compare the decentralized counting algorithm with its centralized vari-
ant, Algorithm 3.

Algorithm 3: Centralized counting

Initial states: (C , 1) for the counting node, N for every other node

(C , i) N (C , i+ 1) F
r1:

In this algorithm, counting is handled by a single node in the network. This node
starts in the “counting” state (label C) and keeps a counter initialized to 1, whereas all

11

the others start in the “neutral” state (label N). When the counting node meets a neutral
node, the counter is increased by one, and the neutral node becomes “counted” (label
F). This is not a distributed algorithm in the purest sense, since the initial states are not
uniform: one node begins in the unique state of counting.

This algorithm can be shown to have Condition 5 as a necessary condition.

Condition 5. ∃u ∈ V,∀v ∈ V \ {u}, (u, v) ∈ E.
(A node shares an edge with all the others.)

Condition 5 gives class F5, which is larger than F6. We can thus conclude that the
centralized counting algorithm is less specific than the decentralized version.

However, Condition 5 is sufficient for the centralized counting algorithm only if we
pick the node u that shares an edge with all the other nodes as the initial node with a
counter. If we want to be able to pick any node arbitrarily at random to be the counting
node, then all nodes must share an edge with all the others. This condition is none other
than Condition 4. In that case, the decentralized counting algorithm is the less specific,
because its necessary condition has a larger class of graph; it also holds the advantage of
requiring no centralization caused by a node with a special initial state.

3.2 Combination of algorithms

In the decentralized counting algorithm, only one node has knowledge of the total num-
ber of nodes. We would like to let all nodes know of the final count. Specifically, we want
an algorithm capable of reaching the following desired state.

P3 = ∃u ∈ V : ∀v ∈ V \ {u},λ(u) = (C , |V |)∧λ(v) = (F, |V |)

The straightforward way to reach this state is to execute the information propagation
algorithm (Algorithm 1) just after the counting algorithm is over. Unfortunately, nodes
have no way of knowing that the algorithm they are currently executing is over. This is a
known limit of computation in anonymous network [Tel00]. So, unless we give nodes a
way of breaking symmetry (by assigning unique identifiers for example), we will not be
able to chain both algorithms this way.

One solution is to execute both algorithms in parallel instead of chaining them. We
get the following relabeling algorithm:

Algorithm 4: Counting combined to propagation

Initial states: (C , 1) for every node

(C , i) (C , j) (C , i+ j) (F, i+ j)
r1:

(F, i) (F, j > i) (F, j) (F, j)
r2:

In this new algorithm, a counted node also updates its counter when rule 1 is applied.
And because of rule 2, counted nodes diffuse the value of the highest counter. Clearly,
once we arrive at a sole counting node, repeated application of r2 will propagate the final
tally to all counted nodes. Until the correct total count is reached however, propagation

12

still occurs but is only of practical interest; it has the side effect of updating a lower
bound on the census. Figure 8 illustrates this scheme.

(F , i) (F , j)

(C , |V |)

Counting nodes

(F , |V |) (F , |V |)

(C , |V |)

Propagating the result

Figure 8: Overview of the algorithm combining counting and information propagation.
The first phase is concerned with getting the total number of nodes; propagation can be
seen as a side effect. In the second phase, only rule 2 can match nodes. It broadcasts the
final count to every node.

Once the algorithm is defined, we want a necessary and a sufficient condition. We
focus on the sufficient condition first. Intuitively, the sufficient conditions for the two
algorithms from which Algorithm 4 is created will take part in elaborating the sufficient
condition for the hybrid algorithm. The two rules correspond to the two phases of count-
ing and propagation. The latter phase is only of interest once the former is over, even
though the rules are applied concurrently; propagation of the final count is what matters
for the algorithm. Hence, the counting phase needs to end, and this requires a complete
underlying graph (Condition 4). For the second phase, a strict journey from the final
counting node to all the other nodes should suffice, but since we can not know in ad-
vance which node will fill this role, we must ensure such a journey can begin from any
node (Condition 6).

Condition 6. ∀u, v ∈ V : u
st
 v

(There is a strict journey between any two nodes.)

However, these journeys are unnecessary until the counting phase is over. Since the
requirements for both phases are separate, the sufficient condition can be expressed from
Condition 4 and Condition 6 using temporal subgraphs (see subsubsection 2.2.1), giving
Condition 7.

Condition 7. ∃tp ∈ ST such that G[0,tp) has a complete underlying graph, and G[tp ,tk)
satisfies Condition 6.

Let us now turn over to the necessary condition. Symmetrically, the two necessary
conditions from the counting algorithm and the propagation algorithm will be used to
express the necessary condition for the combined algorithm. Let us call them respectively
N1 (Condition 3) and N2 (Condition 1). Clearly, if N1 does not hold, then the counting
phase can not succeed, leading to the failure of the combined algorithm. Likewise for
N2, regardless of whether N1 is satisfied. Consequently, any of the two can serve as a
necessary condition for Algorithm 4.

It is interesting to note that, even if N1 holds for an evolving graph G, we have no
guarantee that any relabeling sequence will reach the desired goal state. The next sub-
section elaborates on this issue.

13

3.3 Tight necessary and sufficient conditions

A necessary condition might be broader than required. We know that any graph not
satisfying this condition will never fulfill the algorithm’s objective, but it gives us no
additional clue about graphs satisfying the condition. Indeed, for any graph satisfying
the condition, some may never fulfill the objective, some may fulfill it in some cases, and
some may fulfill it in all cases; we can not know without a stronger definition.

Besides, it is not difficult to find trivial necessary conditions that are overly broad.
For any relabeling algorithm, any condition which encompass all graphs is a necessary
condition. Take the condition that the graph should have nodes: |V | > 0. Then, let S be
the set of graphs not satisfying this condition; trivially, S = ;. It follows that any graph in
S will never fulfill the objective, since S is empty, hence (|V |> 0) is a necessary condition.
It is trivial in the sense that it does not enlarge the set of graphs for which the algorithm
will fail.

When finding necessary conditions, we preferably want them to be as tight as possi-
ble. A necessary condition should partition the set of dynamic graphs into two subsets:
the set of all graphs for which the algorithm will systematically fail, and the set of all
graphs for which the algorithm will succeed at least once. To this end, we define tight
necessary conditions that generates such partitioning; Figure 9 illustrates their advantage.

No knowledge

Graphs satisfying CN

Will never
reach OA

All evolving graphs

Will reach OA in at
least one instance

Graphs satisfying CT N

Will never
reach OA

All evolving graphs

Figure 9: Partitioning the set of all evolving graphs with a necessary condition CN (left-
hand side), and a tight necessary condition CT N (right-hand side).

Will always reach OA

Graphs satisfying CS

No knowledge

All evolving graphs

Will always reach OA

Graphs satisfying CTSWill fail to reach
OA in at least
one instance

All evolving graphs

Figure 10: Partitioning the set of all evolving graphs with a sufficient condition CS (left-
hand side), and a tight sufficient condition CTS (right-hand side).

Definition 1. Let A be an algorithm, OA be its objective, and CN be a necessary condition.
CN is a tight necessary condition if and only if

∀G, CN (G) =⇒∃X ∈ χA/G|P(Gk)

In other words, if CN holds for an evolving graph G, then at least one execution sequence of
A over G will reach the desired state.

Symmetrically, we define tight sufficient conditions.

14

Definition 2. Let A be an algorithm, OA be its objective, and CS be a sufficient condition.
CS is a tight sufficient condition if and only if

∀G,¬CS(G) =⇒∃X ∈ χA/G|¬P(Gk)

In other words, if CS does not hold for a graph G, then at least one execution sequence of A
over G will fail to reach the desired state.

Note that a condition that is both necessary and sufficient is also a tight necessary
and tight sufficient condition (like Condition 5 for the centralized counting algorithm).

3.3.1 Tightening known conditions

We now show that Condition 4 is a tight sufficient condition for Algorithm 2. We have
two ways to do so:

• Show that an evolving graph lacking completeness of its underlying graph will fail
to fulfill its objective in at least one outcome.

• Show that all graphs for which all outcomes succeed in fulfilling the objective have
a complete underlying graph.

The following proof uses the former path.

Proof. Let G = (G, SG , ST) be an evolving graph. By hypothesis, G is not complete; i.e.
there are two distinct nodes u, v ∈ V such that (u, v) /∈ E. Since u and v are never in
direct contact, they can not apply rule r1. If u and v are the only two counting nodes left,
then it follows that ¬P(Gk), thus the objective OA2

can not be fulfilled and Condition 4 is
tight. We are left with exposing a relabeling sequence which leaves u and v with two C
labels.

When applying r1, any of the two nodes can keep the C label, creating two possible
outcomes. Every time r1 is applied to u (resp. v) with another node, we choose the
outcome where u (resp. v) keeps the C label. Ultimately, there are at least two nodes in
the counting state at time tk: u and v. There may be more, but in all cases the algorithm
fails to fulfill the objective.

It can also be shown that all necessary and sufficient conditions given for the algo-
rithms in Casteigts et al. [CCF12] are tight. This is expected, because mathematical
proofs have a tendency to follow Occam’s razor; the smallest set of hypotheses needed
by the proof is kept. Nonetheless, tight conditions ensure we narrowed down the right
property required by the algorithm to fail (or succeed).

3.4 Counting with identifiers

Let us now present a novel distributed algorithm for counting in networks where nodes
have identifiers. We already mentioned that local detection of global termination is not
feasible in anonymous networks (as shown by Tel [Tel00]). Local detection of global
termination is invaluable in practice: each node can determine on its own when to stop
executing the algorithm, and when to exploit its result. That is the reason this counting
algorithm will make use of unique identifiers for nodes.

The algorithm can be expressed using two relabeling rules (Algorithm 5). Each node
has three labels:

15

Algorithm 5: Counting with identifiers

Initial states: L = {iu}, T = {iu} for each node u

I J I J
L L′ 6= L L ∪ L′ L ∪ L′

T T ′ {I , J} {I , J}
r1:

I J I J
L L′ = L L L′

T T ′ 6= T T ∪ T ′ T ∪ T ′
r2:

• A unique identifier. In the diagram, this identifier is inscribed in the node’s inside.
Note that identifiers can be in any domain. When we write I and J , we do not
intend that only the nodes with the respective identifiers I and J will match the
rule. These are variables intended to capture a node’s identifier and use its value
later. We write iu the identifier of node u.

• A set L of identifiers of known nodes. Here again, one should not confuse L for a
static label, for it represents a dynamic set of labels. During the algorithm execution,
if we expand L we may get L = {a, b, c, . . . , z}, or L = {1, 2,3, . . . , n}, or anything,
depending on the domain from which identifiers are taken. We denote by Lu the
set L of a node u.

• A set T of identifiers of nodes who shared the same list L at some point in time.
The previous remark holds for T as well; here again we write Tu to denote the set
T of a node u.

Initially, each node u has a unique identifier iu, and Lu = Tu = {iu}. The first rule
will match two nodes, u and v, of distinct sets Lu and Lv , who proceed to merge them
together. The set L is thus used to make a census of known nodes, by sharing knowledge
with adjacent nodes. Conversely, the second rule matches two nodes with identical sets
L, but with distinct sets T . This time, the sets L are left alone, and the sets T are merged
together. Intuitively, the set T is a set of acknowledgments: two nodes agree on their set
of known nodes L, and they assume that this set is stable. Hence, by transitivity, for any
node v whose identifier is in the set Tu of node u, we have Lu ⊂ Lv . If Lu is updated after
that, then the acknowledgment is obsolete, and that is why the set T is reset when rule
1 is applied. Figure 11 gives an example of a couple relabeling steps for this algorithm.

Ultimately, if the set L is complete (L = {ix |∀x ∈ V}) and all nodes agree (T = L),
then counting is over. Every node has the result, and also the identifiers of each node in
the network. However, our interest here is to give nodes the power to know when the
algorithm is over. In other words, we want the property that, for any node u, Lu = Tu =⇒
Lu = {ix |∀x ∈ V}. Unfortunately, that is not always the case; see the counter-example in
Figure 12.

Nevertheless, there is a way for the implication to be true: when the graph is con-
nected initially, i.e. in G0 there is only one connected component containing all nodes of
V . Under Progression Hypothesis 1, every node u will fill its set Lu with the identifiers
of its neighbors at this initial time t0. This is enough to guarantee that local detection of
global termination will raise no false positive, as the following proof demonstrates.

16

vL = {v}
T = {v}

w L = {w}
T = {w}

uL = {u}
T = {u}

x

L = {x}
T = {x}

r1

vL = {v}
T = {v}

w L = {u, w}
T = {u, w}

uL = {u, w}
T = {u, w}

x

L = {x}
T = {x}

r1

vL = {v}
T = {v}

w L = {u, w, x}
T = {w, x}

uL = {u, w}
T = {u, w}

x

L = {u, w, x}
T = {w, x}

Figure 11: Counting with identifiers. The identifiers are set in each node’s circle. Each
set L grows with each application of r1, listing all known nodes. Two nodes acknowledge
their identical lists by inscribing each other in the set T .

v

L = {u, v, . . . }
T = L

u

L = {u, v, . . . }
T = L

x
x connects

v

L = {u, v, . . . }
T = L

u

L = {u, v, . . . , x}
T = {u, x}

x

Figure 12: Node u and v have never shared an edge with x until then. They both end up
with L = T after dutifully executing the algorithm. When x finally connects, Tu is reset.
Lu = Tu =⇒ Lu = V is thus false in this scenario.

17

Proof. (By contradiction). Let G = (G, SG , ST) be an evolving graph. At t0, this first date
in ST, the labeled graph G0 is connected. Furthermore, assume there is a node u ∈ V
such that Lu = Tu but Lu is not complete. That is, ∃x ∈ V : ix /∈ Lu.

Since G0 was connected, x had at least one neighbor in G0, call that neighbor node y .
Now, since (x , y) ∈ E0, ix ∈ L y because x and y would have applied r1 under Progression
Hypothesis 1 and because identifiers never disappear from a set L. Then, either:

• iy ∈ Tu, which means that both y and u acknowledged their L sets. Since ix ∈ L y
it follows that ix ∈ Lu, leading to a contradiction;

• iy /∈ Tu, and since Lu = Tu we have iy /∈ Lu. We found another node, y , which is
not in Lu. By the same argument, we can find a neighbor node of y , call it z, and
show that iz must not be in Lu, and so on and so forth until we reach u, because
the graph is finite, and show that iu /∈ Lu, which is absurd.

Thus, if Lu = Tu then Lu = {ix |∀x ∈ V}.

We have not yet characterized necessary and sufficient conditions for this algorithm.
The interactions between the two rules make the analysis more complex, but we think
these conditions can be found nonetheless.

4 Algorithms for the naming problem

In this section we discuss another distributed computing problem we have worked on but
not to the point of giving formal proofs. We share these preliminary findings in the hope
they can serve as a basis for further research.

The naming problem is another classical problem of distributed computing. Consider
a mobile network of anonymous nodes able to communicate with their neighbors. The
naming problem consists in attributing a unique identifier to each node in the network.

4.1 Local resolution

A first, naive way of trying to solve the naming problem is to locally resolve collisions
between identifiers. When two nodes with the same identifier meet, one of them must
change to another identifier.

Algorithm 6: Local naming

Initial states: 0 for every node

i i i j 6= i
r1:

This collision may be resolved in any number of ways. For example, if identifiers are
in N and two nodes have the same identifier value i = j, for i, j ∈ N, then increasing i
to i + 1 is enough to have i 6= j. Generally, if identifiers are taken from a set S, and if
any two elements from S are either equal or distinct, then a collision can be resolved by
randomly picking an element from S until the identifiers differ.

Clearly, S needs to contain at least two elements otherwise this procedure for re-
solving collisions would never end. Furthermore, S should be at least as large as |V | if

18

1

1

1

1 1
1

r1 1

2

2

1 2
2

r1 1

3

2

1 2
2

Figure 13: Solving the naming problem with local resolution.

we hope to solve the naming problem. In practice, we can easily take an infinite set of
distinct elements, like N, or words constructed from an alphabet.

By resolving all local collisions between pairs of nodes, we ensure each node will not
have the same identifier as any of its neighbors. This is in fact a coloring of the nodes in
the network. However, we can not guarantee that a node will not share its identifier with
another non-adjacent node, unless the underlying graph is complete.

4.2 Centralized naming

A second method of solving the naming problem is to use a central counter. Initially, one
node starts in a differentiated state: as a counter which holds the next identifier to hand
out to neighbor nodes; we will call it the source node. Initially, the source node gives itself
the identifier 0, and its counter is set to 1. When the source node encounters another
node u, u receives the current value of the counter as its identifier, and the counter is
increased. If all nodes in the network meet with the source node, then all will have
distinct identifiers. The algorithm thus solves the naming problem.

Algorithm 7: Centralized naming

Initial states: (0,1) for the naming node, N for every other node

(0, i) N (0, i+ 1) i
r1:

The algorithm is actually quite similar to the centralized counting algorithm from
Casteigts [Cas07]. Although in this case, in addition to counting, the differentiated node
identifies neighbors as well. Nevertheless, it follows that the necessary and sufficient
conditions for both algorithms are the same, i.e. the source node has degree n− 1 in the
underlying graph (Condition 5).

4.3 Random walking counter

Instead of using a centralized counter, we could pass the counter from node to node, like
in a relay race. The counter is initialized to zero once again, and each time it is relayed
to an unnamed node, that node takes the counter’s current value as its identifier, before
increasing it.

Depending on the topology of the network, all nodes may receive the counter, and
thus have a unique identifier. Like in centralized naming, this counter can obviously be
used for counting the nodes in the network, as well as naming them.

19

Algorithm 8: Token naming

Initial states: (0,1) for the node holding the token, (N , N) otherwise

(i, j) (N , N) (i, N) (j, j+ 1)
r1:

However, and contrarily to centralized naming, the circulation of the token induces a
random walk in the network. Hence, the necessary and sufficient conditions which held
for the centralized naming algorithm are inadequate in this case.

Note that the token can only pass from a named node to an unnamed one; it can
never end up on a previously visited node. Since, to solve the naming problem, we need
to name all nodes in the network, what we need then is a journey which starts from the
source node and goes through every other node, until no node is left unnamed. We will
call such a journey an Hamiltonian journey.

It can be shown that the token will only progress along an Hamiltonian journey.
Consequently, we can express the necessary condition for this naming algorithm: the
evolving graph needs to contain at least one Hamiltonian journey starting from the source
node. In the absence of such a journey, the token can not name all nodes, and thus the
algorithm fails.

The sufficient condition is harder to find. It is easy to see that a chain of nodes can
always be named, as well as ring networks of any size. In these graphs, the token has
always only one possible node with which to interact, until all nodes are named. Adding
only one edge may create situations where the token can be trapped in a dead-end, but
not necessarily. Hamiltonian journeys may be a piece of the puzzle, but as of now, a
sufficient condition for this algorithm still eludes us.

4.4 Tree method

The token method is sequential, since there is only one token traversing the graph at all
times. The random walk of a lone token in large graph can be impractical. If we want the
algorithm to finish quickly, we should make use of parallel computation. The problem
then is to ensure that two nodes never receive the same identifier, even though naming
is done concurrently and nodes have no direct way to know which identifiers may have
been already assigned.

One solution is to use a naming scheme that will prevent duplicate identifiers from
appearing. Consider a tree where the root has ID 0. Now, any children of the root can
be uniquely identified by its child index, starting at 0. But if we use this index as an
identifier number, the root will share its identifier with its first child. However, any node
in the tree, save the root, can be uniquely described by the ID of its parent and its child
index. Thus, if the root has ID 0, its first child has ID (0,0), its second child (0,1), and
its second child’s first child has ID (0,1,0). Identifiers are defined recursively, using the
identifier of the parent node.

First, consider a static network. The algorithm can be described as follows:

• Assign identifier 0 to a source node;

• A node which already has an ID send its own ID suffixed with i (ID:i) to its i-th
neighbor, for every neighbor that is not its parent (its parent is the node that gave

20

0 r1, r1
0:1

0

0:0

r1, r1
0:1

0:1:0

0

0:0
0:0:0

Figure 14: Using a tree to solve the naming problem.

it its identifier). Alternatively, the node can broadcast to all its neighbors, and the
parent will just ignore the new ID as it already has one.

For static graphs, this process is bounded in the number of vertices, and we have
global termination, but at the cost of having to choose a source node. We can also notify
the source node when all nodes have a name by using the Dijkstra-Scholten algorithm.

The algorithm needs some modifications to accommodate an evolving graph:

• Each node keeps an internal counter C , initially zero.

• When node a with an ID meets unnamed node b, b gets assigned an ID constructed
from a’s ID suffixed with the value of a’s counter C , and this counter is increased
by one.

Algorithm 9: Tree naming

Initial states: (0,0) for the root node, (N , 0) otherwise

(i, c) (N , 0) (i, c+ 1) (i : c, 0)
r1:

This tree method is more similar to flooding algorithms: all nodes with an ID will
assign IDs to encountered nodes; the naming of nodes is made parallel. The expected
time to terminate the algorithm should be lower than for the single token method.

This method has one downside though: identifiers grow in length with each level in
the tree. On the one hand, identifiers can be used to trace a path back to the root, but
this path is only valid at the time the identifier is constructed; in a dynamic network, this
information may quickly become obsolete. On the other hand, the memory required to
hold an identifier grows with the tree.

We have not yet characterized necessary or sufficient conditions for this algorithm.

5 Perspectives

We did not provide a necessary or a sufficient condition for the counting algorithm with
identifiers. Instead, we focused on finding a sufficient condition for ensuring local de-
tection of termination. Similarly, the four methods we proposed to solve the naming
problem would also benefit from further analysis, e.g. necessary and sufficient condi-
tions, and formal proofs for these conditions when we provided them.

21

5.1 Analysis of maintenance algorithms

We mentioned in subsection 2.5 that there are two kinds of objectives for distributed
algorithms: reaching a desired state, or maintaining it. This is an important distinction
to make. Reaching a state where the graph contains a spanning tree is certainly not as
useful in practice as maintaining the spanning tree over time.

While there has been preliminary studies using simulations for maintenance algo-
rithms expressed as relabeling systems [Pig+10], they restricted their analysis to static
graphs. Simulations over dynamic graphs are often tied to a particular mobility model
(or several), each model bringing its bias to the results. The framework provided by
relabeling algorithms over evolving graphs is free of these biases, by its higher level of
concern. It would be interesting to see if this framework would still be as potent when
analyzing maintenance algorithms.

5.2 Algorithmic complexity

In the literature, distributed algorithms are most often characterized by their algorithmic
complexity. Whole articles are devoted to improving the worst-case complexity of one
algorithm and bring it closer to the theoretical lower bound [Awe87].

While this is an area we barely touched in this report, the framework we used can
help with the complexity analysis of relabeling algorithms. We could find, for example,
how many relabeling steps it would take for the information propagation algorithm to
inform all n nodes for an evolving graph satisfying the sufficient condition. Or we could
find additional sufficient conditions under which the algorithm terminates in fewer rela-
beling steps. More guarantees can be given, while still basing the analysis on the same
framework.

5.3 Mechanization

Finally, Casteigts et al. [CCF12] already alluded to the mechanization of their work.
Precisely, they envision a software platform which would be used to define distributed
relabeling algorithms and run a library of tests on them. This tool would help its user find
necessary and sufficient conditions for a given algorithm, by testing known conditions
and by giving him clues via exhaustive combinatorial search. Towards this end, this
software could make an extensive use of formal proof systems, such as Coq (a goal shared
with Castéran et al. [CFM09]). Another possibility is to follow-up on the idea from
Harary and Gupta [HG97] of using logic programming to model dynamic graphs and
relabeling algorithms. The backtracking backbone of logic languages such as Prolog is
particularly suited to handling combinatorial searches.

Even a modest simulation tool for looking at execution traces of relabeling algorithms
over dynamic graphs could be useful for the analyst. Using a variety of mobility models
mimicking the real world, simulations would validate or invalidate distributed algorithms
for practical applications. This prospect has already been tackled [Pig08], but much
remain to be uncovered still.

Conclusion

Throughout this report, we built upon the foundations provided by Casteigts et al. [CCF12]
in the domain of distributed algorithms over dynamic graphs.

First, we showed that a complete underlying graph was sufficient for the decentral-
ized counting algorithm to succeed. Then we created a hybrid counting algorithm which

22

propagate its result to all nodes in the network, by combining two preexisting algorithms.
We also presented a novel algorithm for counting in a network of named nodes; it gives
nodes the power to detect the end of the execution by merely looking at their neighbor-
hood.

To ensure the generality of necessary and sufficient conditions, we defined a tightness
criterion, and demonstrated the tightness of the sufficient condition we gave for the
decentralized counting algorithm.

Finally, while we had focused on counting algorithms so far, we still enunciated four
methods of solving the naming problem. However, we presented these methods less
formally, and did not provide a necessary or sufficient condition for all of them.

References

[Ang+06] D. Angluin et al. “Computation in Networks of Passively Mobile Finite-State
Sensors”. In: Distributed Computing 18 (4 2006), pp. 235–253. DOI: 10.100
7/s00446-005-0138-3.

[Ang80] D. Angluin. “Local and global properties in networks of processors (Extended
Abstract)”. In: Proceedings of the 12th annual ACM symposium on Theory of
Computing. STOC ’80. ACM, 1980, pp. 82–93. DOI: 10.1145/800141.804
655.

[Awe87] B. Awerbuch. “Optimal Distributed Algorithms for Minimum Weight Span-
ning Tree, Counting, Leader Election, and related problems”. In: Proceedings
of the 19th annual ACM Symposium on Theory of Computing. STOC ’87. ACM,
1987, pp. 230–240. DOI: 10.1145/28395.28421.

[Cas07] A. Casteigts. “Contribution à l’algorithmique distribuée dans les réseaux mo-
biles ad hoc - Calculs locaux et réétiquetages de graphes dynamiques”. PhD
thesis. University of Bordeaux, 2007.

[CCF09] A. Casteigts, S. Chaumette, and A. Ferreira. “Characterizing Topological As-
sumptions of Distributed Algorithms in Dynamic Networks”. In: Proc. of 16th
Intl. Conference on Structural Information and Communication Complexity.
SIROCCO’09 (Piran, Slovenia). Vol. 5869. Lecture Notes in Computer Sci-
ence. Springer-Verlag, May 2009, pp. 126–140.

[CCF12] A. Casteigts, S. Chaumette, and A. Ferreira. “Distributed Computing in Dy-
namic Networks: Towards a Framework for Automated Analysis of Algo-
rithms”. In: CoRR (2012). URL: http://arxiv.org/abs/1102.5529.

[CFM09] P. Castéran, V. Filou, and M. Mosbah. “Certifying distributed algorithms by
embedding local computation systems in the Coq proof assistant”. In: Pro-
ceedings of Symbolic Computation in Software Science. SCSS 2009. Sept. 2009.
URL: http://hal.archives-ouvertes.fr/hal-00407990.

[CR79] E. Chang and R. Roberts. “An Improved Algorithm for Decentralized Extrema-
Finding in Circular Configurations of Processes”. In: Communications of the
ACM 22 (5 May 1979), pp. 281–283. DOI: 10.1145/359104.359108.

[Eul41] L. Euler. “Solutio problematis ad geometriam situs pertinentis”. In: Com-
mentarii academiae scientarum Petropolitinae 8 (1741), pp. 128–140. URL:
http://www.math.dartmouth.edu/~euler/pages/E053.html.

[Fer04] A. Ferreira. “Building a Reference Combinatorial Model for MANETs”. In:
Network, IEEE 18.5 (2004), pp. 24–29.

23

http://dx.doi.org/10.1007/s00446-005-0138-3
http://dx.doi.org/10.1007/s00446-005-0138-3
http://dx.doi.org/10.1145/800141.804655
http://dx.doi.org/10.1145/800141.804655
http://dx.doi.org/10.1145/28395.28421
http://arxiv.org/abs/1102.5529
http://hal.archives-ouvertes.fr/hal-00407990
http://dx.doi.org/10.1145/359104.359108
http://www.math.dartmouth.edu/~euler/pages/E053.html

[FGA11] P. Floriano, A. Goldman, and L. Arantes. “Formalization of the necessary
and sufficient connectivity conditions to the distributed mutual exclusion
problem in dynamic networks”. In: 10th IEEE International Symposium on
Network Computing and Applications. 2011, pp. 203–210. DOI: 10.1109/N
CA.2011.35.

[GHS83] R. G. Gallager, P. A. Humblet, and P. M. Spira. “A Distributed Algorithm for
Minimum-Weight Spanning Trees”. In: ACM Transactions on Programming
Languages and Systems 5 (1 Jan. 1983), pp. 66–77. DOI: 10.1145/35719
5.357200.

[HG97] F. Harary and G. Gupta. “Dynamic Graph Models”. In: Mathematical and
Computer Modelling 25.7 (1997), pp. 79–87.

[KLO10] F. Kuhn, N. Lynch, and R. Oshman. “Distributed Computation in Dynamic
Networks”. In: Proceedings of the 42nd ACM Symposium on Theory of com-
puting. STOC ’10. ACM, 2010, pp. 513–522. DOI: 10.1145/1806689.180
6760.

[LMS99] I. Litovsky, Y. Métivier, and É. Sopena. “Graph relabelling systems and dis-
tributed algorithms”. In: Handbook of Graph Grammars and Computing by
Graph Transformation. Vol. 3. 1999. Chap. 1, pp. 1–56.

[NS93] M. Naor and L. Stockmeyer. “What can be computed locally?” In: Proceedings
of the 25th annual ACM Symposium on Theory of Computing. STOC ’93. ACM,
1993, pp. 184–193. DOI: 10.1145/167088.167149.

[OW05] R. O’Dell and R. Wattenhofer. “Information Dissemination in Highly Dy-
namic Graphs”. In: Proceedings of the 2005 joint workshop on Foundations
of Mobile Computing. DIALM-POMC ’05. ACM, 2005, pp. 104–110. DOI: 10.
1145/1080810.1080828.

[Pig+10] Y. Pigné et al. “Construction et maintien d’une forêt couvrante dans un
réseau dynamique”. In: 12e Rencontres francophones sur les aspects algo-
rithmiques de télécommunications. ALGOTEL’10 (Belle Dune, France). June
2010.

[Pig08] Y. Pigné. “Modélisation et traitement décentralisé des graphes dynamiques -
Application aux réseaux mobiles ad hoc”. French. PhD thesis. Université du
Havre, Dec. 2008.

[Syl78] J. Sylvester. “Chemistry and algebra”. In: Nature 17.432 (1878), pp. 284–
284.

[Tel00] G. Tel. Introduction to Distributed Algorithms. Cambridge University Press,
2000, pp. 268–334.

24

http://dx.doi.org/10.1109/NCA.2011.35
http://dx.doi.org/10.1109/NCA.2011.35
http://dx.doi.org/10.1145/357195.357200
http://dx.doi.org/10.1145/357195.357200
http://dx.doi.org/10.1145/1806689.1806760
http://dx.doi.org/10.1145/1806689.1806760
http://dx.doi.org/10.1145/167088.167149
http://dx.doi.org/10.1145/1080810.1080828
http://dx.doi.org/10.1145/1080810.1080828

	Context
	Dynamic graphs
	Distributed algorithms and local computation
	Related work

	Preliminaries
	Graph relabelings
	Evolving graphs
	Relabelings over evolving graphs
	Distributed algorithm analysis
	Scope of analysis

	Contributions
	Sufficient condition for the decentralized counting algorithm
	Combination of algorithms
	Tight necessary and sufficient conditions
	Counting with identifiers

	Algorithms for the naming problem
	Local resolution
	Centralized naming
	Random walking counter
	Tree method

	Perspectives
	Analysis of maintenance algorithms
	Algorithmic complexity
	Mechanization

