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Instabilités induites par évaporation : modèle solutal

Le séchage d'une solution polymère s'accompagne généralement de l'apparition d'un gradient de concentration non négligeable près de la surface libre pouvant engendrer de la convection de Bénard-Marangoni, d'origine solutale. Le problème étant intrinsèquement transitoire, on étudie numériquement la sensibilité des seuils délimitant les régimes diffusif et convectif, pour un ensemble de conditions initiales et différents rapports de forme du film fluide.

Introduction

Le séchage d'une solution dont l'un des constituants est volatil met en jeu des phénomènes de transferts de chaleur et/ou de masse dans un fluide dont les caractéristiques évoluent au cours du temps. L'évaporation du solvant entraîne une diminution de la température et de la concentration en solvant au niveau de la surface libre. Les gradients thermiques ou massiques qui en résultent peuvent alors engendrer le développement de cellules convectives. Dans le cas d'une solution polymère (Polyisobutylène/Toluène), des expériences ont confirmé la présence de cellules convectives d'origine thermique en tout début de séchage (approximativement dans les 100 premières secondes, [START_REF] Toussaint | Experimental characterisation of buoyancy-and surface tension-driven convection during the drying of a polymer solution[END_REF] et [START_REF] Touazi | Convection naturelle de Rayleigh-Bénard-Marangoni en régime transitoire[END_REF]). Pour ce type de solutions, les temps caractéristiques thermique et massique sont très différents ; aux temps longs (de l'ordre d'une heure), et dans le cas d'un récipient aux parois adiabatiques, les gradients de température dans le film liquide deviennent négligeables et seuls les gradients de concentration peuvent alors engendrer des instabilités.

Les simulations numériques permettent d'étudier séparément chaque phénomène physique et le rôle des différents paramètres. Dans ce travail nous étudions l'influence de la perturbation initiale et du rapport de forme pour les temps longs dominés pas les phénomènes solutaux.

Modèle bidimensionnel

Hypothèses

La solution est supposée newtonienne et, dans une première étape, sa viscosité est supposée constante. Dans les résultats présentés ici, seul l'effet Marangoni est considéré (masse volumique constante, poussée d'Archimède négligée). Un aperçu de la géométrie est proposé en figure 1. La surface libre est supposée plane. La fraction volumique initiale en solvant étant élevée (comprise entre 0,9 et 0,99) il est nécessaire de prendre en compte la diminution de l'épaisseur induite par le séchage (interface mobile). Par ailleurs, une des caractéristiques connues des solutions polymères est que la pression de vapeur saturante de la solution reste très proche de celle du solvant pur dans une large gamme de concentration, typiquement tant que la fraction volumique du solvant à la surface libre est supérieure à 0,4 [START_REF] Doumenc | Mutual Diffusion Coefficient and Vapor-Liquid Equilibrium Data for the System Polyisobutylene + Toluene[END_REF]. Dans ce régime, qui est celui que nous simulons, le flux d'évaporation peut donc être considéré comme constant et, par conséquent, la vitesse de déplacement de l'interface est elle aussi indépendante du temps. Enfin, le coefficient de diffusion mutuelle solvant/polymère varie peu dans la gamme de fraction volumique en solvant considérée. Lorsque celle-ci descend en dessous de 0,4 à la surface libre, la pression de vapeur saturante et le coefficient de diffusion s'effondrent [START_REF] Doumenc | Mutual Diffusion Coefficient and Vapor-Liquid Equilibrium Data for the System Polyisobutylene + Toluene[END_REF], et le modèle n'est plus valable. 

Equations

Les équations de conservation de la masse, de la quantité de mouvement et de la masse de solvant s'écrivent sous forme adimensionnée :

સ. ൌ 0 (1) 
߲ ௧ ሺ. સሻ ൌ െસ ܵܿ∆ (2) 
߲ ௧ ߮ ௦ ሺ. સሻ߮ ௦ ൌ ∆߮ ௦ (3) 
avec : ݁ , ݁/ܦ , ߩ ሺ݁/ܦ ሻ ଶ , ݁ ଶ ܦ/ respectivement les échelles de longueur, vitesse, pression et de temps. L'échelle de fraction volumique ∆߮, apparaissant dans le nombre de Marangoni, est fixée à 1, ce qui correspond à l'écart entre le polymère pur et le solvant pur.

Les conditions aux limites à l'interface s'expriment de la manière suivante :

• Le flux massique de solvant au travers de la surface libre mobile

ܿ ௦ ሺ െ ሻ. ࢠ ൌ ሾܿ ௦ ሺ െ ሻ െ ߩܦ સ߱ ௦ ሿ. ࢠ (4) est égal au flux massique d'évaporation ߩ ݒ ௩ ൌ െߩ ݐ݀/݁݀ ൌ െߩ ݓ ௧ : ܿ ௦ ሺݓ െ ݓ ௧ ሻ െ ߩܦ ߲ ௭ ߱ ௦ ൌ ߩ ௦ ݒ ௩ (5) 
Sachant que le polymère ne s'évapore pas, on peut écrire :

ܿ ሺݓ െ ݓ ௧ ሻ െ ߩܦ ߲ ௭ ߱ ൌ 0 (6) 
En additionnant les équations (5) et (6), en tenant compte de ܿ ௦ ܿ ൌ ߩ et ߱ ௦ ߱ ൌ 1, il vient : ݓ ൌ 0 à la surface libre.

• La condition limite sur la fraction volumique de solvant, à la surface libre devient :

െ߲ܦ ௭ ߮ ௦ ൌ ݒ ௩ ሺ1 െ ߮ ௦ ሻ.
Sous forme adimensionnée, les conditions aux limites s'écrivent :

ݔ ൌ 0, ,ܣ ൝ ݑ ൌ 0 ݓ ൌ 0 ߲ ߮ ௦ ൌ 0 ݖ ൌ 0, ൝ ݑ ൌ 0 ݓ ൌ 0 ߲ ௭ ߮ ௦ ൌ 0 ݖ ൌ ݁ሺݐሻ, ൝ ߲ ௭ ݑ ൌ െܽܯ ߲ ௫ ߮ ௦ ݓ ൌ 0 ߲ ௭ ߮ ௦ ൌ െܲ݁ ௧ ሺ1 െ ߮ ௦ ሻ
Avec ܲ݁ ௧ le nombre de Péclet d'interface (vitesse adimensionnée de l'interface).

Schéma numérique

La méthode ALE (Alternative Lagrangian Eulerian) permet de suivre le déplacement connu de l'interface au cours du temps. La vitesse et la pression sont découplées par une méthode de projection. Le terme de diffusion est implicité tandis que les contributions d'advection sont explicitées à l'ordre 2 avec un schéma d'Adams-Bashforth. Un schéma Euler retardé d'ordre 2 est utilisé pour la discrétisation temporelle. Une méthode ADI incrémentale et une méthode de Crout permettent de résoudre les problèmes d'Helmholtz et de Poisson. Le maillage est structuré et décalé. Il se compose de 50 mailles dans la direction verticale et de ܣ ൈ 50 mailles dans la direction horizontale ; le pas de temps est de 10 ିହ . Le code a été validé avec une solution analytique.

Résultats

Les valeurs des paramètres utilisées dans les simulations sont : ܵܿ ൌ 10, ߮ ௦ ൌ 0,953, ܲ݁ ௧ ൌ 3 et ܽܯ ൌ 10 ସ . En complément du Péclet, ܲ݁ ௧ , construit sur la vitesse de l'interface, nous définissons le nombre de Péclet ܲ݁, construit sur la norme L2 de la vitesse du fluide : ܲ݁ ൌ ԡܸԡ ଶ . ܲ݁ caractérise l'intensité relative des échanges par convection et diffusion massique et sera utilisé pour définir l'apparition de la convection : la convection sera considérée comme significative si ܲ݁ 1 (même démarche que dans le traitement du problème de convection naturelle thermique décrit dans la référence [START_REF] Touazi | Convection naturelle de Rayleigh-Bénard-Marangoni en régime transitoire[END_REF]). Afin d'étudier la sensibilité des résultats aux conditions initiales, les calculs sont initialisés avec un champ de concentration uniforme auquel est ajoutée une perturbation issue d'un tirage aléatoire, effectué selon une loi uniforme, de moyenne nulle, d'amplitude ܽ fixée.

Influence de la perturbation initiale

Dans le but d'éviter d'éventuels effets de parois le rapport de forme initial utilisé dans cette section est ܣ ൌ 10.

Influence du tirage

Les figures 2 et 3 représentent respectivement l'évolution du nombre de Péclet et du nombre de cellules de convection au cours du temps, pour plusieurs tirages aléatoires d'amplitude 10 ିଷ . On voit sur la figure 2 que la convection devient non négligeable vers ݐ ൌ 0,045 (1 ൏ ܲ݁ ൏ 1.69). L'influence du choix d'un tirage particulier se fait essentiellement sentir entre ݐ ൌ 0,06 et ݐ ൌ 0,12. Dans cette gamme de temps, il ne représente toutefois qu'un effet d'environ 20% sur ܲ݁. Par la suite, cet effet devient très faible. On constate également un effet sur le nombre de cellules (figure 3), lequel se limite à une variation sur une paire de cellules lorsque ݐ 0,12 (valeur 10 obtenue 1 seule fois). 

Influence de l'amplitude de la perturbation initiale.

La figure 4 montre l'effet de l'amplitude de la perturbation initiale sur ܲ݁ሺݐሻ, pour un tirage donné. Cet effet porte essentiellement sur le temps d'apparition de la convection qui raccourcit lorsque l'amplitude de la perturbation augmente. La valeur maximum atteinte par le Péclet est assez peu affectée par l'amplitude de la perturbation initiale, de même que les valeurs prises par la suite, une fois ce maximum atteint. 

Longueur d'onde des structures

La figure 5 montre l'influence du facteur de forme initial ܣ sur la longueur d'onde moyenne des structures obtenues aux temps longs ݐ( 0.2), pour ܽܯ ൌ 10 ସ et une amplitude de perturbation initiale de 10 ିଷ . La longueur d'onde moyenne est définie par le quotient entre le rapport de forme initial et le nombre de couples de cellules contra-rotatives. Ce nombre est déterminé à mi-hauteur de la cavité, par l'annulation de la fonction ligne de courant. Les barres d'erreur de la figure 5 correspondent aux écarts types issus de 10 tirages aléatoires de la perturbation initiale, pour une loi de probabilité uniforme centrée. Conformément au résultat attendu, la longueur d'onde moyenne est de l'ordre de l'épaisseur. Elle est proche de 1,5, à l'exception du rapport de forme ܣ ൌ 1. 

Détermination du seuil de convection

La figure 7 présente le nombre de Marangoni critique, ܽܯ , (au sens du critère défini précédemment, i.e. il existe un temps ݐ tel que ܲ݁ሺݐሻ 1) en fonction du facteur de forme pour différentes amplitudes de la perturbation initiale. Les barres d'erreurs représentent l'effet de différentes réalisations de la perturbation initiale aléatoire (cet effet a été chiffré à environ േ10%). Hormis pour ܣ ൌ 1, le Marangoni critique ne dépend pas du facteur de forme. On observe par contre une dépendance avec l'amplitude de la perturbation initiale, toutefois modérée puisque la multiplication par 10 de l'amplitude (10 ିଽ à 10 ିଷ ) ne multiplie que par 2 la valeur du Marangoni critique. Il est utile de noter que, d'après la figure 7, la perturbation d'amplitude 10 ିଽ est encore supérieure aux erreurs dues au schéma numérique. En effet lorsque ܽ ൌ 0, les seuils conductif-convectif sont largement plus élevés que ceux obtenus avec ܽ ൌ 10 ିଽ . La détermination d'un nombre de Marangoni critique, intégrant à la fois les tirages aléatoires et l'étude des amplitudes de la perturbation, montre clairement que c'est la dépendance à l'amplitude qui engendre l'effet dominant. 

Conclusion

Dans ce travail préliminaire, nous avons pu évaluer l'effet de la condition initiale sur le seuil de stabilité et sur les vitesses atteintes une fois la convection développée. L'amplitude de la perturbation initiale a essentiellement un effet sur l'instant auquel la convection apparaît, et sur la valeur du nombre de Marangoni critique, sans toutefois changer son ordre de grandeur. Passer d'une réalisation particulière de la perturbation initiale à une autre de même amplitude n'a qu'un effet négligeable. Dans la suite, une étude systématique sera entreprise pour déterminer la valeur du Marangoni critique ܽܯ en fonction du nombre de Péclet d'interface ܲ݁ ௧ , du nombre de Schmidt ܵܿ, et de la fraction volumique initiale en solvant ߮ ௦ . La convection de Rayleigh-Bénard pourra être traitée de la même façon. Enfin, il sera intéressant d'introduire l'effet de la concentration sur la viscosité, point très important pour traiter les solutions polymères de façon réaliste.
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 1 Figure 1 : Géométrie du problème bidimensionnel
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 2 Figure 2 : Evolution de ܲ݁ en fonction du temps pour différents tirages aléatoires ܣ( ൌ 10, ܽܯ ൌ 10 ସ ).

Figure 3 :

 3 Figure 3 : Evolution du nombre de cellules de convection en fonction du temps pour différents tirages aléatoires ܣ( ൌ 10, ܽܯ ൌ 10 ସ ).
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 432 Figure 4 : Evolution de ܲ݁ pour différentes amplitudes de la perturbation initiale (de gauche à droite : ܽ ൌ 10 ି ଷ , 10 ି , 10 ିଽ ). ܣ ൌ 10, ܽܯ ൌ 10 ସ
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 5 Figure 5 : Influence du facteur de forme initial sur la longueur d'onde moyenne des structures pour des temps longs ݐ( 0,2). ܽܯ ൌ 10 ସ , ܽ ൌ 10 ିଷ La figure 6 donne un aperçu de l'évolution des iso-valeurs de concentration en fonction du temps pour un tirage aléatoire d'amplitude 10 ିଷ .
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 6 Figure 6 : Iso-valeurs de concentration en solvant pour différents temps. (De haut en bas ݐ ൌ 0,5; 1; 1,5; ܽܯ(.)2 ൌ 10 ସ , ܣ ൌ 10)
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 7 Figure 7 : Nombre de Marangoni critique en fonction du facteur de forme pour différentes amplitudes de la perturbation initiale.