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Simulation of natural convection with the
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O. Touazi ∗, E. Chénier, R. Eymard

Université Paris-Est, LETEM, EA 2546, 5 bd Descartes, 77454 Marne la Vallée

Cedex 2, France

Abstract

This paper presents numerical results obtained in the case of natural convection
within non constant fluid density, using the Collocated Clustered Finite Volume
(CCFV) scheme. The continuous equations are first given in a dimensionless form.
Then we present the finite volume scheme with the principles and the spatial dis-
cretization used. Analytical tests illustrate the numerical behavior of this scheme
according to the type of grid, of the pressure stabilization method and check the
robustness of this scheme. Next, the results obtained on the square thermally driven
cavity under large temperature differences show that the CCFV scheme accurately
fits the reference results.

1 Introduction

Various fluid flows are successfully modeled by the Navier-Stokes equations
within the Oberbeck-Boussinesq approximation: the fluid properties are as-
sumed to be constant in the mass, momentum and energy conservation equa-
tions, except in the buoyancy term where a linear dependence of the density
with respect to the temperature is taken into account. This approximation
is justified when the range of relative temperature variations is small enough
(the mathematical validation of this approximation is examined in [1,2]), and
then leads to a simpler mathematical formulation than the complete equations.
However, when the temperature gap increases significantly, the variations of
the fluid properties cannot be neglected.

∗ Corresponding author. Tel: (33) 01 60 95 73 11; Fax: (33) 01 60 95 72 94
Email addresses: Ouardia.Touazi@univ-mlv.fr, (O. Touazi),

Eric.Chenier@univ-mlv.fr, (E. Chénier), Robert.Eymard@univ-mlv.fr (R.
Eymard).

Preprint submitted to Computers and Fluids 4 July 2007



The Navier-Stokes and energy equations with variable fluid properties involve
many non-linear terms, which have to be handled by numerical methods.
Adaptations of the collocated finite volume schemes [3–5] to this case are
often necessary in the engineering framework. In the Collocated Clustered Fi-
nite Volume method, the discrete unknowns are all located at the center of
the cells of a unique mesh. Since the equivalent of the well-known “inf-sup”
condition in the finite element setting (see [6]), or also called LBB condition
(see [7]), is not satisfied by a collocated scheme, stabilization methods have to
be implemented in order to avoid unrealistic pressure oscillations, sometimes
called “checkerboard modes”. Among the pressure stabilization techniques,
let us cite the Brezzi and Pitkaranta approach [8], first introduced in the
framework of the finite element method, which consists in adding in the mass
conservation equation a stabilization term proportional to the laplacian of the
pressure. Another common pressure stabilization technique is the “Momentum
interpolation Method”, presented by Rhie and Chow in [9] and usually prac-
ticed within the use of time stepping methods in finite difference or volume
schemes.
We have introduced in [4,10] the Collocated Clustered Finite Volume (CCFV)
scheme, presenting the following characteristics:

(1) This scheme holds for a large class of grids, the only geometric require-
ment being that in every control volume, one can select a particular point,
called the center of the control volume, such that each interface between
two adjacent control volumes is orthogonal to the line joining their cen-
ters. This condition applies for rectangular or parallelepipedic meshes, tri-
angular (2D) or tetrahedral (3D) Delaunay meshes, and Voronöı meshes.

(2) The scheme is fully coupled, and the discrete gradient operator is defined
as the adjoint of the discrete divergence operator, thus ensuring the de-
crease of the kinetic energy for incompressible and isothermal fluid flows.
The discrete non-linear mass, momentum and energy equations are simul-
taneously solved using an under-relaxed Newton’s method, and the linear
systems are solved using an iterative linear solver, namely the BiCGStab
method preconditioned by an incomplete LU factorization.

(3) The pressure stabilization method is performed by selecting clusters of
control volumes, i.e. small sets of control volumes, such that a stabiliza-
tion term is imposed in the equation of the mass conservation, only on
the edges between neighboring control volumes belonging to the same
cluster. This procedure allows keeping stable discrete solutions, while the
approximate solution is shown to converge to a solution of the Navier-
Stokes equations.

We present in this paper the extension of the CCFV scheme to non constant
fluid properties, thus permitting to handle the low Mach number equations
for large temperature variations. Note that this extension leads to several new
difficulties:
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(1) New non-linear terms have to be handled.
(2) Since the density is not constant, one has to account for cross derivative

terms involved by the viscous stress tensor.
(3) The thermodynamic pressure must be computed in agreement with the

temperature field.

We take advantage in this paper of the fact that the CCFV is natively a
non-linear coupled scheme, the extension of which the new non-linear terms
appears to be straightforward. New developments, based of recent research
results on finite volume methods [11] have allowed for accounting for cross
derivative terms resulting from variable density.

The outlines of this paper are the following. We give in section 2 the fluid flow
equations with non constant physical properties. In section 3 are presented
the numerical scheme and the main features of its practical implementation.
Numerical results are then described in section 4 showing some convergence
properties, the effect of the pressure stabilization method and comparisons
with a benchmark, and some conclusions are drawn in section 5.

2 Low Mach number approximation

The low Mach number model, suggested by Paolucci in the early 1980s [12], is
used in studying very low velocity flows such as natural convection in a large
temperature difference [13,14]. In this approach, the total pressure is the sum
of a mean pressure P ∗(t) in the fluid domain Ω, called the thermodynamic
pressure, and fluctuations of the pressure p∗(~x∗, t∗), supposed to be such that∫
Ω p

∗(~x∗, t∗)dv(~x∗) = 0 for all time t∗. From now on, the dimensional quantities
are labbeled with ∗.

The dimensionless low Mach number equations for an ideal gas in an enclosure
with impervious walls at the initial constant state (P ∗

0 , T
∗
0 ) and under the

gravitational force per mass unit −g∗~ez are:

∂

∂t
ρ+ ~∇.(ρ~v)= 0 (1)

∂

∂t
(ρ~v) + ~∇.(ρ~v ⊗ ~v)=−~∇p− RaPr

εT
ρ~ez + Pr~∇.¯̄τ (2)

∂

∂t
(ρT ) + ~∇.(ρT~v)= γ − 1

εTγ

dP

dt
+ ~∇.(k~∇T ) (3)

∫

Ω

ρ dv(~x) =
∫

Ω

dv(~x),
∫

Ω

p(~x, t)dv(~x) = 0 (4)
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τ represents the viscous stress tensor, that we assume to be given by the Stokes

relation with I, the identity tensor:

τ = µ
(
~∇~v + (~∇~v)t − 2

3
(~∇.~v)I

)
(5)

Notice that radiative fluxes are neglected in the energy equation and the diffu-
sive heat flux is expressed using the Fourier law ~q = −k~∇T . As ρ is supposed
to verify the ideal gas law, we obtain:

ρ =
P

1 + εTT
(6)

where ρ, ~v, p, P , and T are respectively the non-dimensional density, veloc-
ity, spatially pressure fluctuations (often called dynamic pressure), thermody-
namic pressure and temperature where ρ = ρ∗/ρ∗0, ~v = ~v∗/v∗0, p = p∗/(ρ∗0v

∗
0
2),

P = P ∗/P ∗
0 and T = (T ∗−T ∗

0 )/∆T
∗. The space variable ~x∗ and velocity have

been normalized by the reference height H∗, and by the ratio between the
thermal diffusivity at the reference state, a∗0, and H∗. The dynamic viscosity
and thermal conductivity are normalized by their reference values at (P ∗

0 , T
∗
0 ).

Three dimensionless parameters appear in these equations: the Rayleigh num-
ber Ra = (g∗H∗3εT )/(a

∗
0ν

∗
0), the Prandtl number Pr = ν∗0/a

∗
0 and the param-

eter εT = ∆T ∗/T ∗
0 .

The next section of the paper is devoted to the description of the discrete
approximations of terms involving in the low Mach number model.

3 The Collocated Clustered Finite Volume scheme

We now intend to present the scheme for the approximation of a solution
(P, p, T,~v) to system (1-3) with (4)-(6). Only the space discretization is pre-
sented with centered approximations. Upwind schemes and time discretization
can be found in [4] and convergence proofs in [10].

In the following subsections, we first give definitions related to meshes, then
we present the space discretization of system (1-3) and associated principles
for this finite volume scheme.
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3.1 Admissible meshes

The domain Ω is completely recovered by a familyM of unstructured convex
polyhedra, called control volumes. The detailed notations for the geometric
quantities involved by the discretization are illustrated in figure 1 in the 2d-
case.
Let us introduce some notations: we denote by M the set of all the control
volumes. For each control volume K, we denote by ~xK the coordinates of its
center, by m(K) its area (if d = 2) or its volume (if d = 3), by NK the set
composed by the neighbors of K. We denote by EK,int the set of the internal
edges and by EK,ext, the set of the external edges. If the control volume L is a
neighbor of the control volume K, we denote by m(σKL) the length (d = 2)
or the area (d = 3) of the interface σKL between K and L (σKL ∈ EK,int).If
the control volume K has an edge σ at the boundary domain (σ ∈ EK,ext), we
denote by m(σ) the length (d = 2) or the area (d = 3) of the interface σ at
the boundary. We denote by ~xσ the orthogonal projection of ~xK on σ, by ~nK,σ
the unit vector normal to σ, outward of K, and by dK,σ, the distance between
~xK and ~xσ. We then denote by ~xKσ the center of gravity of the interface σ.

The main objective to elaborate this numerical scheme was its simplicity, in
particular for the expression of diffusion fluxes. So the approximation of the
flux normal to the edge of a control volume σKL depends only on two adjacent
cells what permits to systematically satisfy monotonic solutions for diffusive
equations. To allow it, the requirements to mesh the domain are:

σKL⊥ −−−→xKxL (7)
−−−→xKxL · ~nKL > 0 (8)

From (7), we get the orthogonality property whereas relation (8) defines the
order of the cell center occurence in the direction of ~nKL. These conditions are
checked for rectangular or parallelepiped and dual Delaunay-Voronöı grids.
Recall that a Voronöı mesh is such as the control volume K is as the set
of points closer to ~xK than to any other ~xL. Therefore, the edge separating
cells K and L belongs to the mid-plan between ~xK and ~xL what implies
that requirements (7) and (8) are automatically checked. For triangular (2d)
or tetrahedral (3d) grids, the center ~xK of the cell K is the circumcenter
(condition (7)); the constraint (8) is automatically verified once the Delaunay
criterion is satisfied.
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3.2 Spatial discretization of the Navier-Stokes and energy equations

The objective in the development of this numerical scheme is that solutions
of the discrete Navier-Stokes and energy equations pK , ~vK , TK , accurately
approximate p, ~v, T at the point ~xK of each control volume K ∈ M. Our
discrete spatial operators are also constructed so that, by multiplying the
momentum and the thermal equations expressed on cellK with the velocity ~vK
and the temperature TK , and by summing over all the cells, we recover discrete
approximations of the kinetic and thermal energy balances. For example, the
works of the pressure forces and of the non-linear inertial forces must vanish
under Boussinesq approximation.

For the sake of clarity, the discrete spatial operators are presented for enclo-
sures with impervious walls and only for Dirichlet boundary conditions. The
following notations are used in the next sections. We denote by (A(~x))D the
discrete approximation of the continuous form A(~x) and by (A(~x))D,K the dis-
crete approximation evaluated at the cell center ~xK ; v

(i) is the i-th component
of the velocity vector ~v and ∂i marks out the partial derivative into the i-th
direction.

3.2.1 Mass equation

Let us first give the approximation of the steady mass equation integrated
over the cell K,

∫
K
~∇.(ρ~v) dv(~x) that is:

m(K)
(
~∇.(ρ~v)

)
D,K

=
∑

L∈NK

FKL (9)

where FKL is the approximation of the mass flux FKL =
∫
σKL

ρ ~v(~x)·~nKLds(~x)
between two neighboring control volumes K and L. Notice that no boundary
contribution is introduced because of the impervious walls.

To preserve a good coupling between pressure and velocity, the approximation
of the velocity crossing the edges σKL must be second order accurate at the
gravity center of the face [15]. This condition is easily fulfilled by using a linear
interpolation of the velocity ~v(~xKL) =

∑
I∈M αI~v(~xI). Practically, nodes ~xK

and ~xL are involved plus, eventually, one or two other nodes close to ~xKL.

Without any loss of generality, we now suppose that only centers ~xK and ~xL
play a part in the interpolation. This case corresponds to a mesh where the
intersection point between the line (~xK , ~xL) and the edge σKL is exactly ~xKL,
the gravity center of the face σKL. Parallelepipeds in 3d [4] or rectangles and
Delaunay triangles in 2d satisfy these requirements. The discrete mass flux
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then writes:

FKL = ρKL

(
m(σKL)(aKL~vK + aLK~vL) · ~nKL − λKL

m(σKL)

dKL

(pL − pK)

)
(10)

with

aKL =
−−−−→xKLxL. ~nKL

dKL

, aKL + aLK = 1

The density ρKL on interface σKL is also evaluated with a linear interpolation.

A stabilization method is necessary to prevent from the apparition of pres-
sure oscillations in collocated schemes. We use the method presented in [4]
that consists in modifying the mass equation by introducing a stabilization
contribution which corresponds to the second term of the right-hand-side of
equation (10), where λKL is a stabilization parameter defined on each interface
between two control volumes K and L.

Recall briefly the principle of pressure stabilization method. The family of
control volumes M is partitioned into disjoint subsets including groups of
neighboring control volumes, with any algorithm ensuring that two control
volumes belonging to the same subset are not too distant one from each other
(Fig.2). An example of such an algorithm can be found in [4].

Then λKL is chosen according to the following rule:

• λKL = λ for any pair of neighboring control volumes K and L belonging to
the same subset,

• λKL = 0 otherwise.

The value λ is a positive value, chosen large enough for preventing from the
apparition of instabilities. The main advantage of gathering the cells by clus-
ters is that the mass redistribution due to the stabilization term is limited to
each cluster.

3.2.2 Transport terms

For φ ∈ {v(i), T}, the discrete expression of the non-linear term integrated
over the cell K is:

m(K)
(
~∇.(ρ~vφ)

)
D,K

=
∑

L∈NK

GKL (11)
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where GKL is the approximation of the flux GKL =
∫
σKL

(ρ~v(~x)·~nKL)φ(~x)ds(~x).
To satisfy the discrete kinetic and thermal energy balances, the transport
velocity must be equal to the discrete mass flux crossing each edge (Eq. (10))
and the centered approximation of φ must be used:

GKL = FKL
φK + φL

2

By taking into account the mass equation for a steady flow,
∑

L∈NK
FKL = 0,

relation (11) also writes:

m(K)
(
~∇.(ρ~vφ)

)
D,K

=
∑

L∈NK

FKL
φL − φK

2

3.2.3 Pressure

The discrete approximation of the pressure gradient is based on its duality
with the discrete velocity divergence:

∑

K∈M

m(K)
(
~vK · (~∇p)D,K

)
= −

∑

K∈M




 ∑

L∈NK

m(σKL)(aKL~vK + aLK~vL)~nKL


 pK




Thus we obtain

m(K)(~∇p)D,K =
∑

L∈NK

m(σKL)aKL(pL − pK)~nKL (12)

By using the geometric property
∑

L∈NK
m(σKL)~nKL+

∑
σ∈EK,ext

m(σ)~nK,σ = 0,
another form for the pressure gradient can be established:

m(K)(~∇p)D,K =
∑

L∈NK

m(σKL)(aKLpL + aLKpK)~nKL +

∑

σ∈EK,ext

m(σ)pK~nK,σ (13)

Notice that relations (12) and (13) do not provide consistent approximations

of the equivalent forms
∫
K
~∇p dv(~x) and ∫δK p ~nds(~x), except when aKL = 0.5.
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3.2.4 Viscous diffusion

In the low Mach number model, the viscous term integrated over the cell K
writes:

∫

K

~∇.¯̄τ dv(~x) =
∫

K

~∇.(µ~∇~v) dv(~x) +
∫

K

~∇.(µ~∇t~v) dv(~x) −2

3

∫

K

~∇(µ~∇.~v) dv(~x)

=
∫

K

~a(µ,~v) dv(~x) +
∫

K

~b(µ,~v) dv(~x) −2

3

∫

K

~c(µ,~v) dv(~x)

Let us now give the approximations of these three integrals.

• The approximation of ~a(µ,~v) is:

m(K)(~a(µ,~v))D,K =
∑

L∈NK

~AKL +
∑

σ∈EK,ext

~AK,σ (14)

where ~AKL and ~AK,σ are the approximations of ~AKL =
∫
σKL

~∇~v(~x)·~nKLds(~x)

and ~AK,σ =
∫
σ
~∇~v(~x) · ~nK,σds(~x). Thanks to the mesh properties (7) and

(8), we simply obtain:

~AKL = µKL
m(σKL)

dKL

(~vL − ~vK) and ~AK,σ = µσ
m(σ)

dK,σ
(~vσ − ~vK) (15)

where ~vσ is the approximation of ~v(~xσ), µKL and µσ are the dynamic vis-
cosity computed on edges.

• The discrete contribution
∫
K
~b(µ,~v) dv(~x) is achieved by considering the

weak form:

d∑

i=1

∫

Ω

u(j)∂i(µ∂jv
(i))dv(~x) = −

d∑

i=1

∫

Ω

∂iu
(j)µ∂jv

(i)dv(~x) (16)

with u(j) the j-th component of a vectoriel test function ~u, u(j) being null on
Dirichlet boundary conditions. By using the i-th component of the discrete
strong gradient expression (∂iφ)D,K [11],

(∂iφ)D,K =
1

m(K)

( ∑

L∈NK

m(σKL)

dKL

(φL − φK)(x
(i)
KL − x

(i)
K )+

∑

σ∈Eext

m(σ)

dK,σ
(φσ − φK)(x

(i)
Kσ − x

(i)
K )
) (17)

the discretization of the right-hand-side of (Eq. 16) writes:

( d∑

i=1

∫

Ω

µ ∂iu
(j)∂jv

(i)dv(~x)
)

D
=

d∑

i=1

∑

K∈M

m(K)µK (∂iu
(j))D,K(∂jv

(i))D,K
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The k-th component of the discrete contribution of
∫
K
~b(µ,~v)dv(~x) is ob-

tained by substituting (∂iu
(j))D,K and (∂jv

(i))D,K by the expressions (17)

for φ = u(j) and φ = v(i) and by choosing the test function u
(j)
L = δKLδjk:

m(K)(b(k)(µ,~v))D,K =
∑

L∈NK

B
(k)
KL +

∑

σ∈EK,ext

B
(k)
K,σ (18)

with

B
(k)
KL=

m(σKL)

dKL

d∑

i=1

(
µK(∂kv

(i))D,K(x
(i)
KL − x

(i)
K ) + µL(∂kv

(i))D,L(x
(i)
L − x

(i)
KL)

)

B
(k)
K,σ =

m(σ)

dK,σ

d∑

i=1

(
µK(∂kv

(i))D,K(x
(i)
Kσ − x

(i)
K ) + µL(∂kv

(i))D,L(x
(i)
L − x

(i)
Lσ)

)

• The k-th component of discrete contribution of
∫
K ~c(µ,~v)dv(~x) writes:

m(K)(c(k)(µ,~v))D,K =
∑

L∈NK

C
(k)
KL +

∑

σ∈EK,ext

C
(k)
K,σ (19)

with

C
(k)
KL=

m(σKL)

dKL

d∑

i=1

µK(∂iv
(i))D,K(x

(k)
KL − x

(k)
K ) +

m(σKL)

dKL

d∑

i=1

µL(∂iv
(i))D,L(x

(k)
L − x

(k)
KL)

C
(k)
K,σ =

m(σ)

dK,σ

d∑

i=1

µK(∂iv
(i))D,K(x

(k)
Kσ − x

(k)
K ) +

m(σ)

dK,σ

d∑

i=1

µL(∂iv
(i))D,L(x

(k)
L − x

(k)
Lσ)

Note that the use of the strong gradient (17) in
∫
K ~a(µ,~v)dv(~x) may give rise to

numerical instabilities. Therefore, to prevent from these oscillations, relation
(14) must absolutly be applied instead.

3.2.5 Thermal diffusion

In the energy equation, the discrete contribution (h(k, T ))D,K provided by the

approximation of the diffusion term
∫
K h(k, T ) dv(~x) =

∫
K
~∇.(k~∇T )) dv(~x) is

similar to relations (14) with (15):

m(K)(h(k, T ))D,K =
∑

L∈NK

HKL +
∑

σ∈EK,ext

HK,σ

The approximations HKL and HK,σ of the conducted heat fluxes on σKL,

HKL =
∫
σKL

k~∇T (~x) · ~nKLds(~x), and on σ, HK,σ =
∫
σ k

~∇T (~x) · ~nK,σds(~x),
write:
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HKL = kKL
m(σKL)

dKL

(TL − TK) and HK,σ = kσ
m(σ)

dK,σ
(Tσ − TK)

where Tσ is the approximation of T (~xσ), kKL and kσ are thermal conductivities
on σKL and σ.

3.3 Discrete equations and solvers

We get a system of non-linear equations, which depends on the unknowns of
the control volume K itself, on the unknowns of the neighbors L ∈ NK of
K or on boundary σ ∈ EK,ext, and also, because of (~b(µ,~v))D and (~c(µ,~v))D
exist, on unknowns of the neighbors M ∈ NL of L. Note that under the
Boussinesq approximation, the mass equation ~∇.~v = 0 implies ~c(µ,~v) = ~0 and

if furthermore the viscosity is constant, ~b(µ,~v) = ~0. In that case, the equation
on cell K only depends on its neighbors L ∈ NK or on boundary σ ∈ EK,ext.

In our implementation, the non-linear system is solved using an under-relaxed
Newton method. The resulting linear equations are then solved by an iterative
linear solver using the BiCGStab method preconditioned by an incomplete LU
factorization, with variable fill-in levels (a detailed description can be found
in [4]). The thermodynamic pressure P is then updated at the end of each
Newton iteration, solving the discrete form of the total mass conservation
equation given in (4).

4 Natural convection results

The computational domain is meshed either by rectangular cells or by Delau-
nay triangles thanks to a free software developed by Saltel and Hecht [16].

4.1 Analytical tests

We consider the stationary fluid flow and heat transfer in a square cavity with
a low Mach number model. The dimensionless velocity, pressures, density and
temperature fields are solutions of equations (1-6) where the time derivatives
are zero. No-slip boundary conditions are applied on the isothermal walls.

To study the accuracy of the numerical method in the non-Boussinesq regime,
forcing terms are added in the momentum and energy equations in order to
converge towards the prescribed solution:
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P =1

T =sin2(πx(1)) sin2(πx(2))

ρ=
P

1 + εTT

p=sin2(πx(1)) sin2(πx(2))

v(1)=
∂Ψ

∂x(2)
= 2π cos(πx(2)) sin(πx(2)) sin2(πx(1))

v(2)=− ∂Ψ

∂x(1)
= −2π cos(πx(1)) sin(πx(1)) sin2(πx(2))

The velocity and the density (i.e. the temperature) are chosen so that ~∇.(ρ~v) =
0. Sutherland laws are used to evaluate the dimensionless dynamical viscosity
as a function of the temperature:

µ = (εTT + 1)3/2
(

1 + S∗/T ∗
0

1 + εTT + S∗/T ∗
0

)
(20)

where S∗ = 110.5K is the Sutherland constant. The variation laws of the ther-
mal conductivity k and dynamical viscosity µ, as a function of the tempera-
ture, are supposed identical, and computations are carried out with Ra = 1
and Pr = 1. The deviation from the analytical solution is measured by the
discrete L2-norm:

||e(φ)||22 =
∑

K∈M

m(K)(φK − φ(~xK))
2, φ ∈ {v(i), T, p, ρ}

4.1.1 Spatial accuracy

Figures 3a-3d show the L2-norm of errors between the analytical and numerical
solutions as a function of mean mesh size h = 1/

√
N , N being the number

of triangles, and with three reduced temperature differences, εT ∈ {0, 1, 2}.
Remark that the Boussinesq approximation is recovered when εT = 0. For all
εT , the velocity, temperature and density are second-order accurate whereas
the pressure is, like most of collocated schemes, first-order accurate only.

4.1.2 Comparison of pressure stabilization methods

The simulations are performed for the Boussinesq model, namely with εT =
0, and for Delaunay triangular meshes. Our pressure stabilization method,
described in section 3.2.1, is compared with two other methods.

• The Brezzi and Pitkaranta method (BP) [8] consists in introducing a sta-
bilization contribution λhα(∆p)D in the mass equation, where α ∈]0, 2[,
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h is the characteristic mesh size, α ∈ < is a positive small value and
∆Dp ≡ aD(1, p) is the discrete laplacian operator applied on pressure and
defined by (14):

(~∇.~v)D = λhα(∆p)D

• The Rhie and Chow interpolation method (RC) [9] can also be viewed as a
penalization technique of the mass equation:

(~∇.~v)D = λ
(
(∆p)D −

(
~∇.(~∇p)D

)
D

)

where the second term of the right-hand-side is constructed with the strong
gradient (17).

In figures 4a-4b are drawn the velocity and pressure errors as a function of
λhα, for three pressure stabilization techniques and for a mesh size h = 0.019.
The accuracy of the all solutions decreases if the coefficient λhα is too small:
the pressure stabilization is insufficient and oscillations appear. For large co-
efficients, the errors for the velocity and pressure increase except when the
stabilization is based on clusters. Our clusterization technique is very few sen-
sitive to λhα but the (RC)-method seems to provide more accurate pressure
solutions for a wide gap of the coefficient.

Figures 5a-5d illustrate the convergence properties of these methods as a func-
tion of h and for two coefficients, λ ∈ {1, 0.0001}. For λ = 1, the slopes of the
curve for the (BP)-method become worse, less than 2 and 1 for the velocity and
pressure respectively. No significant difference distinguishes the convergence
behavior of the cluster and (RC)- methods. The advantage of the cluster stabi-
lization method with respect to the Rhie and Chow technique stems from the
stability property of the resulting scheme. While the clusters and (BP)- meth-
ods introduce stable contributions in the discrete scheme and thus provide a
L2 stability for unsteady isothermal solutions [4,10,17,18], no such property
can easily be proved for the (RC)-method because of the negative contribution

−
(
~∇.(~∇p)D

)
D
in the mass equation.

4.2 Benchmark comparisons

We consider the problem handled in the benchmark [19], stated in the above
dimensionless form, which concerns the natural convection flow in a differen-
tially heated square cavity. The vertical walls are isothermal at the uniform
temperatures T (0, y) = Th = 1/2 and T (1, y) = Tc = −1/2 with 0 ≤ y ≤ 1,
and the bottom and top boundaries are adiabatic. The ratio εT is given and
equal to 1.2, and therefore the Boussinesq approximation no longer holds. The
other dimensionless numbers are Pr = 0.71, γ = 1.4, Ra = 106 or Ra = 107.
As in [19], we use the Sutherland law (Eq. 20) for the viscosity and assume
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µ(T )/k(T ) constant, which leads to a similar law for the thermal conductiv-
ity. We recall the definition of the local, Nu(~x), and average, N̂ux, Nusselt
numbers:

Nu(~x) = k(T (~x))~∇T (~x) · ~n∂Ω(~x) and N̂ux =

1∫

0

Nu(~x)dy,

The computations were performed either on a non-uniform distribution of
Delaunay triangles or on different orthogonal grids where the sides of the
rectangular control volumes follow a sinusoidal law in each direction to accu-
rately represent the boundary layers. The stabilization parameter is equal to
λ = 10−6 and the iLU preconditioning is based on a three levels of fill-in.

4.2.1 Rayleigh number 106

In Table 1 are indicated the relative errors, with respect to solutions obtained
with our scheme with a 304 × 304 rectangular grid, for the results computed
on Delaunay triangles and drawn from [19]. Relative differences of benchmark
solutions being smaller than 1%, our reference result is in good agreement
with the literature. Bold underlines values smaller than 0.005% and show the
good agreement with Vierendeels’s results. The accuracy of results obtained
with Delaunay triangular cells are good, except for the Nusselt number along
the cold wall, maxy(Nu(1; y)) and miny(Nu(1; y)). For non-Boussinesq flow
model, the boundary layer along the cold wall is thicker than it is along the
hot wall. The mesh size used being identical along the two vertical walls, it
was therefore obvious that the accuracy of the heat transfer will be worst
on the cold surface. The minima of the Nusselt number value are also larger
than their corresponding maxima. The explanation is due to the fact that the
coordinates, where miny(Nu(0; y)) and miny(Nu(1; y)) occur, are very close to
the horizontal walls where a finer mesh should be desirable too.

The effect of the mesh size was also studied but it is not presented in this paper.
Quadratic convergence has successfully been checked for the set of results
except for minimal values of the Nusselt number when triangular meshes were
considered.

4.2.2 Rayleigh number Ra = 107

For Ra = 107, only results obtained with rectangular grid are shown, the
computational cost to solve the Navier-Stokes and energy equations on a fine
enough triangular grid was judged too expensive. As shown in Table 2, our
results are in excellent agreement with benchmark solutions [19]. Relative
differences less than 0.005% are anew exhibited in bold. As for Ra = 106, the
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second order accuracy of the scheme was successfully checked for the set of
results.

5 Conclusion

Extention of the Collocated Clustered Finite Volume scheme to the low Mach
number model was presented in detail. Convergence property of the new
scheme was checked by considering an analytical solution. Effect of the pres-
sure stabilization method was studied with respect to other stabilization tech-
niques. Applications to natural convection problems with large temperature
differences have led to results which are in good agreement with the literature.
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18. Eymard R, Herbin R, Latché JC. Convergence Analysis of a Colocated Finite
Volume Scheme for the Incompressible Navier-Stokes Equations on General
2D or 3D Meshes. SIAM J Numer Anal 2007;45(1):1-36
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Fig. 1. Two neighboring control volumes K and L. One assumes that for all control
volume K there exists a point denoted by ~xK in K such that, for any neighbor L
of K, the straight line (~xK , ~xL) is orthogonal to the common edge σKL. Then the
length between ~xK and ~xL is denoted by dKL, and the unit vector, normal to σKL

and outward to K, is denoted by ~nKL. We then denote the center of gravity of the
interface σKL by ~xKL. Similar notations are used when an edge σ belongs to δΩ,
the boundary of the domain Ω.
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(a) Delaunay grid (b) Clusters

Fig. 2. Delaunay grid and associated clusters
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Fig. 4. Effect of the stabilization parameter λhα on the L2-norm of the velocity and
pressure, α = 0 for the cluster method and the Rhie and Chow technique, (RC),
whereas α = 1 for the Brezzi and Pitkaranta method, (BP).
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Fig. 5. Velocity and pressure errors as a function of h and λ for the cluster, Rhie
and Chow (RC) and Brezzi and Pitkaranta (BP) methods.
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Vierendeels Dabbene Beccantini Kloczko Heuveline Our results Our results

Triangular grid Rectangular grid

N̂u0 0.0012% 0.056% 0.0012% 0.099% 0.025% 0.027% 8.6867

N̂u1 0.0012% 0.014% 0.14% 0.61% 0.007% 0.027% 8.6867

Nu(0.0.5) 0.0013% 0.054% 0.016% 0.055% N.A 0.05% 7.4592

Nu(1.0.5) 0.002% 0.25% 0.024% 0.55% N.A 0.07% 8.6370

maxy(Nu(0.y)) 0.016% 0.18% 0.032% 0.24% 0.15% 0.01% 20.2737

miny(Nu(0; y)) 0.028% 0.64% 0% 0.019% 0.037% 0.15% 1.0670

maxy(Nu(1; y)) 0.014% 0.34% 0.25% 0.91% 0.093% 0.45% 15.5216

miny(Nu(1; y)) 0.040% 0.34% 0.052% 0.26% 0.15% 1% 0.7578

P 0.00075% 0.11% 0.0019% 0.034% 0.045% 0.02% 0.924482

Structured grid 2048× 2048 320× 320 169× 148 160× 160 304× 304

Number of cells 4.2× 106 102,400 25,012 25,600 200,000 173,030 92,416
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Vierendeels Dabbene Kloczko Heuveline Our results

N̂u0 0.% 0.086% 0.38% 0.006% 16.2409

N̂u1 0.% 0.32% 0.050% 0.10% 16.2409

Nu(0, 0.5) 0.% 2.6% 0.068% N.A 13.1886

Nu(1, 0.5) 0.0064% 1.6% 0.87% N.A 15.5113

maxy(Nu(0, y)) 0.03% 0.31% 1.3% 0.15% 46.3941

miny(Nu(0, y)) 0.068% 0.068% 1% 0.% 1.45475

maxy(Nu(1, y)) 0.032% 1.% 0.38% 0.35% 34.2832

miny(Nu(1, y)) 0.% 0.09% 2.8% 0.09% 1.08878

P 0.003% 0.04% 0.04% 0.04% 0.92261

Structured grid 2048× 2048 160× 160 100× 100 304× 304

Number of cells 4.2× 106 25,600 10,000 400,000 92,416

Table 2
Comparison with results given in [19] for Ra = 107
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