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We address the long-standing problem of computing the region of attraction (ROA) of a target set (e.g., a neighborhood of an equilibrium point) of a controlled nonlinear system with polynomial dynamics and semialgebraic state and input constraints. We show that the ROA can be computed by solving an infinite-dimensional convex linear programming (LP) problem over the space of measures. In turn, this problem can be solved approximately via a classical converging hierarchy of convex finite-dimensional linear matrix inequalities (LMIs). Our approach is genuinely primal in the sense that convexity of the problem of computing the ROA is an outcome of optimizing directly over system trajectories. The dual infinite-dimensional LP on nonnegative continuous functions (approximated by polynomial sum-of-squares) allows us to generate a hierarchy of semialgebraic outer approximations of the ROA at the price of solving a sequence of LMI problems with asymptotically vanishing conservatism. This sharply contrasts with the existing literature which follows an exclusively dual Lyapunov approach yielding either nonconvex bilinear matrix inequalities or conservative LMI conditions. The approach is simple and readily applicable as the outer approximations are the outcome of a single semidefinite program with no additional data required besides the problem description.

Introduction

Given a nonlinear control system, a state-constraint set and a target set (e.g. a neighborhood of an attracting orbit or an equilibrium point), the constrained controlled region of attraction (ROA) is the set of all initial states that can be steered with an admissible control to the target set without leaving the state-constraint set. The target set can be required to be reached at a given time or at any time before a given time. The problem of computing the ROA (and variations thereof) lies at the heart of viability theory (see, e.g., [START_REF] Aubin | Viability Theory: New Directions[END_REF]) and goes by many other names, e.g., the reach-avoid or target-hitting problem (see, e.g., [START_REF] Margellos | Hamilton-Jacobi formulation for reach-avoid differential games[END_REF]); the ROA itself is sometimes referred to as the backward reachable set [START_REF] Mitchell | Overapproximating reachable sets by Hamilton-Jacobi projections[END_REF] or capture basin [START_REF] Aubin | Viability Theory: New Directions[END_REF].

There are many variations on the ROA computation problem addressed in this paper as well as a large number of related problems. For instance, one could consider asymptotic convergence instead of finite-time formulation and / or inner approximations instead of outer approximations. Among the related problems we can name the computation of (forward) reachable sets and maximum / minimum (robust) controlled invariant sets. Most of these variations are amenable to our approach, sometimes with different quality of the results obtained; see the Conclusion for a more detailed discussion.

We show that the computation of the ROA boils down to solving an infinite-dimensional linear programming (LP) problem in the cone of nonnegative Borel measures. The formulation is genuinely primal in the sense that we optimize directly over controlled trajectories modeled with occupation measures [START_REF] Lasserre | Nonlinear optimal control via occupation measures and LMI relaxations[END_REF][START_REF] Gaitsgory | Linear programming approach to deterministic infinite horizon optimal control problems with discounting[END_REF].

In turn, in the case of polynomial dynamics, semialgebraic state-constraint, input-constraint and target sets, this infinite-dimensional LP can be solved approximately by a classical hierarchy of finite-dimensional convex linear matrix inequality (LMI) relaxations. The dual infinite-dimensional LP on nonnegative continuous functions and its LMI relaxations on polynomial sum-of-squares provide explicitly an asymptotically converging sequence of nested semialgebraic outer approximations of the ROA.

The benefits of our occupation measure approach are overall the convexity of the problem of finding the ROA, and the availability of publicly available software to implement and solve the hierarchy of LMI relaxations.

Most of the existing literature on ROA computation follows Zubov's approach [START_REF] Margolis | Control engineering applications of V. I. Zubov's construction procedure for Lyapunov functions[END_REF][START_REF] Zubov | Methods of A. M. Lyapunov and their application[END_REF][START_REF] Hahn | Stability of motion[END_REF] and uses a dual Lyapunov certificate; see [START_REF] Vannelli | Maximal Lyapunov functions and domains of attraction for autonomous nonlinear systems[END_REF], the survey [START_REF] Genesio | On the estimation of asymptotic stability regions: state of the art and new proposals[END_REF], Section 3.4 in [START_REF] Haddad | Nonlinear dynamical systems and control, a Lyapunovbased approach[END_REF], and more recently [START_REF] Topcu | Robust region-of-attraction estimation[END_REF][START_REF] Chesi | Domain of attraction; analysis and control via SOS programming[END_REF] and [START_REF] Chesi | LMI techniques for optimization over polynomials in control: a survey[END_REF] and the references therein. These approaches either enforce convexity with conservative LMI conditions (whose conservatism is difficult if not impossible to evaluate systematically) or they rely on nonconvex bilinear matrix inequalities (BMIs), with all their inherent numerical difficulties. In contrast, we show in this paper that the problem of computing the ROA has actually a convex infinite-dimensional LP formulation, and that this LP can be solved with a hierarchy of convex finite-dimensional LMIs with asymptotically vanishing conservatism.

We believe that our approach is closer in spirit to set-oriented approaches [START_REF] Dellnitz | The algorithms behind GAIO -Set oriented numerical methods for dynamical systems[END_REF], level-set and Hamilton-Jacobi approaches [START_REF] Kurzhanski | Ellipsoidal techniques for reachability analysis[END_REF][START_REF] Margellos | Hamilton-Jacobi formulation for reach-avoid differential games[END_REF][START_REF] Mitchell | Overapproximating reachable sets by Hamilton-Jacobi projections[END_REF] or transfer operator approaches [START_REF] Wang | Transfer operator approach for computing domain of attraction[END_REF], even though we do not discretize with respect to time and/or space. In our approach, we model a measure with a finite number of its moments, which can be interpreted as a frequencydomain discretization (by analogy with Fourier coefficients which are moments with respect to the unit circle).

Another way to evaluate the contribution of our paper is to compare it with the recent works [22,[START_REF] Henrion | Inner approximations for polynomial matrix inequalities and robust stability regions[END_REF] which deal with polynomial approximations of semialgebraic sets. In these references, the sets to be approximated are given a priori (as a polynomial sublevel set, or as a feasibility region of a polynomial matrix inequality). In contrast, in the current paper the set to be approximated (namely the ROA of a nonlinear dynamical system) is not known in advance, and our contribution can be understood as an application and extension of the techniques of references [22,[START_REF] Henrion | Inner approximations for polynomial matrix inequalities and robust stability regions[END_REF] to sets defined implicitly by differential equations.

For the special case of linear systems, the range of computational tools and theoretical results is wider; see, e.g., [START_REF] Gilbert | Linear systems with state and control constraints: the theory and application of maximal output admissible sets[END_REF][START_REF] Blanchini | Set invariance in control[END_REF]. Nevertheless, even for this simple class of systems, the problem of ROA computation is notoriously hard, at least in a controlled setting where, after time-discretization, polyhedral projections are required [START_REF] Blanchini | Set invariance in control[END_REF].

The use of occupation measures and related concepts has a long history in the fields of Markov decision processes and stochastic control; see, e.g., [START_REF] Hernandez-Lerma | Discretre-Time Markov Control Processes: Basic Optimality Criteria[END_REF][START_REF] Fleming | Convex duality approach to the optimal control of diffusions[END_REF]. Applications to deterministic control problems were, to the best of our knowledge, first systematically treated1 in [START_REF] Rubio | Control and Optimization: The Linear Treatment of Nonlinear Problems[END_REF] and enjoyed a resurgence of interest in the last decade; see, e.g., [START_REF] Rantzer | A dual to Lyapunov's stability theorem[END_REF][START_REF] Lasserre | Nonlinear optimal control via occupation measures and LMI relaxations[END_REF][START_REF] Vaidya | Lyapunov Measure for Almost Everywhere Stability[END_REF][START_REF] Gaitsgory | Linear programming approach to deterministic infinite horizon optimal control problems with discounting[END_REF] and references therein. However, to the best of our knowledge, this is the first time these methods are applied to region of attraction computation.

Our primary focus in this paper is the computation of the constrained finite-time controlled region of attraction of a given set. This problem is formally stated in Section 2 and solved using occupation measures in Section 4; the occupation measures themselves are introduced in Section 3. A dual problem on the space of continuous functions is discussed in Section 5. The hierarchy of finite-dimensional LMI relaxations of the infinite dimensional LP is described in Section 6. Convergence results are presented in Section 7. An extension to the free final time case is described in Section 8. Numerical examples are presented in Section 9, and we conclude in Section 10.

A reader interested only in the finite-dimensional relaxations providing the converging sequence of outer approximations can consult directly the dual infinite-dimensional LP [START_REF] Genesio | On the estimation of asymptotic stability regions: state of the art and new proposals[END_REF], its finite-dimensional LMI approximations (22) and the resulting outer approximations in Section 7 with convergence proven in Theorem 6.

Notation and preliminaries Throughout the paper the symbol Z [i,j] denotes the set of consecutive integers {i, i + 1, . . . , j}. The symbol R[•] denotes the ring of polynomials in variables given by the argument. The difference of two sets A and B is denoted by A \ B. All sets are automatically assumed Borel measurable; in particular if we write "for all sets", we mean "for all Borel measurable sets". By a measure µ defined on a set X ⊂ R n , we understand a signed Borel measure, i.e., a (not necessarily nonnegative) mapping from subsets of X to real numbers satisfying µ(∅) = 0 and µ(∪ ∞ i=1 A i ) = ∞ i=1 µ(A i ) for every countable pairwise disjoint collection of sets A i ⊂ X. The space of (signed) measures on a set X is denoted by M (X) and the space of continuous functions is denoted by C(X); the dual space of all linear functionals on C(X) is denoted by C(X) . The symbols C(X; R m ) (resp. C 1 (X; R m )) then denote the spaces of all continuous (resp. continuously differentiable) functions taking values in R m . Any measure µ ∈ M (X) can be viewed as an element of C(X) via the duality pairing induced by integration of functions in C(X) with respect to µ: µ, g :=

X g(x) dµ(x), µ ∈ M (X), g ∈ C(X).
In addition, we use the following notation:

• I A (•) denotes the indicator function of a set A, i.e., a function equal to 1 on A and 0 elsewhere;

• λ denotes the Lebesgue measure on X ⊂ R n , i.e., λ(A) = X I A (x) dλ(x) = X I A (x)dx = A dx
is the standard n-dimensional volume of a set A ⊂ X;

• spt µ denotes the support of a measure µ, that is, the set of all points x such that µ(A) > 0 for every open neighborhood A of x; by construction this set is closed.

Problem statement

Consider the control system

ẋ(t) = f (t, x(t), u(t)), t ∈ [0, T ], (1) 
with the state x(t) ∈ R n , the control input u(t) ∈ R m and a terminal time T > 0. Each entry of the vector field f is assumed to be polynomial2 , i.e., f i ∈ R[t, x, u], i ∈ Z [1,n] . The state and the control input are subject to the basic semialgebraic constraints

x(t) ∈ X := {x ∈ R n : g X i (x) ≥ 0, i ∈ Z [1,n X ] }, t ∈ [0, T ], u(t) ∈ U := {u ∈ R m : g U i (u) ≥ 0, i ∈ Z [1,n U ] }, t ∈ [0, T ], (2) 
with

g X i ∈ R[x] and g U i ∈ R[u]; the terminal state x(T ) is constrained to lie in the basic semialgebraic set X T := {x ∈ R n : g X T i (x) ≥ 0, i ∈ Z [1,n T ] } ⊂ X, with g X T i ∈ R[x].
Assumption 1 The sets X, U and X T are compact.

A measurable control function

u : [0, T ] → R m is called admissible if u(t) ∈ U for all t ∈ [0, T ].
The set of all admissible control functions is denoted by U. The set of all admissible trajectories starting from the initial condition x 0 generated by admissible control functions is then

X (x 0 ) := x(•) : ∃ u(•) ∈ U s.t. ẋ(t) = f (t, x(t), u(t)) a.e., x(0) = x 0 , x(t) ∈ X, x(T ) ∈ X T , ∀ t ∈ [0, T ] , (3) 
where x(•) is required to be absolutely continuous. Here, a.e. stands for "almost everywhere" with respect to the Lebesgue measure on [0, T ].

The constrained controlled region of attraction (ROA) is then defined as

X 0 := x 0 ∈ X : X (x 0 ) = ∅ . (4) 
In words, the ROA is the set of all initial conditions for which there exists an admissible trajectory, i.e., the set of all initial conditions that can be steered to the target set in an admissible way. The set X 0 is bounded (by Assumption 1) and unique.

In the sequel we pose the problem of computing the ROA as an infinite-dimensional linear program (LP) and show how the solution to this LP can be approximated with asymptotically vanishing conservatism by a sequence of solutions to linear matrix inequality (LMI) problems.

Occupation measures

In this section we introduce the concept of occupation measures and discuss its connection to trajectories of the control system (1).

Liouville's equation

Given an initial condition x 0 and an admissible trajectory x(• | x 0 ) ∈ X (x 0 ) with its corresponding control u(• | x 0 ) ∈ U, which we assume to be a measurable function of x 0 , we define the occupation measure µ(• | x 0 ) by

µ(A × B × C | x 0 ) := T 0 I A×B×C (t, x(t | x 0 ), u(t | x 0 )) dt for all A × B × C ⊂ [0, T ] × X × U . For any such triplet of sets, the quantity µ(A × B × C | x 0 ) is equal to the amount of time out of A ⊂ [0, T ] spent by the state and control trajectory (x(• | x 0 ), u(• | x 0 )) in B × C ⊂ X × U .
The occupation measure has the following important property: for any measurable function g(t, x, u) the equality

T 0 g(t, x(t | x 0 ), u(t | x 0 )) dt = [0,T ]×X×U g(t, x, u) dµ(t, x, u | x 0 ) (5) 
holds. Therefore, loosely speaking, the occupation measure µ(• | x 0 ) encodes all information about the trajectory of the state and control input (x

(• | x 0 ), u(• | x 0 )).
Define further the linear operator L :

C 1 ([0, T ] × X) → C([0, T ] × X × U ) by v → Lv := ∂v ∂t + n i=1 ∂v ∂x i f i (t, x, u) = ∂v ∂t + grad v • f
and its adjoint operator

L : C([0, T ] × X × U ) → C 1 ([0, T ] × X) by the adjoint relation L ν, v := ν, Lv = [0,T ]×X×U Lv(t, x, u) dν(t, x, u) for all ν ∈ M ([0, T ] × X × U ) = C([0, T ] × X × U ) and v ∈ C 1 ([0, T ] × X). Given a test function v ∈ C 1 ([0, T ] × X), it follows from (5) that v(T, x(T | x 0 )) = v(0, x 0 ) + T 0 d dt v(t, x(t | x 0 )) dt = v(0, x 0 ) + T 0 Lv(t, x(t | x 0 ), u(t | x 0 )) dt = v(0, x 0 ) + [0,T ]×X×U Lv(t, x, u) dµ(t, x, u | x 0 ) = v(0, x 0 ) + L µ(• | x 0 ), v , (6) 
where we have used the adjoint relation in the last equality.

Remark 1

The adjoint operator L is sometimes expressed symbolically as

ν → L ν = - ∂ν ∂t - n i=1 ∂(f i ν) ∂x i = - ∂ν ∂t -div f ν,
where the derivatives of measures are understood in the weak sense, or in the sense of distributions (i.e., via their action on suitable test functions), and the change of sign comes from the integration by parts formula. For more details the interested reader is referred to any textbook on functional analysis and partial differential equation, e.g., [START_REF] Evans | Partial differential equations[END_REF]. The concept of weak derivatives of measures is not essential for the remainder of the paper and only highlights the important connections of our approach to PDE literature.

Now consider that the initial state is not a single point but that its distribution in space is modeled by an initial measure3 µ 0 ∈ M (X), and that for each initial state x 0 ∈ spt µ 0 there exists an admissible trajectory x(• | x 0 ) ∈ X (x 0 ) with an admissible control function u(• | x 0 ) ∈ U. Then we can define the average occupation measure

µ ∈ M ([0, T ] × X × U ) by µ(A × B × C) := X µ(A × B × C | x 0 ) dµ 0 (x 0 ), (7) 
and the final measure µ T ∈ M (X T ) by

µ T (B) := X I B (x(T | x 0 )) dµ 0 (x 0 ). ( 8 
)
The average occupation occupation measure µ measures the average time spent by the state and control trajectories in subsets of X × U , where the averaging is over the distribution of the initial state given by the initial measure µ 0 ; the final measure µ T represents the distribution of the state at the final time T after it has been transported along system trajectories from the initial distribution µ 0 .

It follows by integrating [START_REF] Blanchini | Set invariance in control[END_REF] with respect to µ 0 that

X T v(T, x) dµ T (x) = X v(0, x) dµ 0 (x) + [0,T ]×X×U Lv(t, x, u) dµ(t, x, u),
or more concisely

µ T , v(T, •) = µ 0 , v(0, •) + µ, Lv ∀ v ∈ C 1 ([0, T ] × X), (9) 
which is a linear equation linking the nonnegative measures µ T , µ 0 and µ. Denoting δ t the Dirac measure at a point t and ⊗ the product of measures, we can write

µ 0 , v(0, •) = δ 0 ⊗ µ 0 , v and µ T , v(T, •) = δ T ⊗ µ T , v .
Then, Eq. ( 9) can be rewritten equivalently using the adjoint relation as

L µ, v = δ T ⊗ µ T , v -δ 0 ⊗ µ 0 , v ∀ v ∈ C 1 ([0, T ] × X),
and since this equation is required to hold for all test functions v, we obtain the linear operator equation

δ T ⊗ µ T = δ 0 ⊗ µ 0 + L µ. ( 10 
)
This equation is classical in fluid mechanics and statistical physics, where L is usually written using distributional derivatives of measures as remarked above; then the equation is referred to as Liouville's partial differential equation.

Each family of admissible trajectories starting from a given initial distribution µ 0 ∈ M (X) satisfies Liouville's equation [START_REF] Dellnitz | The algorithms behind GAIO -Set oriented numerical methods for dynamical systems[END_REF]. The converse may not hold in general although for the computation of the ROA the two formulations can be considered equivalent, at least from a practical viewpoint. Let us briefly elaborate more on this subtle point now.

Relaxed ROA

The control system ẋ(t) = f (t, x(t), u(t)), u(t) ∈ U , can be viewed as a differential inclusion

ẋ(t) ∈ f (t, x(t), U ) := {f (t, x(t), u) : u ∈ U }. ( 11 
)
It turns out that in general the measures satisfying the Liouville's equation [START_REF] Dellnitz | The algorithms behind GAIO -Set oriented numerical methods for dynamical systems[END_REF] are not in a one-to-one correspondence with the trajectories of (11) but rather with the trajectories of the convexified inclusion ẋ(t) ∈ conv f (t, x(t), U ), [START_REF] Fleming | Convex duality approach to the optimal control of diffusions[END_REF] where conv denotes the convex hull 4 . Indeed, we show in Lemma 3 in Appendix A that any triplet of measures satisfying Liouville's equation [START_REF] Dellnitz | The algorithms behind GAIO -Set oriented numerical methods for dynamical systems[END_REF] is generated by a family of trajectories of the convexified inclusion [START_REF] Fleming | Convex duality approach to the optimal control of diffusions[END_REF]. Here, given a family5 of admissible trajectories of the convexified inclusion [START_REF] Fleming | Convex duality approach to the optimal control of diffusions[END_REF] starting from an initial distribution µ 0 , the occupation and final measures are defined in a complete analogy via [START_REF] Bogachev | Measure Theory[END_REF] and [START_REF] Chesi | Domain of attraction; analysis and control via SOS programming[END_REF], but now there are only the time and space arguments in the occupation measure, not the control argument.

Let us denote the set of absolutely continuous admissible trajectories of (12) by

X (x 0 ) := {x(•) : ẋ(t) ∈ conv f (t, x(t), U ) a.e., x(0) = x 0 , x(T ) ∈ X T , x(t) ∈ X ∀ t ∈ [0, T ]}.
Then we define the relaxed region of attraction as

X0 := x 0 ∈ X : X (x 0 ) = ∅ .
Clearly X 0 ⊂ X0 and the inclusion can be strict; see Appendix C for concrete examples. However, by the Filippov-Ważewski relaxation Theorem [5, Theorem 10.4.4, Corollary 10.4.5], the trajectories of the original inclusion [START_REF] Evans | Partial differential equations[END_REF] are dense (w.r.t. the metric of uniform convergence of absolutely continuous functions of time) in the set of trajectories of the convexified inclusion [START_REF] Fleming | Convex duality approach to the optimal control of diffusions[END_REF]. This implies that the relaxed region of attraction X0 corresponds to the region of attraction of the original system but with infinitesimally dilated constraint sets X and X T ; see Appendix B for more details. Therefore, we argue that there is little difference between the two ROAs from a practical point of view. Nevertheless, because of this subtle distinction we make the following standing assumption in the remaining part of the paper.

Assumption 2 Control system (1) is such that λ(X 0 ) = λ( X0 ).
In other words, the volume of the classical ROA X 0 is assumed to be equal to the volume of the relaxed ROA X0 . Obviously, this is satisfied if X 0 = X0 , but otherwise these sets may differ by a set of zero Lebesgue measure. Any of the following conditions on control system (1) is sufficient for Assumption 2 to hold:

• ẋ(t) ∈ f (t, x(t), U ) with f (t, x, U ) convex for all t, x, • ẋ(t) = f (t, x(t)) + g(t, x(t))u(t), u(t) ∈ U with U convex, • uncontrolled dynamics ẋ(t) = f (t, x(t)),
as well as all controllability assumptions allowing the application of the constrained Filippov-Ważewski Theorem; see, e.g., [START_REF] Frankowska | Filippov's and Filippov-Ważewski's theorems on closed domains[END_REF]Corollary 3.2] and the discussion around Assumption I in [START_REF] Gaitsgory | Linear programming approach to deterministic infinite horizon optimal control problems with discounting[END_REF].

ROA via optimization

The problem of computing ROA X 0 can be reformulated as follows:

q * = sup λ(spt µ 0 ) s.t. δ T ⊗ µ T = δ 0 ⊗ µ 0 + L µ µ ≥ 0, µ 0 ≥ 0, µ T ≥ 0 spt µ ⊂ [0, T ] × X × U spt µ 0 ⊂ X, spt µ T ⊂ X T , (13) 
where are f , X, X T , U are given data and the supremum is over a vector of nonnegative measures (µ, 13) is an infinitedimensional optimization problem on the cone of nonnegative measures.

µ 0 , µ T ) ∈ M ([0, T ] × X × U ) × M (X) × M (X T ). Problem (
The rationale behind problem ( 13) is as follows. The first constraint is the Liouville's equation (10) which, along with the nonnegativity constraints, ensures that any triplet of measures (µ 0 , µ, µ T ) feasible in ( 13) corresponds to an initial, an occupation and a terminal measure generated by trajectories of the controlled ODE (1) (or more precisely of the convexified differential inclusion ( 12)). The support constraint on the occupation measure µ ensures that these trajectories satisfy the state and control constraints; the support constraint on µ T ensures that the trajectories end in the target set. Maximizing the volume of the support of the initial measure then yields an initial measure with the support equal to the ROA up to a set of zero volume6 (in view of Assumption 2). This discussion is summarized in the following Lemma.

Lemma 1

The optimal value of problem ( 13) is equal to the volume of the ROA X 0 , that is, q * = λ(X 0 ).

Proof: By definition of the ROA, for any initial condition x 0 ∈ X 0 there is an admissible trajectory in X (x 0 ). Therefore for any initial measure µ 0 with spt µ 0 ⊂ X 0 there exist an occupation measure µ and a final measure µ T such that the constraints of problem ( 13) are satisfied. Thus, q * ≥ λ(X 0 ) = λ( X0 ), where the equality follows from Assumption 2. Now we show that q * ≤ λ(X 0 ) = λ( X0 ). For contradiction, suppose that a triplet of measures (µ 0 , µ, µ T ) is feasible in [START_REF] Frankowska | Filippov's and Filippov-Ważewski's theorems on closed domains[END_REF] and that λ(spt µ 0 \ X0 ) > 0. From Lemma 3 in Appendix A there is a family of admissible trajectories of the inclusion (12) starting from µ 0 generating the (t, x)-marginal of the occupation measure µ and the final measure µ T . However, this is a contradiction since no trajectory starting from spt µ 0 \ X0 can be admissible. Thus, λ(spt µ 0 \ X0 ) = 0 and so λ(spt µ 0 ) ≤ λ( X0 ). Consequently, q * ≤ λ( X0 ) = λ(X 0 ).

Primal infinite-dimensional LP on measures

The key idea behind the presented approach consists in replacing the direct maximization of the support of the initial measure µ 0 by the maximization of the integral below the density of µ 0 (w.r.t. the Lebesgue measure) subject to the constraint that the density be below one. This procedure is equivalent to maximizing the mass7 of µ 0 under the constraint that µ 0 is dominated by the Lebesgue measure. This leads to the following infinite-dimensional LP:

p * = sup µ 0 (X) s.t. δ T ⊗ µ T = δ 0 ⊗ µ 0 + L µ µ ≥ 0, λ ≥ µ 0 ≥ 0, µ T ≥ 0 spt µ ⊂ [0, T ] × X × U spt µ 0 ⊂ X, spt µ T ⊂ X T , (14) 
where the supremum is over a vector of nonnegative measures (µ,

µ 0 , µ T ) ∈ M ([0, T ] × X × U ) × M (X) × M (X T ).
In problem ( 14) the constraint λ ≥ µ 0 means that λ(A) ≥ µ 0 (A) for all sets A ⊂ X. Note how the objective functions differ in problems ( 13) and ( 14).

The following theorem is then almost immediate.

Theorem 1 The optimal value of the infinite-dimensional LP problem ( 14) is equal to the volume of the ROA X 0 , that is, p * = λ(X 0 ). Moreover, the supremum is attained with the µ 0 -component of the optimal solution equal to the restriction of the Lebesgue measure to the ROA X 0 .

Proof: Since the constraint set of problem ( 14) is tighter than that of problem [START_REF] Frankowska | Filippov's and Filippov-Ważewski's theorems on closed domains[END_REF], by Lemma 1 we have that λ(spt µ 0 ) ≤ λ(X 0 ) for any feasible µ 0 . From the constraint µ 0 ≤ λ we get µ 0 (X) = µ 0 (spt µ 0 ) ≤ λ(spt µ 0 ) ≤ λ(X 0 ) for any feasible µ 0 . Therefore p * ≤ λ(X 0 ). But by definition of the ROA X 0 , the restriction of the Lebesgue measure to X 0 is feasible in [START_REF] Gilbert | Linear systems with state and control constraints: the theory and application of maximal output admissible sets[END_REF], and so p * ≥ λ(X 0 ). Consequently p * = λ(X 0 ). Now we reformulate problem [START_REF] Gilbert | Linear systems with state and control constraints: the theory and application of maximal output admissible sets[END_REF] to an equivalent form more convenient for dualization and subsequent theoretical analysis. To this end, let us define the complementary measure (a slack variable) μ0 ∈ M (X) such that the inequality λ ≥ µ 0 ≥ 0 in ( 14) can be written equivalently as the constraints µ 0 + μ0 = λ, µ 0 ≥ 0, μ0 ≥ 0. Then problem ( 14) is equivalent to the infinite-dimensional primal LP

p * = sup µ 0 (X) s.t. δ T ⊗ µ T = δ 0 ⊗ µ 0 + L µ µ 0 + μ0 = λ µ ≥ 0, µ 0 ≥ 0, µ T ≥ 0, μ0 ≥ 0 spt µ ⊂ [0, T ] × X × U spt µ 0 ⊂ X, spt µ T ⊂ X T spt μ0 ⊂ X. ( 15 
)

Dual infinite-dimensional LP on functions

In this section we derive a linear program dual to [START_REF] Gaitsgory | Linear programming approach to deterministic infinite horizon optimal control problems with discounting[END_REF] (and hence to ( 14)) on the space of continuous functions. A certain super-level set of one of the functions feasible in the dual LP will provide an outer approximation to the ROA X 0 .

Consider the infinite-dimensional LP problem

d * = inf X w(x) dλ(x) s.t. Lv(t, x, u) ≤ 0, ∀ (t, x, u) ∈ [0, T ] × X × U w(x) ≥ v(0, x) + 1, ∀ x ∈ X v(T, x) ≥ 0, ∀ x ∈ X T w(x) ≥ 0, ∀ x ∈ X, (16) 
where the infimum is over (v, w)

∈ C 1 ([0, T ] × X) × C(X)
. The dual has the following interpretation: the constraint Lv ≤ 0 forces v to decrease along trajectories and hence necessarily v(0, x) ≥ 0 on X 0 because of the constraint v(T, x) ≥ 0 on X T . Consequently, w(x) ≥ 1 on X 0 . This instrumental observation is formalized in the following Lemma.

Lemma 2 Let (v, w) be a pair of function feasible in [START_REF] Genesio | On the estimation of asymptotic stability regions: state of the art and new proposals[END_REF]. Then v(0, •) ≥ 0 on X 0 and w ≥ 1 on X 0 .

Proof: By definition of X 0 , given any x 0 ∈ X 0 there exists u(t

) such that x(t) ∈ X, u(t) ∈ U for all t ∈ [0, T ] and x(T ) ∈ X T . Therefore, since v(T, •) ≥ 0 on X T and Lv ≤ 0 on [0, T ] × X × U , 0 ≤ v(T, x(T )) = v(0, x 0 ) + T 0 d dt v(t, x(t)) dt = v(0, x 0 ) + T 0 Lv(t, x(t), u(t)) dt ≤ v(0, x 0 ) ≤ w(x 0 ) -1,
where the last inequality follows from the second constraint of [START_REF] Genesio | On the estimation of asymptotic stability regions: state of the art and new proposals[END_REF].

Next, we have the following salient result:

Theorem 2 There is no duality gap between the primal infinite-dimensional LP problems ( 14) and ( 15) and the infinite-dimensional dual LP problem [START_REF] Genesio | On the estimation of asymptotic stability regions: state of the art and new proposals[END_REF] in the sense that p * = d * .

Proof: To streamline the exposition, let

C := C([0, T ] × X × U ) × C(X) × C(X T ) × C(X), M := M ([0, T ] × X × U ) × M (X) × M (X T ) × M (X),
and let K and K denote the positive cones of C and M respectively. Note that the cone K of nonnegative measures of M can be identified with the topological dual of the cone K of nonnegative continuous functions of C. The cone K is equipped with the weak-* topology; see [START_REF] Luenberger | Optimization by vector space methods[END_REF]Section 5.10]. Then, the LP problem (15) can be rewritten as

p * = sup γ, c s.t. A γ = β γ ∈ K , (17) 
where the infimum is over the vector γ := (µ, µ 0 , µ T , μ0 ), the linear operator

A : K → C 1 ([0, T ] × X) × M (X) is defined by A γ := (-L µ -δ 0 ⊗ µ 0 + δ T ⊗ µ T , µ 0 + μ0 )
, the right hand side of the equality constraint in [START_REF] Haddad | Nonlinear dynamical systems and control, a Lyapunovbased approach[END_REF] is the vector of measures β := (0 , λ) ∈ M ([0, T ] × X) × M (X), the vector function in the objective is c := (0, 1, 0, 0) ∈ C, so the objective function itself is

γ, c = X dµ 0 = µ 0 (X).
The LP problem [START_REF] Haddad | Nonlinear dynamical systems and control, a Lyapunovbased approach[END_REF] can be interpreted as a dual to the LP problem

d * = inf β, z s.t. A(z) -c ∈ K, (18) 
where the infimum is over

z := (v, w) ∈ C 1 ([0, T ] × X) × C(X)
, and the linear operator

A : C 1 ([0, T ] × X) × C(X) → C is defined by Az := (-Lv, w -v(0, •), v(T, •), w)
and satisfies the adjoint relation A γ, z = γ, Az . The LP problem ( 18) is exactly the LP problem [START_REF] Genesio | On the estimation of asymptotic stability regions: state of the art and new proposals[END_REF].

To conclude the proof we use an argument similar to that of [START_REF] Lasserre | Moments, positive polynomials and their applications[END_REF]Section C.4]. From [2, Theorem 3.10] there is no duality gap between LPs ( 17) and ( 18) if the supremum p * is finite and the set P := {(A γ, γ, c ) : γ ∈ K } is closed in the weak-* topology of K . The fact that p * is finite follows readily from the constraint µ 0 + μ0 = λ, μ0 ≥ 0, and from compactness of X. To prove closedness, we first remark that A is weakly-* continuous

8 since A(z) ∈ C for all z ∈ C 1 ([0, T ] × X) × C(X).
Then we consider a sequence γ k = (µ k , µ k 0 , µ k T , μk 0 ) ∈ K and we want to show that its accumulation point (ν, a) := lim k→∞ (A γ k , γ k , c ) belongs to P , where ν ∈ C 1 ([0, T ] × X) × M (X) and a ∈ R. To this end, consider first the test function

z 1 = (T -t, 1) which gives A γ k , z 1 = µ k (0, T × X × U ) + µ k 0 (X) + μk 0 (X) → ν, z 1 < ∞;
since the measures are nonnegative, this implies that the sequences of measures µ k , µ k 0 and μk 0 are bounded. Next, taking the test function

z 2 = (1, 1) gives A γ k , z 2 = µ T (X) + μ0 (X) → ν, z 2 < ∞; this implies that the sequence µ k
T is bounded as well. Thus, from the weak-* compactness of the unit ball (Alaoglu's Theorem [29, Section 5.10, Theorem 1]) there is a subsequence γ k i that converges weakly-* to an element γ ∈ K so that lim i→∞ (A γ k i , γ k i , c ) ∈ P by continuity of A .

Note that, by Theorem 1, the supremum in the primal LPs ( 14) and ( 15) is attained (by the restriction of the Lebesgue measure to X 0 ). In contrast, the infimum in the dual LP ( 16) is not attained in C 1 ([0, T ] × X) × C(X), but there exists a sequence of feasible solutions to [START_REF] Genesio | On the estimation of asymptotic stability regions: state of the art and new proposals[END_REF] whose w-component converges to the discontinuous indicator I X 0 as we show next.

Before we state our convergence results, we recall the following types of convergence of a sequence of functions w k : X → R to a function w : X → R on a compact set X ⊂ R n . As k → ∞, the functions w k converge to w:

• in L 1 norm if X |w k -w| dλ → 0, • in Lebesgue measure if λ({x : |w k (x) -w(x)| ≥ }) → 0 ∀ > 0,
• almost everywhere if ∃ B ⊂ X, λ(B) = 0, such that w k → w pointwise on X\B,

• almost uniformly if ∀ > 0, ∃ B ⊂ X, λ(B) < , such that w k → w uniformly on X\B.

We also recall that convergence in L 1 norm implies convergence in Lebesgue measure and that almost uniform convergence implies convergence almost everywhere (see [3, Theorems 2.5.2 and 2.5.3]). Therefore we will state our results in terms of the stronger notions of L 1 norm and almost uniform convergence.

Theorem 3 There is a sequence of feasible solutions to the dual LP [START_REF] Genesio | On the estimation of asymptotic stability regions: state of the art and new proposals[END_REF] such that its wcomponent converges from above to I X 0 in L 1 norm and almost uniformly.

Proof: By Theorem 1, the optimal solution to the primal is attained by the restriction of the Lebesgue measure to X 0 . Consequently,

p * = X I X 0 (x)dλ(x). ( 19 
)
By Theorem 2, there is no duality gap (p * = d * ), and therefore there exists a sequence 16) such that

(v k , w k ) ∈ C 1 ([0, T ] × X) × C(X) feasible in (
p * = d * = lim k→∞ X w k (x) dλ(x). (20) 
From Lemma 2 we have w k ≥ 1 on X 0 and since w k ≥ 0 on X by the fourth constraint of ( 16), we have w k ≥ I X 0 on X for all k. Thus, subtracting [START_REF] Henrion | Semidefinite characterisation of invariant measures for one-dimensional discrete dynamical systems[END_REF] from [START_REF] Henrion | Inner approximations for polynomial matrix inequalities and robust stability regions[END_REF] gives

lim k→∞ X (w k (x) -I X 0 (x)) dλ(x) = 0,
where the integrand is nonnegative. Hence w k converges to I X 0 in L 1 norm. From [3, Theorems 2.5.2 and 2.5.3] there exists a subsequence converging almost uniformly.

LMI relaxations and SOS approximations

In this section we show how the infinite-dimensional LP problem (15) can be approximated by a hierarchy of LMI problems with the approximation error vanishing as the relaxation order tends to infinity. The dual LMI problem is a sum-of-squares (SOS) problem and yields a converging sequence of outer approximations to the ROA.

The measures in equation ( 9) (or [START_REF] Dellnitz | The algorithms behind GAIO -Set oriented numerical methods for dynamical systems[END_REF]) are fully determined by their values on a family of functions whose span is dense in C 1 ([0, T ] × X). Hence, since all sets are assumed compact, the family of test functions in ( 9) can be restricted to any polynomial basis (since polynomials are dense in the space of continuous functions on compact sets equipped with the supremum norm). The basis of our choice is the set of all monomials. This basis is convenient for subsequent exposition and is employed by existing software (e.g., [START_REF] Henrion | Gloptipoly 3: moments, optimization and semidefinite programming[END_REF][START_REF] Löfberg | YALMIP : A toolbox for modeling and optimization in MAT-LAB[END_REF]). Nevertheless, another polynomial basis may be more appropriate from a numerical point of view (see the Conclusion for a discussion).

Let R k [x] denote the vector space of real multivariate polynomials of total degree less than or equal to k. Each polynomial p(x) ∈ R k [x] can be expressed in the monomial basis as

p(x) = |α|≤k p α x α = |α|≤k p α (x α 1 1 • . . . • x αn n ),
where α runs over the multi-indices (vectors of nonnegative integers) such that |α| = n i=1 α i ≤ k. A polynomial p(x) is identified with its vector of coefficients p := (p α ) whose entries are indexed by α. Given a vector of real numbers y := (y α ) indexed by α, we define the linear functional L y : R k

[x] → R such that L y (p) := p y := α p α y α ,
where the prime denotes transposition 9 . When entries of y are moments of a measure µ, i.e.,

y α = x α dµ(x),
the linear functional models the integration of a polynomial with respect to µ, i.e., L y (p) = µ, p = p(x) dµ(x) = α p α x α dµ(x) = p y.

When this linear functional acts on the square of a polynomial p of degree k, it becomes a quadratic form in the polynomial coefficients space, and we denote by M k (y) and call the moment matrix of order k the matrix of this quadratic form, which is symmetric and linear in y:

L y (p 2 ) = p M k (y)p.
Finally, given a polynomial g(x) ∈ R[x] we define the localizing matrix M k (g, y) by the equality L y (gp 2 ) = p M k (g, y)p.

The matrix M k (g, y) is also symmetric and linear in y. Let y, y 0 , y T and ŷ0 respectively denote the sequences of moments of measures µ, µ 0 , µ T and μ0 such that the constraints in problem [START_REF] Gaitsgory | Linear programming approach to deterministic infinite horizon optimal control problems with discounting[END_REF] are satisfied. Then it follows that these sequences satisfy an infinite-dimensional linear system of equations corresponding to the equality constraints of problem [START_REF] Gaitsgory | Linear programming approach to deterministic infinite horizon optimal control problems with discounting[END_REF] written explicitly as

X T v(T, x) dµ T (x) - X v(0, x) dµ 0 (x) - [0,T ]×X×U Lv(t, x, u) dµ(t, x, u) = 0, X w(x) dµ 0 (x) + X w(x) dμ 0 (x) = X w(x) dλ(x).
For the particular choice of test functions v(t, x) = t α x β and w(x) = x β for all α ∈ N and β ∈ N n , let us denote by A k (y, y 0 , y T , ŷ0 ) = b k the finite-dimensional truncation of this system obtained by considering only the test functions of total degree less than or equal to 2k. Let further

d X i := deg g X i 2 , d U i := deg g U i 2 , d T i := deg g X T i 2 ,
where deg denotes the degree of a polynomial. The primal LMI relaxation of order k then reads

p * k = max (y 0 ) 0 s.t. A k (y, y 0 , y T , ŷ0 ) = b k M k (y) 0, M k-d X i (g X i , y) 0, i ∈ Z [1,n X ] M k-1 (t(T -t), y) 0, M k-d U i (g U i , y) 0, i ∈ Z [1,n U ] M k (y 0 ) 0, M k-d X i (g X i , y 0 ) 0, i ∈ Z [1,n X ] M k (y T ) 0, M k-d T i (g X T i , y T ) 0, i ∈ Z [1,n T ] M k (ŷ 0 ) 0, M k-d X i (g X i , ŷ0 ) 0, i ∈ Z [1,n X ] , (21) 
where the notation 0 stands for positive semidefinite and the minimum is over sequences (y, y 0 , y T , ŷ0 ) truncated to degree 2k. The objective function is the first element (i.e., the mass) of the truncated moment sequence y 0 corresponding to the initial measure; the equality constraint captures the two equality constraints of problem (15) evaluated on monomials of degree up to 2k; and the LMI constraints involving the moment and localizing matrices capture the nonnegativity and support constraints on the measures, respectively. Note that both the equality constraint and the LMI constraints are necessarily satisfied by the moment sequence of any vector of measures feasible in [START_REF] Gaitsgory | Linear programming approach to deterministic infinite horizon optimal control problems with discounting[END_REF]. The constraint set of ( 21) is therefore looser than that of (15); however, the discrepancy between the two constraint sets monotonically vanishes as the relaxation order k tends to infinity (see Corollary 1 below).

Problem ( 21) is a semidefinite program (SDP), where a linear function is minimized subject to convex LMI constraints, or equivalently a finite-dimensional LP in the cone of positive semidefinite matrices.

Without loss of generality we make the following standard assumption for the reminder of this section.

Assumption 3 One of the polynomials defining the sets X, U respectively X T , is equal to

g X i (x) = R X -x 2 2 , g U i (u) = R U -u 2 2 respectively g X T i (x) = R T -x 2 2 for some constants R X ≥ 0, R U ≥ 0 respectively R T ≥ 0.
Assumption 3 is without loss of generality since the sets X, U and X T are bounded, and therefore redundant ball constraints of the form R X -

x 2 2 ≥ 0, R U -u 2 2 ≥ 0 and R T -x 2
2 ≥ 0 can always be added to the description of the sets X, U and X T for sufficiently large R X , R U and R T .

The dual to the SDP problem ( 21) is given by

d * k = inf w l s.t. -Lv(t, x, u) = p(t, x, u) + q 0 (t, x, u)t(T -t) + n X i=1 q i (t, x, u)g X i (x) + n U i=1 r i (t, x, u)g U i (x) w(x) -v(0, x) -1 = p 0 (x) + n X i=1 q 0 i (x)g X i (x) v(T, x) = p T (x) + n T i=1 q T i (x)g X T i (x) w(x) = s 0 (x) + n X i=1 s 0i (x)g X i (x), ( 22 
)
where l is the vector of the moments of the Lebesgue measure over X indexed in the same basis in which the polynomial w(x) with coefficients w is expressed. The minimum is over polynomials v(t, x) ∈ R 2k [t, x] and w ∈ R 2k [x], and polynomial sum-of-squares p(t, x, u),

q i (t, x, u), i ∈ Z [0,n X ] , r i (t, x, u), i ∈ Z [1,n U ] , p 0 (x), p T (x), q 0 i (x), q T i (x), s 0 (x), s 0i (x), i ∈ Z [1,n X ]
of appropriate degrees. The constraints that polynomials are sum-of-squares can be written explicitly as LMI constraints (see, e.g., [START_REF] Lasserre | Moments, positive polynomials and their applications[END_REF]), and the objective is linear in the coefficients of the polynomial w(x); therefore problem ( 22) can be formulated as an SDP.

Theorem 4 There is no duality gap between primal LMI problem [START_REF] Henrion | Gloptipoly 3: moments, optimization and semidefinite programming[END_REF] and dual LMI problem (22), i.e., p * k = d * k .

Proof: See Appendix D.

Outer approximations and convergence results

In this section we show how the dual LMI problem (22) gives rise to a sequence of outer approximations to the ROA X 0 with a guaranteed convergence. In addition, we prove the convergence of the primal and dual optimal values p * k and d * k to the volume of the ROA, and the convergence of the w-component of an optimal solution to the dual LMI problem (22) to the indicator function of the ROA I X 0 .

Let the polynomials (w k , v k ), each of total degree at most 2k, denote an optimal solution to the problem k th order dual SDP approximation (22) and let wk := min i≤k w i and vk := min i≤k v i denote their running minima. Then, in view of Lemma 2 and the fact that any feasible solution to (22) is feasible in [START_REF] Genesio | On the estimation of asymptotic stability regions: state of the art and new proposals[END_REF], the sets

X 0k := {x ∈ X : v k (0, x) ≥ 0} (23) 
and X0k := {x ∈ X : vk (0, x) ≥ 0} [START_REF] Hirsch | Differential topology[END_REF] provide outer approximations to the ROA; in fact, the inclusions X 0k ⊃ X0k ⊃ X 0 hold for all k ∈ {1, 2, . . .}.

Our first convergence result proves the convergence of w k and wk to the indicator function of the ROA I X 0 .

Theorem 5 Let w k ∈ R 2k [x] denote the w-component of an optimal solution to the dual LMI problem (22) and let wk (x) = min i≤k w i (x). Then w k converges from above to I X 0 in L 1 norm and wk converges from above to I X 0 in L 1 norm and almost uniformly.

Proof: From Lemma 2 and Theorem 3, for every > 0 there exists a (v, w) ∈ C 1 ([0, T ] × X) × C(X) feasible in ( 16) such that w ≥ I X 0 and X (w -I X 0 ) dλ < . Set ṽ(t, x) := v(t, x) -t + (T + 1) , w(x) := w(x) + (T + 3) .

Since v is feasible in ( 16), we have Lṽ = Lv -, and ṽ(T, x) = v(T, x) + . Since also w(x) -ṽ(0, x) ≥ 1 + 2 , it follows that (ṽ, w) is strictly feasible in [START_REF] Genesio | On the estimation of asymptotic stability regions: state of the art and new proposals[END_REF] with a margin at least . Since [0, T ] × X and X are compact, there exist10 polynomials v and ŵ of a sufficiently high degree such that sup

[0,T ]×X |ṽ -v| < , sup [0,T ]×X×U |Lṽ -Lv| < and sup X | w -ŵ| < .
The pair of polynomials (v, ŵ) is therefore strictly feasible in ( 16) and as a result, under Assumption 3, feasible in ( 22) for a sufficiently large relaxation order k (this follows from the classical Positivstellensatz by Putinar; see, e.g., [START_REF] Lasserre | Moments, positive polynomials and their applications[END_REF] or [START_REF] Putinar | Positive polynomials on compact semi-algebraic sets[END_REF]), and moreover ŵ ≥ w.

Consequently, X | w -ŵ| dλ ≤ λ(X), and so

X ( ŵ -w) dλ ≤ λ(X)(T + 4). Therefore X ( ŵ -I X 0 ) dλ < K, ŵ ≥ I X 0 ,
where K := [1 + (T + 4)λ(X)] < ∞ is a constant. This proves the first statement since was arbitrary.

The second statement immediately follows since given a sequence w k → I X 0 in L 1 norm, there exists a subsequence w k i that converges almost uniformly to I X 0 by [3, Theorems 2.5.2 and 2.5.3] and clearly wk (x) ≤ min{w k i (x) : k i ≤ k}.

The following Corollary follows immediately from Theorem 5.

Corollary 1

The sequence of infima of LMI problems (22) Proof: Monotone convergence of the dual optima d * k follows immediately from Theorem 5 and from the fact that the higher the relaxation order k, the looser the constraint set of the minimization problem (22). To prove convergence of the primal maxima observe that from weak SDP duality we have d * k ≥ p * k and from Theorems 5 and 2 it follows that d * k → d * = p * . In addition, clearly p * k ≥ p * and p * k+1 ≤ p * k since the higher the relaxation order k, the tighter the constraint set of the maximization problem [START_REF] Henrion | Gloptipoly 3: moments, optimization and semidefinite programming[END_REF]. Therefore p * k → p * monotonically from above.

Theorem 5 establishes a functional convergence of w k to I X 0 and Corollary 1 a convergence of the primal and dual optima p * k and d * k to the volume of the ROA λ(X 0 ) = p * = d * . Finally, the following theorem establishes a set-wise convergence of the sets ( 23) and ( 24) to the ROA X 0 .

Theorem 6 Let (v k , w k ) ∈ R 2k [t, x] × R 2k [x]
denote a solution to the dual LMI problem (22). Then the sets X 0k and X0k defined in ( 23) and ( 24) converge to the ROA X 0 from the outside such that X 0k ⊃ X0k ⊃ X 0 and

lim k→∞ λ(X 0k \ X 0 ) = 0 and lim k→∞ λ( X0k \ X 0 ) = 0.
Moreover the convergence of X0k is monotonous, i.e., X0i ⊂ X0j whenever i ≥ j.

Proof: The inclusion X 0k ⊃ X0k ⊃ X 0 follows from Lemma 2 since any solution to ( 22) is feasible in [START_REF] Genesio | On the estimation of asymptotic stability regions: state of the art and new proposals[END_REF] and since X0k = ∩ k i=1 X 0i . The latter fact also proves the monotonicity of the sequence X0k . Next, from Lemma 2 we have w k ≥ I X 0 and therefore, since w k ≥ v k (0, •) + 1 on X, we have w k ≥ I X 0k ≥ I X0k ≥ I X 0 on X. In addition, from Theorem 5 we have

w k → I X 0 in L 1 norm on X; therefore λ(X 0 ) = X I X 0 dλ = lim k→∞ X w k dλ ≥ lim k→∞ X I X 0k dλ = lim k→∞ λ(X 0k ) ≥ lim k→∞ λ( X0k ).
But since X 0 ⊂ X0k ⊂ X 0k we must have λ(X 0 ) ≤ λ( X0k ) ≤ λ(X 0k ) and the theorem follows.

Free final time

In this section we outline a straightforward extension of our approach to the problem of reaching the target set X T at any time before T < ∞ (and not necessarily staying in X T afterwards).

It turns out that the set of all initial states x 0 from which it is possible to reach X T at a time t ≤ T can be obtained as the support of an optimal solution µ * 0 to the problem

sup µ 0 (X) s.t. µ T = µ 0 ⊗ δ 0 + L µ µ ≥ 0, λ ≥ µ 0 ≥ 0, µ T ≥ 0 spt µ ⊂ [0, T ] × X × U spt µ 0 ⊂ X, spt µ T ⊂ [0, T ] × X T , (25) 
where the supremum is over a vector of nonnegative measures (µ, µ 0 , µ

T ) ∈ M ([0, T ] × X × U ) × M (X) × M ([0, T ] × X T ).
Note that the only difference to problem ( 14) is in the support constraints of the final measure µ T .

The dual to this problem reads as inf X w(x) dλ(x)

s.t. Lv(t, x, u) ≤ 0, ∀ (t, x, u) ∈ [0, T ] × X × U w(x) ≥ v(0, x) + 1, ∀ x ∈ X v(t, x) ≥ 0, ∀ (t, x) ∈ [0, T ] × X T w(x) ≥ 0, ∀ x ∈ X. (26) 
The only difference to problem ( 16) is in the third constraint which now requires that v(t, x) is nonnegative on X T for all t ∈ [0, T ].

All results from the previous sections hold with proofs being almost verbatim copies.

Numerical examples

In this section we present five examples of increasing complexity to illustrate our approach: a univariate uncontrolled cubic system, the Van der Pol oscillator, a double integrator, the Brockett integrator and an acrobot. For numerical implementation, one can either use Gloptipoly 3 [START_REF] Henrion | Gloptipoly 3: moments, optimization and semidefinite programming[END_REF] to formulate the primal problem on measures and then extract the dual solution provided by a primal-dual SDP solver or formulate directly the dual SOS problem using, e.g., YALMIP [START_REF] Löfberg | YALMIP : A toolbox for modeling and optimization in MAT-LAB[END_REF] or SOSTOOLS [START_REF] Prajna | SOSTOOLS: sum of squares optimization toolbox for MATLAB[END_REF]. As an SDP solver we used SeDuMi [START_REF] Pólik | SeDuMi: a package for conic optimization[END_REF] for the first three examples and MOSEK for the last two examples. For computational purposes the problem data should be scaled such that the constraint sets are contained in, e.g., unit boxes or unit balls; in particular the time interval [0, T ] should be scaled to [0, 1] by multiplying the vector field f by T . Computational aspects are further discussed in the Conclusion.

Whenever the approximations X 0k defined in [START_REF] Hernandez-Lerma | Discretre-Time Markov Control Processes: Basic Optimality Criteria[END_REF] are monotonous (which is not guaranteed) we report these approximations (since then they are equal to the monotonous version X0k defined in ( 24)); otherwise we report X0k .

Univariate cubic dynamics

Consider the system given by ẋ = x(x -0.5)(x + 0.5), the constraint set X = [-1, 1], the final time T = 100 and the target set

X T = [-0.01, 0.01].
The ROA can in this case be determined analytically as X 0 = [-0.5, 0.5]. Polynomial approximations to the ROA for degrees d ∈ {4, 8, 16, 32} are shown in Figure 1. As expected the functional convergence of the polynomials to the discontinuous indicator function is rather slow; however, the set-wise convergence of the approximations X 0k (where k = d/2) is very fast as shown in Table 1. Note that the volume error is not monotonically decreasingindeed what is guaranteed to decrease is the integral of the approximating polynomial w(x), not the volume of X 0k . Taking the monotonically decreasing approximations X0k defined in [START_REF] Hirsch | Differential topology[END_REF] would prevent the volume increase. Numerically, a better behavior is expected when using alternative polynomial bases (e.g., Chebyshev polynomials) instead of the monomials; see the conclusion for a discussion. 

Van der Pol oscillator

As a second example consider a scaled version of the uncontrolled reversed-time Van der Pol oscillator given by ẋ1 = -2x 2 , ẋ2 = 0.8x 1 + 10(x 2 1 -0.21)x 2 .

The system has one stable equilibrium at the origin with a bounded region of attraction

X 0 ⊂ X := [-1.2, 1.2] 2 .
In order to compute an outer approximation to this region we take T = 100 and X T = {x :

x 2 ≤ 0.01}. Plots of the ROA estimates X 0k for d = 2k ∈ {10, 12, 14, 16} are shown in Figure 2. We observe a relatively-fast convergence of the super-level sets to the ROA -this is confirmed by the relative volume error 11 summarized in Table 2. Figure 3 then shows the approximating polynomial itself for degree d = 18. Here too, a better convergence is expected if instead of monomials, a more appropriate polynomial basis is used. 

Double integrator

To demonstrate our approach in a controlled setting we first consider a double integrator

ẋ1 = x 2 ẋ2 = u.
The goal is to find an approximation to the set of all initial states X 0 that can be steered to the origin at 12 the final time T = 1. Therefore we set X T = {0} and the constraint set such that X 0 ⊂ X, e.g.,

X = [-0.7, 0.7] × [-1.2, 1.2].
The solution to this problem can be computed analytically as

X 0 = {x : V (x) ≤ 1},
where

V (x) =    x 2 + 2 x 1 + 1 2 x 2 2 if x 1 + 1 2 x 2 |x 2 | > 0, -x 2 + 2 -x 1 + 1 2 x 2 2 otherwise.
The ROA estimates X 0k for d = 2k ∈ {6, 8, 10, 12} are shown in Figure 4; again we observe a relatively fast convergence of the super-level set approximations, which is confirmed by the relative volume errors in Table 3. 

Brockett integrator

Next, we consider the Brockett integrator

ẋ1 = u 1 ẋ2 = u 2 ẋ3 = u 1 x 2 -u 2 x 1
with the constraint sets X = {x ∈ R 3 : ||x|| ∞ ≤ 1} and U = {u ∈ R 2 : ||u|| 2 ≤ 1}, the target set X T = {0} and the final time T = 1. The ROA can be computed analytically (see [START_REF] Lasserre | Nonlinear optimal control via occupation measures and LMI relaxations[END_REF]) as X 0 = {x ∈ R 3 : T (x) ≤ 1}, where

T (x) = θ x 2 1 + x 2 2 + 2|x 3 | θ + sin 2 θ -sin θ cos θ , and θ = θ(x) is the unique solution in [0, π) to θ -sin θ cos θ sin 2 θ (x 2 1 + x 2 2 ) = 2|x 3 |.
The ROA estimates X 0k are not monotonous in this case and therefore in Figure 5 we rather show the monotonous estimates X0k defined in [START_REF] Hirsch | Differential topology[END_REF] for degrees six d = 2k ∈ {6, 10}. We observe fairly good tightness of the estimates.

Acrobot

As our last example we consider the acrobot system adapted from [START_REF] Murray | A Case Study in Approximate Linearization: The Acrobot Example[END_REF], which is essentially a double pendulum with both joints actuated; see Figure 6. The system equations are given and

N (x, u) = g sin(x 1 + x 2 ) -a 1 x 3 + a 2 sin(x 1 ) + x 4 sin(x 2 )(2x 3 + x 4 ) + u 1 -sin(x 2 )x 2 3 -a 1 x 4 + g sin(x 1 + x 2 ) + u 2
with g = 9.8, a 1 = 0.1 and a 2 = 19.6. The first two states are the joint angles (in radians) and the second two the corresponding angular velocities (in radians per second). The two control inputs are the torques in the two joints. Here, rather than comparing our approximations with the true ROA (which is not easily available), we study how the size of the ROA approximations is influenced by the actuation of the first joint. We consider two cases: with both joints actuated and with only the middle joint actuated. In the first case the input constraint set is U = [-10, 10] × [-10, 10] and in the second case it is U = {0} × [-10, 10]. The state constraint set is for both cases [START_REF] Aubin | Set-valued analysis[END_REF][START_REF] Aubin | Set-valued analysis[END_REF]. Since this system is not polynomial we take a third order Taylor expansion of the vector field around the origin. An exact treatment would be possible via a coordinate transformation leading to rational dynamics to which our approach can be readily extended; this extension is, however, not treated in this paper and therefore we use the simpler (and non-exact) approach with Taylor expansion. Figure 7 shows the approximations X 0k of degree d = 2k ∈ {6, 8}; as expected disabling actuation of the first joint leads to a smaller ROA approximation. For this largest example presented in the paper we also report computation times for two SDP solvers: the recently released MOSEK SDP solver and SeDuMi. Computation times 13reported in Table 4 show that MOSEK outperforms SeDuMi in terms of speed by a large margin; this finding does not seem to be specific to this particular problem and holds for all ROA computation problems presented. Before solving, the problem data was scaled such that the constraint sets become unit boxes. 

X = [-π/2, π/2] × [-π, π] × [-5, 5] × [-

Conclusion

The main contributions of this paper can be summarized as follows:

• contrary to most of the existing systems control literature, we propose a convex formulation for the problem of computing the controlled region of attraction;

• our approach is constructive in the sense that we rely on standard hierarchies of finitedimensional LMI relaxations whose convergence can be guaranteed theoretically and for which public-domain interfaces and solvers are available;

• we deal with polynomial dynamics and semialgebraic input and state constraints, therefore covering a broad class of nonlinear control systems;

• additional properties (e.g., convexity) of the approximations can be enforced by additional constraints on the approximating polynomial v(0, •) (e.g., Hessian being negative definite).

• the approach is extremely simple to use -the outer approximations are the outcome of a single semidefinite program with no additional data required besides the problem description. The problem of computing the (forward) reachable set, i.e. the set of all states that can be reached from a given set of initial conditions under input and state constraints, can be addressed with the same techniques -the problem can be formulated as ROA computation using a time-reversal argument. Similar ideas can also be used to characterize and compute outer approximations of the maximum controlled invariant set (both for discrete and continuous time); this is a work in progress.

The hierarchy of LMI relaxations described in this paper generates a sequence of nested outer approximations of the ROA, but it is also possible, using a similar approach, to compute valid inner approximations. Results for uncontrolled systems will be reported elsewhere. The extension to the controlled case is far more involved (both theoretically and computationally) and is a subject of future research.

Furthermore, there is a straightforward extension to piecewise polynomial dynamics defined over a semialgebraic partition of the state and input spaces -one measure is then defined for each region of the partition. Our approach should also allow for extensions to stochastic systems (either discrete-time controlled Markov processes or controlled SDEs) and/or uncertain systems.

Since it is based on (an extension of) Lasserre's hierarchy of LMI relaxations (originally proposed for static polynomial optimization [START_REF] Lasserre | Moments, positive polynomials and their applications[END_REF]), our approach scales similarly as Lasserre's approach. Namely, the number of moments (variables in the LMI relaxation) grows as O(k n+m ) when the problem dimension n+m is kept constant and the relaxation order k = d/2 varies, and grows as O((n + m) k ) when k is kept constant and n + m varies. Therefore, at present, the approach is limited to systems of moderate size (say, n + m ≤ 6) unless one is willing to compromise the accuracy of the approximations by taking a small relaxation order k. However, given the rapid progress of computing and optimization, the authors expect the approach to scale to larger dimensions in the future. One possible direction is sparsity exploitation; indeed, the recently released MOSEK SDP solver seems to have far superior performance to SeDuMi on our problem class, most likely due to more sophisticated sparsity exploitation. Another direction is parallelization; for instance, parallel interior point solvers (e.g., SDPARA [START_REF] Yamashita | SDPARA: SemiDefinite Programming Algorithm PARAllel version[END_REF]) should allow the approach to scale to larger dimensions. Alternative algorithms to standard primal-dual interior-point methods, such as first-order methods, are also worth considering. This is currently investigated by the authors.

Numerical examples indicate that the choice of monomials as a dense basis for the set of continuous functions on compact sets, while mathematically appropriate (and notationally convenient), is not always satisfactory in terms of convergence and quality of the approximations due to numerical ill-conditioning of this basis. However, this is not peculiar to

In the remainder of the proof we show that the measures µ T and μ are generated by a family of absolutely continuous trajectories of this differential equation (which is clearly a subset of trajectories of the convexified inclusion ( 12)) starting from µ 0 . Note that the vector field f is only known to be measurable 14 , so this equation may not admit a unique solution.

Observe that the t-marginal of µ (and hence of μ) is equal to the Lebesgue measure restricted to [0, T ] scaled by ρ := µ 0 (X) (=µ T (X)). Indeed, plugging v(t, x) = t k , k ∈ N, in (9), we obtain µ T (X) = t k dµ 0 + kt k-1 dµ; taking k = 0 gives µ T (X) = µ 0 (X) and k ≥ 1 gives t k-1 dµ = µ T (X)T k /k, which is nothing but the Lebesgue moments on [0, T ] scaled by µ T (X) = µ 0 (X). Therefore, using [7, Theorem 6.4], we can disintegrate μ as

dμ(t, x) = dµ t (x)dt, (29) 
where dµ t (x) is a stochastic kernel on X given t scaled by ρ and dt is the standard Lebesgue measure on [0, T ]. The kernel µ t can be thought of as the distribution 15 of the state at time t. The kernel µ t is defined uniquely dt-almost everywhere, and we will show that there is a version such that the function t → X w(x) dµ t (x) is absolutely continuous for all w ∈ C 1 (X) and such that the continuity equation

d dt X w(x) dµ t (x) = X grad w(x) • f (t, x) dµ t (x) ∀ w ∈ C 1 (X) (30) 
with the initial condition µ 0 is satisfied almost everywhere w.r.t. the Lebesgue measure on [0, T ].

Fix w ∈ C 1 (X) and define the test function v(t, x) := ψ(t)w(x), where ψ ∈ C 1 ([0, T ]). Then from equation ( 27)

ψ(T ) X T w dµ T -ψ(0) X w dµ 0 = [0,T ]×X ∂(ψw) ∂t + grad(ψw) • f (t, x) dμ(t, x) = T 0 X ψ(t)w(x) + ψ(t)grad w(x) • f (t, x) dµ t (x)dt = T 0 ψ X w dµ t + ψ X grad w • f dµ t dt,
which can be seen as an equation of the form

ψ(T )d -ψ(0)c = T 0 ψ(t)a(t) + ψ(t)b(t) dt ∀ψ ∈ C 1 ([0, T ]), ( 31 
)
14 Measurability of f (t, x) follows by first observing that for f (t, x, u) = I A×B×C (t, x, u) we have f (t, x) = I A (t)I B (x)ν(C | t, x), which is a product of measurable functions, and then by approximating an arbitrary measurable f (t, x, u) by simple functions (i.e., sums of indicator functions). This is a standard measure theoretic argument; details are omitted for brevity. 15 It will become clear from the following discussion that for t = 0 and t = T this kernel (or a version thereof) coincides with µ 0 and µ T , respectively; hence there is no ambiguity in notation. Note also that the kernel µ t , t ∈ [0, T ], is defined uniquely up to a subset of [0, T ] of Lebesgue measure zero; by a "version" we then mean a particular choice of the kernel.

where c := X w(x) dµ 0 (x), d := X T w(x) dµ T and b(t) := X grad w • f (t, x) dµ t (x) are constants and a(t) is an unknown function. One solution is clearly a(t) = X w dµ t . Now we show that ã(t) := c + 

dt-almost everywhere. The right-hand side of this equality is an absolutely continuous function of time for each w ∈ C 1 (X) and the left-hand side is a bounded positive linear functional on C(X) for all t ∈ [0, T ]. By continuity of the right-hand-side of (32) with respect to time, this right-hand side is a bounded positive linear functional on C 1 (X) for all t ∈ [0, T ] and therefore can be uniquely extended to a bounded positive linear functional on C(X) (since C 1 is dense in C). Therefore, for all t ∈ [0, T ] the right-hand side has a representing measure [39, Theorem 2.14] and hence there is a version of µ t such that the equality (32) holds for all t ∈ [0, T ]. With this version of µ t the function t → X w(x) dµ t (x) is absolutely continuous and µ t solves the continuity equation [START_REF] Margellos | Hamilton-Jacobi formulation for reach-avoid differential games[END_REF].

To finish the proof, we use [1, Theorem 3.2] which asserts the existence of a nonnegative measure σ on C([0, T ]; R n ) which corresponds to a family of absolutely continuous solutions to ODE [START_REF] Löfberg | YALMIP : A toolbox for modeling and optimization in MAT-LAB[END_REF] whose projection at each time t ∈ [0, T ] coincides with µ t . More precisely, there is a nonnegative measure σ ∈ M (C([0, T ]; R n )) supported on a family of absolutely continuous solutions to ODE [START_REF] Löfberg | YALMIP : A toolbox for modeling and optimization in MAT-LAB[END_REF] such that for all measurable w : R n → R and so the occupation measure of the family of trajectories coincides with μ. Clearly, the initial and the final measures of this family coincide with µ 0 and µ T as well. As a result σ-almost all trajectories of this family are admissible. The proof is completed by discarding the null-set of trajectories that are not admissible, which does not change the measure σ and the generated measures μ, µ 0 , µ T .

target set is the ball of radius 1. Then X 0 = X T is strictly smaller than X0 = X, and λ(X 0 ) = π, whereas λ( X0 ) = (1 + r 2 )π. Assumption 2 is therefore not satisfied for r > 0. In this example, regular solutions starting in the left ball cannot transverse the line to the right ball; this is, by contrast, possible for the relaxed solutions using an infinitely fast chattering.

(0, 0, 0, λ) is feasible in [START_REF] Gaitsgory | Linear programming approach to deterministic infinite horizon optimal control problems with discounting[END_REF]; consequently a concatenation of truncated moment sequences corresponding to the quadruplet of measures (0, 0, 0, λ) is feasible in [START_REF] Prajna | SOSTOOLS: sum of squares optimization toolbox for MATLAB[END_REF] for each relaxation order k. Boundedness of the even components of each moment vector follows from the structure of the localizing matrices corresponding to the functions from Assumption 3 and from the fact that the masses (zero-th moments) of the measures are bounded because of the constraint µ 0 + μ0 = λ and because T < ∞. Boundedness of the whole moment vectors then follows since the even moments appear on the diagonal of the positive semidefinite moment matrices.

To complete the proof, we follow [START_REF] Trnovská | Strong duality conditions in semidefinite programming[END_REF]Theorem 4] and show that boundedness of the feasibility set of LMI problem [START_REF] Prajna | SOSTOOLS: sum of squares optimization toolbox for MATLAB[END_REF] implies existence of an interior point for LMI problem [START_REF] Putinar | Positive polynomials on compact semi-algebraic sets[END_REF], and then from standard SDP duality it follows readily that p * = d * since D has a full column rank; see, e.g., [START_REF] Trnovská | Strong duality conditions in semidefinite programming[END_REF]Theorem 5] and references therein.

Let ȳ denote a point in the feasibility set of LMI problem [START_REF] Prajna | SOSTOOLS: sum of squares optimization toolbox for MATLAB[END_REF], i.e. a vector satisfying Aȳ = b and e + Dȳ ∈ K. Suppose that there is no interior point for LMI problem [START_REF] Putinar | Positive polynomials on compact semi-algebraic sets[END_REF], i.e. there is no x and z ∈ int K such that A x + D z = c. Then from Lemma 4 there exists y = 0 such that Ay = 0, Dy ∈ K and c y ≤ 0. It follows that there exists a ray ȳ + ty, t ≥ 0 of feasible points for LMI problem [START_REF] Prajna | SOSTOOLS: sum of squares optimization toolbox for MATLAB[END_REF], hence implying that the feasibility set is not bounded.

  For a detailed exposition and examples of moment and localizing matrices see [26, Section 3.2.1].

Figure 1 :

 1 Figure 1: Univariate cubic dynamics -polynomial approximations (solid line) to the ROA indicator function I X 0 = I [-0.5,0.5] (dashed line) for degrees d ∈ {4, 8, 16, 32}.

Figure 2 :

 2 Figure 2: Van der Pol oscillator -semialgebraic outer approximations (light gray) to the ROA (dark gray) for degrees d ∈ {10, 12, 14, 16}.

Figure 3 :

 3 Figure 3: Van der Pol oscillator -a polynomial approximation of degree 18 of the ROA indicator function I X 0 .

Figure 4 :

 4 Figure 4: Double integrator -semialgebraic outer approximations (light gray) to the ROA (dark gray) for degrees d ∈ {6, 8, 10, 12}.

d = 6 d = 10 Figure 5 : 4 M

 61054 Figure 5: Brockett integrator -semialgebraic outer approximations (light red, larger) to the ROA (dark red, smaller) for degrees d ∈ {6, 10}.
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 267 Figure 6: Acrobot -sketch

  w • f dµ τ dτ also solves the equation. Indeed, since from[START_REF] Lasserre | Nonlinear optimal control via occupation measures and LMI relaxations[END_REF] with v replaced by w we have ã(T ) = X w dµ T = d, integration by parts givesT 0 ψ(t)ã(t) dt = ψ(T )d -ψ(0)c -T 0 ψ(t)b(t) dt,so ã(t) indeed solves equation[START_REF] Margolis | Control engineering applications of V. I. Zubov's construction procedure for Lyapunov functions[END_REF]. Now we prove that this solution is unique. Since ã is a solution we haveψ(T )d -ψ(0)c = T 0 ψ(t)ã(t) + ψ(t)b(t) dt,and subtracting this from[START_REF] Margolis | Control engineering applications of V. I. Zubov's construction procedure for Lyapunov functions[END_REF] we get0 = T 0 ψ(t)[a(t) -ã(t)] dt ∀ ψ ∈ C 1 ([0, T ]), )[a(t) -ã(t)] dt ∀ φ ∈ C([0, T ]). Since C([0, T ]) is dense in L 1 ([0, T ]), this implies a(t) = ã(t) dt-almost everywhere. Consequently, since C 1 (X) is separable, X w dµ t = X w(x)dµ 0 + t 0 X grad w • f dµ τ dτ ∀ w ∈ C 1 (X)

X 0 I 0 I

 00 w(x)µ t (x) = C([0,T ]; R n ) w(x(t)) dσ(x(•)) ∀ t ∈ [0, T ]. (33)UsingI A×B (t, x) = I A (t)I B (x), it follows from (29) that μ(A × B) = [0,T ]×X I A (t)I B (x) dμ(t, x) = T A (t) X I B (x) dµ t (x) dt.Therefore, using[START_REF] Murray | A Case Study in Approximate Linearization: The Acrobot Example[END_REF] with w(x) = I B (x) and Fubini's theorem[START_REF] Rudin | Real and Complex Analysis[END_REF] Theorem 8.8], we getμ(A × B) = C([0,T ]; R n )T A×B (t, x(t)) dt dσ(x(•)),

  . Similarly, the sequence of maxima of LMI problems (21) converges monotonically from above to the maximum of the infinite-dimensional LP problem[START_REF] Gilbert | Linear systems with state and control constraints: the theory and application of maximal output admissible sets[END_REF], i.e., p

converges monotonically from above to the supremum of the infinite-dimensional LP problem (16), i.e., d * ≤ d * k+1 ≤ d * k and lim k→∞ d * k = d * * ≤ p * k+1 ≤ p * k and lim k→∞ p * k = p * .

Table 1 :

 1 Univariate cubic dynamics -relative volume error of the outer approximation to the ROA X 0 = [-0.5, 0.5] as a function of the approximating polynomial degree.

	degree	4	8	16	32
	error 31.60 % 3.31 % 0.92 % 1.49 %

Table 2 :

 2 Van der Pol oscillator -relative error of the outer approximation to the ROA X 0 as a function of the approximating polynomial degree.

	degree	10	12	14	16
	error 49.3 % 19.7 % 11.1 % 5.7 %

11 

The relative volume error was computed approximately by Monte Carlo integration.

Table 3 :

 3 Double integrator -relative error of the outer approximation to the ROA X 0 as a function of the approximating polynomial degree.

	degree	6	8	10	12
	error 75.7 % 32.6 % 21.2 % 16.0 %

Table 4 :

 4 Acrobot -comparison of computation time of MOSEK and SeDuMi for different degrees of the approximating polynomial. The "-" in the last cell signifies that SeDuMi could not solve the problem.

	degree	4	6	8
	MOSEK 0.93 s 23.5 s 2029 s
	SeDuMi 7.1 s 2775 s	-
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J. E. Rubio in[START_REF] Rubio | Control and Optimization: The Linear Treatment of Nonlinear Problems[END_REF] used the so called Young measures[START_REF] Young | Calculus of variations and optimal control theory[END_REF], not the occupation measures, although the idea of "linearizing" the nonlinear problem by lifting it into an infinite-dimensional space of measures is the same. Similar techniques were studied around the same time by others, for instance, A. F. Filippov, J. Warga and R. V. Gamkrelidze.

Note that the infinite-dimensional results of Sections 4 and 5 hold with any Lipschitz f ; the assumption of f being polynomial and the constraint sets semialgebraic is required only for finite-dimensional relaxations of Section 6.

The measure µ 0 can be thought of as the probability distribution of x 0 although we do not require that its mass be normalized to one.

Note that the set conv f (t, x(t), U ) is closed for every t since f is continuous and U compact; therefore there is no need for a closure in[START_REF] Fleming | Convex duality approach to the optimal control of diffusions[END_REF].

Each such family can be described by a measure on C([0, T ]; R n ) which is supported on the absolutely continuous solutions to[START_REF] Fleming | Convex duality approach to the optimal control of diffusions[END_REF]. Note that there may be more than one trajectory corresponding to a single initial condition since the inclusion (12) may admit multiple solutions.

Even though the support of the initial measure attaining the maximum in[START_REF] Frankowska | Filippov's and Filippov-Ważewski's theorems on closed domains[END_REF] can differ from the ROA on the set of zero volume, the outer approximations obtained in Section

are valid "everywhere", not "almost everywhere".

The mass of the measure µ 0 is defined as X 1 dµ 0 = µ 0 (X).

The weak-* topology on C 1 ([0, T ] × X) × M (X) is induced by the standard topologies on C 1 and Cthe topology of uniform convergence of the function and its derivative on C 1 and the topology of uniform convergence on C.

In this paper, the operator prime is also used to refer to the adjoint of a linear operator. If the linear operator is real-valued and finite-dimensional, the adjoint operator coincides with the transposition operator.

This follows from an extension of the Stone-Weierstrass theorem that allows for a simultaneous uniform approximation of a function and its derivatives by a polynomial on a compact set; see, e.g.,[START_REF] Hirsch | Differential topology[END_REF].

In this case, the sets of all initial states that can be steered to the origin at time T and at any time before T are the same. Therefore we could also use the free-final-time approach of Section 8.

Table 4 reports pure solver times, excluding the Yalmip parsing and preprocessing overhead, using Apple iMac with 3.4 GHz Intel Core i7, 8 GB RAM, Mac OS X 10.8.3 and Matlab 2012a.
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Appendix A

In this Appendix we state and prove the correspondence between the Liouville PDE on measures [START_REF] Dellnitz | The algorithms behind GAIO -Set oriented numerical methods for dynamical systems[END_REF] and the convexified differential inclusion [START_REF] Fleming | Convex duality approach to the optimal control of diffusions[END_REF]. We will need the notion of a stochastic kernel. Let Y and Z be two Borel sets (in two Euclidean spaces of not necessarily the same dimension). The object ν(• | •) is called a stochastic kernel on Y given Z if, first, ν(• | z) is a probability measure on Y for every fixed z ∈ Z, and, second, if ν(A | •) is a measurable function on Z for every fixed A ⊂ Y . Let also μ(t, x) denote the (t, x)-marginal of the occupation measure µ defined through [START_REF] Bogachev | Measure Theory[END_REF], that is,

Lemma 3 Let (µ 0 , µ, µ T ) be a triplet of measures satisfying the Liouville equation [START_REF] Dellnitz | The algorithms behind GAIO -Set oriented numerical methods for dynamical systems[END_REF] such that spt µ 0 ⊂ X, spt µ ⊂ [0, T ] × X × U and spt µ T ⊂ X T . Then there exists a family of absolutely continuous admissible trajectories of ( 12) starting from µ 0 (i.e., trajectories in X (x 0 )) such that the occupation measure and the terminal measure generated by this family of trajectories are equal to μ and µ T , respectively.

Proof: Since the occupation measure µ is defined on a Euclidean space which is Polish and therefore Souslin, it can be, in view of [START_REF] Bogachev | Measure Theory[END_REF]Corollary 10.4.13], disintegrated as

where dν(u | t, x) is a stochastic kernel on U given [0, T ]×X. Then we can rewrite equation ( 9) as

where

Therefore we will study the trajectories of the differential equation

Appendix B

In this Appendix we elaborate further on the discussion from Section 3.2 on the connection between the classical ROA and the relaxed ROA. Let us recall the definition of the classical ROA

where

and x(•) is required to be absolutely continuous. Similarly, recall the definition of the relaxed ROA

with x(•) absolutely continuous. Obviously, it holds

and the question is whether this inclusion is strict or not.

Denote B (a) := {x ∈ R n : ||x -a|| 2 < } and define the dilated constraint sets

where ⊕ denotes the Minkowski sum of two sets. Accordingly, the dilated ROA and the dilated relaxed ROA are

where

Since the constraint sets are compact and the vector field f Lipschitz, it follows from the equivalence between the trajectories of the convexified inclusion [START_REF] Fleming | Convex duality approach to the optimal control of diffusions[END_REF] and solutions to the Liouville equation [START_REF] Dellnitz | The algorithms behind GAIO -Set oriented numerical methods for dynamical systems[END_REF], stated in Lemma 3 of Appendix A, and from Filippov-Ważewski's relaxation Theorem (see, e.g., [START_REF] Aubin | Set-valued analysis[END_REF]) that

In contrast, for all > 0 it holds X 0 = X 0 .

In general inclusion (34) is strict. However, we argue that for most practical purposes the relaxed ROA X0 and the true ROA X 0 are the same. Indeed, for any x 0 ∈ X0 there exists a sequence of admissible control functions 

Appendix C

In this Appendix we describe two contrived examples of control systems (1) for which the relaxed ROA X0 is strictly larger than the classical ROA X 0 ; see Appendix B for definitions.

Let f (t, x, u) = u, U = {-1, +1}, X = X T = {0} for, e.g., T = 1. Obviously there is no admissible trajectory in X (0), whereas there is a feasible triplet of measures satisfying [START_REF] Dellnitz | The algorithms behind GAIO -Set oriented numerical methods for dynamical systems[END_REF] given by µ

, where λ [0,1] denotes the restriction of the Lebesgue measure to [0, 1]. Therefore in this case X 0 = ∅ = X0 = {0}, but λ(X 0 ) = λ( X0 ). Assumption 2 is therefore satisfied. Note that the relaxed solution corresponds to an infinitely fast chattering of the control input between -1 and +1 which can be arbitrarily closely approximated by chattering solutions of finite speed; the singleton constraint set X, however, renders such solutions infeasible.

Another example for which the gap (e.g., in volume) between X0 and X 0 can be as large as desired is the following.

with the centers c 1 = (-1 -r, 0) and c 2 = (+2, 0) and a given radius r > 0. The input and terminal constraints are u ∈ U := {-1, 1} 2 and X T := B 1 (c 2 ). That is, the constraint set consist of two balls (one of radius r and the other of radius 1) connected by a line; the

Appendix D

In this appendix we prove Theorem 4. In order to prove the theorem we rewrite primal LMI problem [START_REF] Henrion | Gloptipoly 3: moments, optimization and semidefinite programming[END_REF] in a vectorized form as follows

where y := [y , y 0 , y T , ŷ 0 ] and K is a direct product of cones of positive semidefinite matrices of appropriate dimensions, here corresponding to the moment matrix and localizing matrix constraints. The notation e + Dy ∈ K means that vector e + Dy contains entries of positive semidefinite moment and localizing matrices, and by construction matrix D has full column rank (since a moment matrix is zero if and only if the corresponding moment vector is zero). Dual LMI problem (22) then becomes

and we want to prove that p * k = d * k . The following instrumental result is a minor extension of a classical lemma of the alternatives for primal LMI [START_REF] Prajna | SOSTOOLS: sum of squares optimization toolbox for MATLAB[END_REF] and dual LMI [START_REF] Putinar | Positive polynomials on compact semi-algebraic sets[END_REF]. The notation int K stands for the interior of K. Lemma 4 If matrix D has full column rank, exactly one of these statements is true:

• there exists x and z ∈ int K such that A x + D z = c

• there exists y = 0 such that Ay = 0, Dy ∈ K and c y ≤ 0.

Proof of Lemma 4:

A classical lemma of alternatives states that if matrix D has full column rank, then either there exists z ∈ int K such that D z = c or there exists ȳ such that Dȳ ∈ K and c ȳ ≤ 0, but not both, see e.g. [START_REF] Trnovská | Strong duality conditions in semidefinite programming[END_REF]Lemma 2] for a standard proof based on the geometric form of the Hahn-Banach separation theorem. Our proof then follows from restricting this lemma of alternatives to the null-space of matrix A. More explicitly, there exists x and z such that A x + D z = c if and only if z is such that D z = c with D = DF, c = F c for F a full-rank matrix such that AF = 0. Matrix D has full column rank since it is the restriction of the full column rank matrix D to the null-space of A.

Proof of Theorem 4: First notice that the feasibility set of LMI problem [START_REF] Prajna | SOSTOOLS: sum of squares optimization toolbox for MATLAB[END_REF] is nonempty and bounded. Indeed, a triplet of zero measures is a trivial feasible point for [START_REF] Gilbert | Linear systems with state and control constraints: the theory and application of maximal output admissible sets[END_REF] and hence