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Didier Henrion1,2,3, Milan Korda4
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Abstract

We address the long-standing problem of computing the region of attraction (ROA)
of a target set (e.g., a neighborhood of an equilibrium point) of a controlled nonlinear
system with polynomial dynamics and semialgebraic state and input constraints. We
show that the ROA can be computed by solving an infinite-dimensional convex linear
programming (LP) problem over the space of measures. In turn, this problem can be
solved approximately via a classical converging hierarchy of convex finite-dimensional
linear matrix inequalities (LMIs). Our approach is genuinely primal in the sense that
convexity of the problem of computing the ROA is an outcome of optimizing directly
over system trajectories. The dual infinite-dimensional LP on nonnegative continuous
functions (approximated by polynomial sum-of-squares) allows us to generate a hierar-
chy of semialgebraic outer approximations of the ROA at the price of solving a sequence
of LMI problems with asymptotically vanishing conservatism. This sharply contrasts
with the existing literature which follows an exclusively dual Lyapunov approach yield-
ing either nonconvex bilinear matrix inequalities or conservative LMI conditions. The
approach is simple and readily applicable as the outer approximations are the outcome
of a single semidefinite program with no additional data required besides the problem
description.

Keywords: Region of attraction, polynomial control systems, occupation measures, linear
matrix inequalities (LMIs), convex optimization, viability theory, reachable set, capture basin.

1 Introduction

Given a nonlinear control system, a state-constraint set and a target set (e.g. a neighborhood
of an attracting orbit or an equilibrium point), the constrained controlled region of attraction
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(ROA) is the set of all initial states that can be steered with an admissible control to the
target set without leaving the state-constraint set. The target set can be required to be
reached at a given time or at any time before a given time. The problem of computing the
ROA (and variations thereof) lies at the heart of viability theory (see, e.g., [4]) and goes by
many other names, e.g., the reach-avoid or target-hitting problem (see, e.g., [30]); the ROA
itself is sometimes referred to as the backward reachable set [32] or capture basin [4].

There are many variations on the ROA computation problem addressed in this paper as
well as a large number of related problems. For instance, one could consider asymptotic
convergence instead of finite-time formulation and / or inner approximations instead of outer
approximations. Among the related problems we can name the computation of (forward)
reachable sets and maximum / minimum (robust) controlled invariant sets. Most of these
variations are amenable to our approach, sometimes with different quality of the results
obtained; see the Conclusion for a more detailed discussion.

We show that the computation of the ROA boils down to solving an infinite-dimensional
linear programming (LP) problem in the cone of nonnegative Borel measures. The formu-
lation is genuinely primal in the sense that we optimize directly over controlled trajectories
modeled with occupation measures [27, 15].

In turn, in the case of polynomial dynamics, semialgebraic state-constraint, input-constraint
and target sets, this infinite-dimensional LP can be solved approximately by a classical hi-
erarchy of finite-dimensional convex linear matrix inequality (LMI) relaxations. The dual
infinite-dimensional LP on nonnegative continuous functions and its LMI relaxations on poly-
nomial sum-of-squares provide explicitly an asymptotically converging sequence of nested
semialgebraic outer approximations of the ROA.

The benefits of our occupation measure approach are overall the convexity of the problem of
finding the ROA, and the availability of publicly available software to implement and solve
the hierarchy of LMI relaxations.

Most of the existing literature on ROA computation follows Zubov’s approach [31, 47, 18]
and uses a dual Lyapunov certificate; see [43], the survey [16], Section 3.4 in [17], and
more recently [40, 8] and [9] and the references therein. These approaches either enforce
convexity with conservative LMI conditions (whose conservatism is difficult if not impossible
to evaluate systematically) or they rely on nonconvex bilinear matrix inequalities (BMIs),
with all their inherent numerical difficulties. In contrast, we show in this paper that the
problem of computing the ROA has actually a convex infinite-dimensional LP formulation,
and that this LP can be solved with a hierarchy of convex finite-dimensional LMIs with
asymptotically vanishing conservatism.

We believe that our approach is closer in spirit to set-oriented approaches [10], level-set and
Hamilton-Jacobi approaches [25, 30, 32] or transfer operator approaches [44], even though
we do not discretize with respect to time and/or space. In our approach, we model a
measure with a finite number of its moments, which can be interpreted as a frequency-
domain discretization (by analogy with Fourier coefficients which are moments with respect
to the unit circle).

Another way to evaluate the contribution of our paper is to compare it with the recent
works [22, 20] which deal with polynomial approximations of semialgebraic sets. In these
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references, the sets to be approximated are given a priori (as a polynomial sublevel set, or as
a feasibility region of a polynomial matrix inequality). In contrast, in the current paper the
set to be approximated (namely the ROA of a nonlinear dynamical system) is not known
in advance, and our contribution can be understood as an application and extension of the
techniques of references [22, 20] to sets defined implicitly by differential equations.

For the special case of linear systems, the range of computational tools and theoretical
results is wider; see, e.g., [14, 6]. Nevertheless, even for this simple class of systems, the
problem of ROA computation is notoriously hard, at least in a controlled setting where,
after time-discretization, polyhedral projections are required [6].

The use of occupation measures and related concepts has a long history in the fields of Markov
decision processes and stochastic control; see, e.g., [23, 12]. Applications to deterministic
control problems were, to the best of our knowledge, first systematically treated1 in [38] and
enjoyed a resurgence of interest in the last decade; see, e.g., [37, 27, 42, 15] and references
therein. However, to the best of our knowledge, this is the first time these methods are
applied to region of attraction computation.

Our primary focus in this paper is the computation of the constrained finite-time controlled
region of attraction of a given set. This problem is formally stated in Section 2 and solved
using occupation measures in Section 4; the occupation measures themselves are introduced
in Section 3. A dual problem on the space of continuous functions is discussed in Section 5.
The hierarchy of finite-dimensional LMI relaxations of the infinite dimensional LP is de-
scribed in Section 6. Convergence results are presented in Section 7. An extension to the
free final time case is described in Section 8. Numerical examples are presented in Section 9,
and we conclude in Section 10.

A reader interested only in the finite-dimensional relaxations providing the converging se-
quence of outer approximations can consult directly the dual infinite-dimensional LP (16),
its finite-dimensional LMI approximations (22) and the resulting outer approximations in
Section 7 with convergence proven in Theorem 6.

Notation and preliminaries Throughout the paper the symbol Z[i,j] denotes the set
of consecutive integers {i, i + 1, . . . , j}. The symbol R[·] denotes the ring of polynomials
in variables given by the argument. The difference of two sets A and B is denoted by
A \ B. All sets are automatically assumed Borel measurable; in particular if we write “for
all sets”, we mean “for all Borel measurable sets”. By a measure µ defined on a set X ⊂ Rn,
we understand a signed Borel measure, i.e., a (not necessarily nonnegative) mapping from
subsets of X to real numbers satisfying µ(∅) = 0 and µ(∪∞i=1Ai) =

∑∞
i=1 µ(Ai) for every

countable pairwise disjoint collection of sets Ai ⊂ X. The space of (signed) measures on a
set X is denoted by M(X) and the space of continuous functions is denoted by C(X); the
dual space of all linear functionals on C(X) is denoted by C(X)′. The symbols C(X;Rm)
(resp. C1(X;Rm)) then denote the spaces of all continuous (resp. continuously differentiable)
functions taking values in Rm. Any measure µ ∈M(X) can be viewed as an element of C(X)′

1J. E. Rubio in [38] used the so called Young measures [46], not the occupation measures, although the
idea of “linearizing” the nonlinear problem by lifting it into an infinite-dimensional space of measures is
the same. Similar techniques were studied around the same time by others, for instance, A. F. Filippov, J.
Warga and R. V. Gamkrelidze.
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via the duality pairing induced by integration of functions in C(X) with respect to µ:

〈µ, g〉 :=

∫
X

g(x) dµ(x), µ ∈M(X), g ∈ C(X).

In addition, we use the following notation:

• IA(·) denotes the indicator function of a set A, i.e., a function equal to 1 on A and 0
elsewhere;

• λ denotes the Lebesgue measure on X ⊂ Rn, i.e.,

λ(A) =

∫
X

IA(x) dλ(x) =

∫
X

IA(x)dx =

∫
A

dx

is the standard n-dimensional volume of a set A ⊂ X;

• sptµ denotes the support of a measure µ, that is, the set of all points x such that
µ(A) > 0 for every open neighborhood A of x; by construction this set is closed.

2 Problem statement

Consider the control system

ẋ(t) = f(t, x(t), u(t)), t ∈ [0, T ], (1)

with the state x(t) ∈ Rn, the control input u(t) ∈ Rm and a terminal time T > 0. Each
entry of the vector field f is assumed to be polynomial2, i.e., fi ∈ R[t, x, u], i ∈ Z[1,n]. The
state and the control input are subject to the basic semialgebraic constraints

x(t) ∈ X := {x ∈ Rn : gXi (x) ≥ 0, i ∈ Z[1,nX ]}, t ∈ [0, T ],
u(t) ∈ U :={u ∈ Rm : gUi (u) ≥ 0, i ∈ Z[1,nU ]}, t ∈ [0, T ],

(2)

with gXi ∈ R[x] and gUi ∈ R[u]; the terminal state x(T ) is constrained to lie in the basic
semialgebraic set

XT := {x ∈ Rn : gXT
i (x) ≥ 0, i ∈ Z[1,nT ]} ⊂ X,

with gXT
i ∈ R[x].

Assumption 1 The sets X, U and XT are compact.

A measurable control function u : [0, T ] → Rm is called admissible if u(t) ∈ U for all
t ∈ [0, T ]. The set of all admissible control functions is denoted by U . The set of all

2Note that the infinite-dimensional results of Sections 4 and 5 hold with any Lipschitz f ; the assumption
of f being polynomial and the constraint sets semialgebraic is required only for finite-dimensional relaxations
of Section 6.
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admissible trajectories starting from the initial condition x0 generated by admissible control
functions is then

X (x0) :=
{
x(·) : ∃ u(·) ∈ U s.t. ẋ(t) = f(t, x(t), u(t)) a.e.,

x(0) = x0, x(t) ∈ X, x(T ) ∈ XT , ∀ t ∈ [0, T ]
}
, (3)

where x(·) is required to be absolutely continuous. Here, a.e. stands for “almost everywhere”
with respect to the Lebesgue measure on [0, T ].

The constrained controlled region of attraction (ROA) is then defined as

X0 :=
{
x0 ∈ X : X (x0) 6= ∅

}
. (4)

In words, the ROA is the set of all initial conditions for which there exists an admissible
trajectory, i.e., the set of all initial conditions that can be steered to the target set in an
admissible way. The set X0 is bounded (by Assumption 1) and unique.

In the sequel we pose the problem of computing the ROA as an infinite-dimensional linear
program (LP) and show how the solution to this LP can be approximated with asymptotically
vanishing conservatism by a sequence of solutions to linear matrix inequality (LMI) problems.

3 Occupation measures

In this section we introduce the concept of occupation measures and discuss its connection
to trajectories of the control system (1).

3.1 Liouville’s equation

Given an initial condition x0 and an admissible trajectory x(· | x0) ∈ X (x0) with its corre-
sponding control u(· |x0) ∈ U , which we assume to be a measurable function of x0, we define
the occupation measure µ(· |x0) by

µ(A×B × C |x0) :=

∫ T

0

IA×B×C(t, x(t |x0), u(t |x0)) dt

for all A×B×C ⊂ [0, T ]×X×U . For any such triplet of sets, the quantity µ(A×B×C |x0)
is equal to the amount of time out of A ⊂ [0, T ] spent by the state and control trajectory
(x(· |x0), u(· |x0)) in B × C ⊂ X × U .

The occupation measure has the following important property: for any measurable function
g(t, x, u) the equality∫ T

0

g(t, x(t |x0), u(t |x0)) dt =

∫
[0,T ]×X×U

g(t, x, u) dµ(t, x, u |x0) (5)

holds. Therefore, loosely speaking, the occupation measure µ(· |x0) encodes all information
about the trajectory of the state and control input (x(· |x0), u(· |x0)).
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Define further the linear operator L : C1([0, T ]×X)→ C([0, T ]×X × U) by

v 7→ Lv :=
∂v

∂t
+

n∑
i=1

∂v

∂xi
fi(t, x, u) =

∂v

∂t
+ grad v · f

and its adjoint operator L′ : C([0, T ]×X × U)′ → C1([0, T ]×X)′ by the adjoint relation

〈L′ν, v〉 := 〈ν,Lv〉 =

∫
[0,T ]×X×U
Lv(t, x, u) dν(t, x, u)

for all ν ∈ M([0, T ] × X × U) = C([0, T ] × X × U)′ and v ∈ C1([0, T ] × X). Given a test
function v ∈ C1([0, T ]×X), it follows from (5) that

v(T, x(T |x0)) = v(0, x0) +

∫ T

0

d

dt
v(t, x(t |x0)) dt

= v(0, x0) +

∫ T

0

Lv(t, x(t |x0), u(t |x0)) dt

= v(0, x0) +

∫
[0,T ]×X×U
Lv(t, x, u) dµ(t, x, u |x0)

= v(0, x0) + 〈L′µ(· |x0), v〉, (6)

where we have used the adjoint relation in the last equality.

Remark 1 The adjoint operator L′ is sometimes expressed symbolically as

ν 7→ L′ν = −∂ν
∂t
−

n∑
i=1

∂(fiν)

∂xi
= −∂ν

∂t
− div fν,

where the derivatives of measures are understood in the weak sense, or in the sense of dis-
tributions (i.e., via their action on suitable test functions), and the change of sign comes
from the integration by parts formula. For more details the interested reader is referred to
any textbook on functional analysis and partial differential equation, e.g., [11]. The concept
of weak derivatives of measures is not essential for the remainder of the paper and only
highlights the important connections of our approach to PDE literature.

Now consider that the initial state is not a single point but that its distribution in space
is modeled by an initial measure3 µ0 ∈ M(X), and that for each initial state x0 ∈ sptµ0

there exists an admissible trajectory x(· | x0) ∈ X (x0) with an admissible control function
u(· |x0) ∈ U . Then we can define the average occupation measure µ ∈M([0, T ]×X ×U) by

µ(A×B × C) :=

∫
X

µ(A×B × C |x0) dµ0(x0), (7)

and the final measure µT ∈M(XT ) by

µT (B) :=

∫
X

IB(x(T |x0)) dµ0(x0). (8)

3The measure µ0 can be thought of as the probability distribution of x0 although we do not require that
its mass be normalized to one.

6



The average occupation occupation measure µ measures the average time spent by the state
and control trajectories in subsets of X × U , where the averaging is over the distribution of
the initial state given by the initial measure µ0; the final measure µT represents the distribu-
tion of the state at the final time T after it has been transported along system trajectories
from the initial distribution µ0.

It follows by integrating (6) with respect to µ0 that∫
XT

v(T, x) dµT (x) =

∫
X

v(0, x) dµ0(x) +

∫
[0,T ]×X×U
Lv(t, x, u) dµ(t, x, u),

or more concisely

〈µT , v(T, ·)〉 = 〈µ0, v(0, ·)〉 + 〈µ, Lv〉 ∀ v ∈ C1([0, T ]×X), (9)

which is a linear equation linking the nonnegative measures µT , µ0 and µ. Denoting δt the
Dirac measure at a point t and ⊗ the product of measures, we can write

〈µ0, v(0, ·)〉 = 〈δ0 ⊗ µ0, v〉 and 〈µT , v(T, ·)〉 = 〈δT ⊗ µT , v〉.

Then, Eq. (9) can be rewritten equivalently using the adjoint relation as

〈L′µ, v〉 = 〈δT ⊗ µT , v〉 − 〈δ0 ⊗ µ0, v〉 ∀ v ∈ C1([0, T ]×X),

and since this equation is required to hold for all test functions v, we obtain the linear
operator equation

δT ⊗ µT = δ0 ⊗ µ0 + L′µ. (10)

This equation is classical in fluid mechanics and statistical physics, where L′ is usually
written using distributional derivatives of measures as remarked above; then the equation is
referred to as Liouville’s partial differential equation.

Each family of admissible trajectories starting from a given initial distribution µ0 ∈ M(X)
satisfies Liouville’s equation (10). The converse may not hold in general although for the
computation of the ROA the two formulations can be considered equivalent, at least from a
practical viewpoint. Let us briefly elaborate more on this subtle point now.

3.2 Relaxed ROA

The control system ẋ(t) = f(t, x(t), u(t)), u(t) ∈ U , can be viewed as a differential inclusion

ẋ(t) ∈ f(t, x(t), U) := {f(t, x(t), u) : u ∈ U}. (11)

It turns out that in general the measures satisfying the Liouville’s equation (10) are not in
a one-to-one correspondence with the trajectories of (11) but rather with the trajectories of
the convexified inclusion

ẋ(t) ∈ conv f(t, x(t), U), (12)

where conv denotes the convex hull4. Indeed, we show in Lemma 3 in Appendix A that any
triplet of measures satisfying Liouville’s equation (10) is generated by a family of trajectories

4Note that the set conv f(t, x(t), U) is closed for every t since f is continuous and U compact; therefore
there is no need for a closure in (12).
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of the convexified inclusion (12). Here, given a family5 of admissible trajectories of the
convexified inclusion (12) starting from an initial distribution µ0, the occupation and final
measures are defined in a complete analogy via (7) and (8), but now there are only the time
and space arguments in the occupation measure, not the control argument.

Let us denote the set of absolutely continuous admissible trajectories of (12) by

X̄ (x0) := {x(·) : ẋ(t) ∈ conv f(t, x(t), U) a.e., x(0) = x0,

x(T ) ∈ XT , x(t) ∈ X ∀ t ∈ [0, T ]}.

Then we define the relaxed region of attraction as

X̄0 :=
{
x0 ∈ X : X̄ (x0) 6= ∅

}
.

Clearly X0 ⊂ X̄0 and the inclusion can be strict; see Appendix C for concrete examples. How-
ever, by the Filippov-Ważewski relaxation Theorem [5, Theorem 10.4.4, Corollary 10.4.5],
the trajectories of the original inclusion (11) are dense (w.r.t. the metric of uniform conver-
gence of absolutely continuous functions of time) in the set of trajectories of the convexified
inclusion (12). This implies that the relaxed region of attraction X̄0 corresponds to the
region of attraction of the original system but with infinitesimally dilated constraint sets X
and XT ; see Appendix B for more details. Therefore, we argue that there is little difference
between the two ROAs from a practical point of view. Nevertheless, because of this subtle
distinction we make the following standing assumption in the remaining part of the paper.

Assumption 2 Control system (1) is such that λ(X0) = λ(X̄0).

In other words, the volume of the classical ROA X0 is assumed to be equal to the volume of
the relaxed ROA X̄0. Obviously, this is satisfied if X0 = X̄0, but otherwise these sets may
differ by a set of zero Lebesgue measure. Any of the following conditions on control system
(1) is sufficient for Assumption 2 to hold:

• ẋ(t) ∈ f(t, x(t), U) with f(t, x, U) convex for all t, x,

• ẋ(t) = f(t, x(t)) + g(t, x(t))u(t), u(t) ∈ U with U convex,

• uncontrolled dynamics ẋ(t) = f(t, x(t)),

as well as all controllability assumptions allowing the application of the constrained Filippov-
Ważewski Theorem; see, e.g., [13, Corollary 3.2] and the discussion around Assumption I
in [15].

5Each such family can be described by a measure on C([0, T ];Rn) which is supported on the absolutely
continuous solutions to (12). Note that there may be more than one trajectory corresponding to a single
initial condition since the inclusion (12) may admit multiple solutions.
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3.3 ROA via optimization

The problem of computing ROA X0 can be reformulated as follows:

q∗ = sup λ(spt µ0)
s.t. δT ⊗ µT = δ0 ⊗ µ0 + L′µ

µ ≥ 0, µ0 ≥ 0, µT ≥ 0
spt µ ⊂ [0, T ]×X × U
spt µ0 ⊂ X, spt µT ⊂ XT ,

(13)

where are f , X, XT , U are given data and the supremum is over a vector of nonnegative
measures (µ, µ0, µT ) ∈ M([0, T ] × X × U) ×M(X) ×M(XT ). Problem (13) is an infinite-
dimensional optimization problem on the cone of nonnegative measures.

The rationale behind problem (13) is as follows. The first constraint is the Liouville’s equa-
tion (10) which, along with the nonnegativity constraints, ensures that any triplet of mea-
sures (µ0, µ, µT ) feasible in (13) corresponds to an initial, an occupation and a terminal
measure generated by trajectories of the controlled ODE (1) (or more precisely of the con-
vexified differential inclusion (12)). The support constraint on the occupation measure µ
ensures that these trajectories satisfy the state and control constraints; the support con-
straint on µT ensures that the trajectories end in the target set. Maximizing the volume of
the support of the initial measure then yields an initial measure with the support equal to the
ROA up to a set of zero volume6 (in view of Assumption 2). This discussion is summarized
in the following Lemma.

Lemma 1 The optimal value of problem (13) is equal to the volume of the ROA X0, that
is, q∗ = λ(X0).

Proof: By definition of the ROA, for any initial condition x0 ∈ X0 there is an admissible
trajectory in X (x0). Therefore for any initial measure µ0 with sptµ0 ⊂ X0 there exist an
occupation measure µ and a final measure µT such that the constraints of problem (13) are
satisfied. Thus, q∗ ≥ λ(X0) = λ(X̄0), where the equality follows from Assumption 2.

Now we show that q∗ ≤ λ(X0) = λ(X̄0). For contradiction, suppose that a triplet of measures
(µ0, µ, µT ) is feasible in (13) and that λ(sptµ0 \ X̄0) > 0. From Lemma 3 in Appendix A
there is a family of admissible trajectories of the inclusion (12) starting from µ0 generating
the (t, x)-marginal of the occupation measure µ and the final measure µT . However, this
is a contradiction since no trajectory starting from sptµ0 \ X̄0 can be admissible. Thus,
λ(sptµ0 \ X̄0) = 0 and so λ(sptµ0) ≤ λ(X̄0). Consequently, q∗ ≤ λ(X̄0) = λ(X0). �

4 Primal infinite-dimensional LP on measures

The key idea behind the presented approach consists in replacing the direct maximization of
the support of the initial measure µ0 by the maximization of the integral below the density

6Even though the support of the initial measure attaining the maximum in (13) can differ from the
ROA on the set of zero volume, the outer approximations obtained in Section 7 are valid “everywhere”, not
“almost everywhere”.
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of µ0 (w.r.t. the Lebesgue measure) subject to the constraint that the density be below one.
This procedure is equivalent to maximizing the mass7 of µ0 under the constraint that µ0 is
dominated by the Lebesgue measure. This leads to the following infinite-dimensional LP:

p∗ = sup µ0(X)
s.t. δT ⊗ µT = δ0 ⊗ µ0 + L′µ

µ ≥ 0, λ ≥ µ0 ≥ 0, µT ≥ 0
spt µ ⊂ [0, T ]×X × U
spt µ0 ⊂ X, spt µT ⊂ XT ,

(14)

where the supremum is over a vector of nonnegative measures (µ, µ0, µT ) ∈M([0, T ]×X ×
U)×M(X)×M(XT ). In problem (14) the constraint λ ≥ µ0 means that λ(A) ≥ µ0(A) for
all sets A ⊂ X. Note how the objective functions differ in problems (13) and (14).

The following theorem is then almost immediate.

Theorem 1 The optimal value of the infinite-dimensional LP problem (14) is equal to the
volume of the ROA X0, that is, p∗ = λ(X0). Moreover, the supremum is attained with the
µ0-component of the optimal solution equal to the restriction of the Lebesgue measure to the
ROA X0.

Proof: Since the constraint set of problem (14) is tighter than that of problem (13), by
Lemma 1 we have that λ(sptµ0) ≤ λ(X0) for any feasible µ0. From the constraint µ0 ≤ λ
we get µ0(X) = µ0(sptµ0) ≤ λ(sptµ0) ≤ λ(X0) for any feasible µ0. Therefore p∗ ≤ λ(X0).
But by definition of the ROA X0, the restriction of the Lebesgue measure to X0 is feasible
in (14), and so p∗ ≥ λ(X0). Consequently p∗ = λ(X0). �

Now we reformulate problem (14) to an equivalent form more convenient for dualization
and subsequent theoretical analysis. To this end, let us define the complementary measure
(a slack variable) µ̂0 ∈ M(X) such that the inequality λ ≥ µ0 ≥ 0 in (14) can be written
equivalently as the constraints µ0 + µ̂0 = λ, µ0 ≥ 0, µ̂0 ≥ 0. Then problem (14) is equivalent
to the infinite-dimensional primal LP

p∗ = sup µ0(X)
s.t. δT ⊗ µT = δ0 ⊗ µ0 + L′µ

µ0 + µ̂0 = λ
µ ≥ 0, µ0 ≥ 0, µT ≥ 0, µ̂0 ≥ 0
spt µ ⊂ [0, T ]×X × U
spt µ0 ⊂ X, spt µT ⊂ XT

spt µ̂0 ⊂ X.

(15)

5 Dual infinite-dimensional LP on functions

In this section we derive a linear program dual to (15) (and hence to (14)) on the space of
continuous functions. A certain super-level set of one of the functions feasible in the dual
LP will provide an outer approximation to the ROA X0.

7The mass of the measure µ0 is defined as
∫
X

1 dµ0 = µ0(X).
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Consider the infinite-dimensional LP problem

d∗= inf

∫
X

w(x) dλ(x)

s.t. Lv(t, x, u) ≤ 0, ∀ (t, x, u) ∈ [0, T ]×X × U
w(x) ≥ v(0, x) + 1, ∀x ∈ X
v(T, x) ≥ 0, ∀x ∈ XT

w(x) ≥ 0, ∀x ∈ X,

(16)

where the infimum is over (v, w) ∈ C1([0, T ] × X) × C(X). The dual has the following
interpretation: the constraint Lv ≤ 0 forces v to decrease along trajectories and hence
necessarily v(0, x) ≥ 0 on X0 because of the constraint v(T, x) ≥ 0 on XT . Consequently,
w(x) ≥ 1 on X0. This instrumental observation is formalized in the following Lemma.

Lemma 2 Let (v, w) be a pair of function feasible in (16). Then v(0, ·) ≥ 0 on X0 and
w ≥ 1 on X0.

Proof: By definition of X0, given any x0 ∈ X0 there exists u(t) such that x(t) ∈ X,
u(t) ∈ U for all t ∈ [0, T ] and x(T ) ∈ XT . Therefore, since v(T, ·) ≥ 0 on XT and Lv ≤ 0 on
[0, T ]×X × U ,

0 ≤ v(T, x(T )) = v(0, x0) +

∫ T

0

d

dt
v(t, x(t)) dt

= v(0, x0) +

∫ T

0

Lv(t, x(t), u(t)) dt

≤ v(0, x0) ≤ w(x0)− 1,

where the last inequality follows from the second constraint of (16). �

Next, we have the following salient result:

Theorem 2 There is no duality gap between the primal infinite-dimensional LP problems
(14) and (15) and the infinite-dimensional dual LP problem (16) in the sense that p∗ = d∗.

Proof: To streamline the exposition, let

C := C([0, T ]×X × U)× C(X)× C(XT )× C(X),

M := M([0, T ]×X × U)×M(X)×M(XT )×M(X),

and let K and K′ denote the positive cones of C and M respectively. Note that the cone K′
of nonnegative measures of M can be identified with the topological dual of the cone K of
nonnegative continuous functions of C. The cone K′ is equipped with the weak-* topology;
see [29, Section 5.10]. Then, the LP problem (15) can be rewritten as

p∗ = sup 〈γ, c〉
s.t. A′γ = β

γ ∈ K′,
(17)

11



where the infimum is over the vector γ := (µ, µ0, µT , µ̂0), the linear operator A′ : K′ →
C1([0, T ] × X)′ × M(X) is defined by A′γ := (−L′µ− δ0 ⊗ µ0 + δT ⊗ µT , µ0 + µ̂0) , the
right hand side of the equality constraint in (17) is the vector of measures β := (0 , λ) ∈
M([0, T ] × X) ×M(X), the vector function in the objective is c := (0, 1, 0, 0) ∈ C, so the
objective function itself is

〈γ, c〉 =

∫
X

dµ0 = µ0(X).

The LP problem (17) can be interpreted as a dual to the LP problem

d∗ = inf 〈β, z〉
s.t. A(z)− c ∈ K, (18)

where the infimum is over z := (v, w) ∈ C1([0, T ] × X) × C(X), and the linear operator
A : C1([0, T ]×X)× C(X)→ C is defined by

Az := (−Lv, w − v(0, ·), v(T, ·), w)

and satisfies the adjoint relation 〈A′γ, z〉 = 〈γ, Az〉. The LP problem (18) is exactly the
LP problem (16).

To conclude the proof we use an argument similar to that of [26, Section C.4]. From [2,
Theorem 3.10] there is no duality gap between LPs (17) and (18) if the supremum p∗ is finite
and the set P := {(A′γ, 〈γ, c〉) : γ ∈ K′} is closed in the weak-* topology of K′. The fact that
p∗ is finite follows readily from the constraint µ0 + µ̂0 = λ, µ̂0 ≥ 0, and from compactness
of X. To prove closedness, we first remark that A′ is weakly-* continuous8 since A(z) ∈ C
for all z ∈ C1([0, T ] ×X) × C(X). Then we consider a sequence γk = (µk, µk0, µ

k
T , µ̂

k
0) ∈ K′

and we want to show that its accumulation point (ν, a) := limk→∞(A′γk, 〈γk, c〉) belongs
to P , where ν ∈ C1([0, T ] × X)′ ×M(X) and a ∈ R. To this end, consider first the test
function z1 = (T − t, 1) which gives 〈A′γk, z1〉 = µk(0, T × X × U) + µk0(X) + µ̂k0(X) →
〈ν, z1〉 <∞; since the measures are nonnegative, this implies that the sequences of measures
µk, µk0 and µ̂k0 are bounded. Next, taking the test function z2 = (1, 1) gives 〈A′γk, z2〉 =
µT (X) + µ̂0(X) → 〈ν, z2〉 < ∞; this implies that the sequence µkT is bounded as well.
Thus, from the weak-* compactness of the unit ball (Alaoglu’s Theorem [29, Section 5.10,
Theorem 1]) there is a subsequence γki that converges weakly-* to an element γ ∈ K′ so that
limi→∞(A′γki , 〈γki , c〉) ∈ P by continuity of A′. �

Note that, by Theorem 1, the supremum in the primal LPs (14) and (15) is attained (by the
restriction of the Lebesgue measure to X0). In contrast, the infimum in the dual LP (16)
is not attained in C1([0, T ] × X) × C(X), but there exists a sequence of feasible solutions
to (16) whose w-component converges to the discontinuous indicator IX0 as we show next.

Before we state our convergence results, we recall the following types of convergence of a
sequence of functions wk : X → R to a function w : X → R on a compact set X ⊂ Rn. As
k →∞, the functions wk converge to w:

• in L1 norm if
∫
X
|wk − w| dλ→ 0,

8The weak-* topology on C1([0, T ]×X)′ ×M(X) is induced by the standard topologies on C1 and C –
the topology of uniform convergence of the function and its derivative on C1 and the topology of uniform
convergence on C.
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• in Lebesgue measure if λ({x : |wk(x)− w(x)| ≥ ε})→ 0 ∀ ε > 0,

• almost everywhere if ∃B ⊂ X, λ(B) = 0, such that wk → w pointwise on X\B,

• almost uniformly if ∀ ε > 0, ∃B ⊂ X, λ(B) < ε, such that wk → w uniformly on X\B.

We also recall that convergence in L1 norm implies convergence in Lebesgue measure and
that almost uniform convergence implies convergence almost everywhere (see [3, Theorems
2.5.2 and 2.5.3]). Therefore we will state our results in terms of the stronger notions of L1

norm and almost uniform convergence.

Theorem 3 There is a sequence of feasible solutions to the dual LP (16) such that its w-
component converges from above to IX0 in L1 norm and almost uniformly.

Proof: By Theorem 1, the optimal solution to the primal is attained by the restriction of
the Lebesgue measure to X0. Consequently,

p∗ =

∫
X

IX0(x)dλ(x). (19)

By Theorem 2, there is no duality gap (p∗ = d∗), and therefore there exists a sequence
(vk, wk) ∈ C1([0, T ]×X)× C(X) feasible in (16) such that

p∗ = d∗ = lim
k→∞

∫
X

wk(x) dλ(x). (20)

From Lemma 2 we have wk ≥ 1 on X0 and since wk ≥ 0 on X by the fourth constraint
of (16), we have wk ≥ IX0 on X for all k. Thus, subtracting (19) from (20) gives

lim
k→∞

∫
X

(wk(x)− IX0(x)) dλ(x) = 0,

where the integrand is nonnegative. Hence wk converges to IX0 in L1 norm. From [3,
Theorems 2.5.2 and 2.5.3] there exists a subsequence converging almost uniformly. �

6 LMI relaxations and SOS approximations

In this section we show how the infinite-dimensional LP problem (15) can be approximated
by a hierarchy of LMI problems with the approximation error vanishing as the relaxation
order tends to infinity. The dual LMI problem is a sum-of-squares (SOS) problem and yields
a converging sequence of outer approximations to the ROA.

The measures in equation (9) (or (10)) are fully determined by their values on a family of
functions whose span is dense in C1([0, T ]×X). Hence, since all sets are assumed compact,
the family of test functions in (9) can be restricted to any polynomial basis (since polynomials
are dense in the space of continuous functions on compact sets equipped with the supremum
norm). The basis of our choice is the set of all monomials. This basis is convenient for

13



subsequent exposition and is employed by existing software (e.g., [21, 28]). Nevertheless,
another polynomial basis may be more appropriate from a numerical point of view (see the
Conclusion for a discussion).

Let Rk[x] denote the vector space of real multivariate polynomials of total degree less than
or equal to k. Each polynomial p(x) ∈ Rk[x] can be expressed in the monomial basis as

p(x) =
∑
|α|≤k

pαx
α =

∑
|α|≤k

pα(xα1
1 · . . . · xαn

n ),

where α runs over the multi-indices (vectors of nonnegative integers) such that |α| =∑n
i=1 αi ≤ k. A polynomial p(x) is identified with its vector of coefficients p := (pα) whose

entries are indexed by α. Given a vector of real numbers y := (yα) indexed by α, we define
the linear functional Ly : Rk[x]→ R such that

Ly(p) := p′y :=
∑
α

pαyα,

where the prime denotes transposition9. When entries of y are moments of a measure µ, i.e.,

yα =

∫
xαdµ(x),

the linear functional models the integration of a polynomial with respect to µ, i.e.,

Ly(p) = 〈µ, p〉 =

∫
p(x) dµ(x) =

∑
α

pα

∫
xαdµ(x) = p′y.

When this linear functional acts on the square of a polynomial p of degree k, it becomes a
quadratic form in the polynomial coefficients space, and we denote by Mk(y) and call the
moment matrix of order k the matrix of this quadratic form, which is symmetric and linear
in y:

Ly(p
2) = p′Mk(y)p.

Finally, given a polynomial g(x) ∈ R[x] we define the localizing matrix Mk(g, y) by the
equality

Ly(gp
2) = p′Mk(g, y)p.

The matrix Mk(g, y) is also symmetric and linear in y. For a detailed exposition and
examples of moment and localizing matrices see [26, Section 3.2.1].

Let y, y0, yT and ŷ0 respectively denote the sequences of moments of measures µ, µ0, µT
and µ̂0 such that the constraints in problem (15) are satisfied. Then it follows that these
sequences satisfy an infinite-dimensional linear system of equations corresponding to the
equality constraints of problem (15) written explicitly as∫

XT

v(T, x) dµT (x)−
∫
X

v(0, x) dµ0(x)−
∫

[0,T ]×X×U
Lv(t, x, u) dµ(t, x, u) = 0,

9In this paper, the operator prime is also used to refer to the adjoint of a linear operator. If the linear
operator is real-valued and finite-dimensional, the adjoint operator coincides with the transposition operator.
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∫
X

w(x) dµ0(x) +

∫
X

w(x) dµ̂0(x) =

∫
X

w(x) dλ(x).

For the particular choice of test functions v(t, x) = tαxβ and w(x) = xβ for all α ∈ N and
β ∈ Nn, let us denote by

Ak(y, y0, yT , ŷ0) = bk

the finite-dimensional truncation of this system obtained by considering only the test func-
tions of total degree less than or equal to 2k. Let further

dXi :=
⌈deg gXi

2

⌉
, dU i :=

⌈deg gUi
2

⌉
, dT i :=

⌈deg gXT
i

2

⌉
,

where deg denotes the degree of a polynomial. The primal LMI relaxation of order k then
reads

p∗k = max (y0)0

s.t. Ak(y, y0, yT , ŷ0) = bk
Mk(y) � 0, Mk−dXi

(gXi , y) � 0, i ∈ Z[1,nX ]

Mk−1(t(T−t), y) � 0, Mk−dUi
(gUi , y) � 0, i ∈ Z[1,nU ]

Mk(y0) � 0, Mk−dXi
(gXi , y0) � 0, i ∈ Z[1,nX ]

Mk(yT ) � 0, Mk−dT i
(gXT
i , yT ) � 0, i ∈ Z[1,nT ]

Mk(ŷ0) � 0, Mk−dXi
(gXi , ŷ0) � 0, i ∈ Z[1,nX ],

(21)

where the notation � 0 stands for positive semidefinite and the minimum is over sequences
(y, y0, yT , ŷ0) truncated to degree 2k. The objective function is the first element (i.e., the
mass) of the truncated moment sequence y0 corresponding to the initial measure; the equal-
ity constraint captures the two equality constraints of problem (15) evaluated on monomials
of degree up to 2k; and the LMI constraints involving the moment and localizing matri-
ces capture the nonnegativity and support constraints on the measures, respectively. Note
that both the equality constraint and the LMI constraints are necessarily satisfied by the
moment sequence of any vector of measures feasible in (15). The constraint set of (21) is
therefore looser than that of (15); however, the discrepancy between the two constraint sets
monotonically vanishes as the relaxation order k tends to infinity (see Corollary 1 below).

Problem (21) is a semidefinite program (SDP), where a linear function is minimized subject
to convex LMI constraints, or equivalently a finite-dimensional LP in the cone of positive
semidefinite matrices.

Without loss of generality we make the following standard assumption for the reminder of
this section.

Assumption 3 One of the polynomials defining the sets X, U respectively XT , is equal to
gXi (x) = RX−‖x‖2

2, gUi (u) = RU −‖u‖2
2 respectively gXT

i (x) = RT −‖x‖2
2 for some constants

RX ≥ 0, RU ≥ 0 respectively RT ≥ 0.

Assumption 3 is without loss of generality since the sets X, U and XT are bounded, and
therefore redundant ball constraints of the form RX − ‖x‖2

2 ≥ 0, RU − ‖u‖2
2 ≥ 0 and

RT−‖x‖2
2 ≥ 0 can always be added to the description of the sets X, U and XT for sufficiently

large RX , RU and RT .
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The dual to the SDP problem (21) is given by

d∗k = inf w′l
s.t. −Lv(t, x, u) = p(t, x, u) + q0(t, x, u)t(T − t)

+
∑nX

i=1 qi(t, x, u)gXi (x) +
∑nU

i=1 ri(t, x, u)gUi (x)

w(x)− v(0, x)− 1 = p0(x) +
∑nX

i=1 q0i(x)gXi (x)

v(T, x) = pT (x) +
∑nT

i=1 qT i(x)gXT
i (x)

w(x) = s0(x) +
∑nX

i=1 s0i(x)gXi (x),

(22)

where l is the vector of the moments of the Lebesgue measure over X indexed in the same
basis in which the polynomial w(x) with coefficients w is expressed. The minimum is over
polynomials v(t, x) ∈ R2k[t, x] and w ∈ R2k[x], and polynomial sum-of-squares p(t, x, u),
qi(t, x, u), i ∈ Z[0,nX ], ri(t, x, u), i ∈ Z[1,nU ], p0(x), pT (x), q0i(x), qT i(x), s0(x), s0i(x),
i ∈ Z[1,nX ] of appropriate degrees. The constraints that polynomials are sum-of-squares
can be written explicitly as LMI constraints (see, e.g., [26]), and the objective is linear in the
coefficients of the polynomial w(x); therefore problem (22) can be formulated as an SDP.

Theorem 4 There is no duality gap between primal LMI problem (21) and dual LMI problem
(22), i.e., p∗k = d∗k.

Proof: See Appendix D. �

7 Outer approximations and convergence results

In this section we show how the dual LMI problem (22) gives rise to a sequence of outer
approximations to the ROA X0 with a guaranteed convergence. In addition, we prove the
convergence of the primal and dual optimal values p∗k and d∗k to the volume of the ROA, and
the convergence of the w-component of an optimal solution to the dual LMI problem (22)
to the indicator function of the ROA IX0 .

Let the polynomials (wk, vk), each of total degree at most 2k, denote an optimal solution
to the problem kth order dual SDP approximation (22) and let w̄k := mini≤k wi and v̄k :=
mini≤k vi denote their running minima. Then, in view of Lemma 2 and the fact that any
feasible solution to (22) is feasible in (16), the sets

X0k := {x ∈ X : vk(0, x) ≥ 0} (23)

and
X̄0k := {x ∈ X : v̄k(0, x) ≥ 0} (24)

provide outer approximations to the ROA; in fact, the inclusions X0k ⊃ X̄0k ⊃ X0 hold for
all k ∈ {1, 2, . . .}.
Our first convergence result proves the convergence of wk and w̄k to the indicator function
of the ROA IX0 .
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Theorem 5 Let wk ∈ R2k[x] denote the w-component of an optimal solution to the dual
LMI problem (22) and let w̄k(x) = mini≤k wi(x). Then wk converges from above to IX0 in
L1 norm and w̄k converges from above to IX0 in L1 norm and almost uniformly.

Proof: From Lemma 2 and Theorem 3, for every ε > 0 there exists a (v, w) ∈ C1([0, T ] ×
X)× C(X) feasible in (16) such that w ≥ IX0 and

∫
X

(w − IX0) dλ < ε. Set

ṽ(t, x) := v(t, x)− εt+ (T + 1)ε,

w̃(x) := w(x) + (T + 3)ε.

Since v is feasible in (16), we have Lṽ = Lv − ε, and ṽ(T, x) = v(T, x) + ε. Since also
w̃(x)− ṽ(0, x) ≥ 1+2ε, it follows that (ṽ, w̃) is strictly feasible in (16) with a margin at least
ε. Since [0, T ] ×X and X are compact, there exist10 polynomials v̂ and ŵ of a sufficiently
high degree such that sup

[0,T ]×X
|ṽ − v̂| < ε, sup

[0,T ]×X×U
|Lṽ − Lv̂| < ε and supX |w̃ − ŵ| < ε.

The pair of polynomials (v̂, ŵ) is therefore strictly feasible in (16) and as a result, under
Assumption 3, feasible in (22) for a sufficiently large relaxation order k (this follows from
the classical Positivstellensatz by Putinar; see, e.g., [26] or [36]), and moreover ŵ ≥ w.
Consequently,

∫
X
|w̃ − ŵ| dλ ≤ ελ(X), and so

∫
X

(ŵ − w) dλ ≤ ελ(X)(T + 4). Therefore∫
X

(ŵ − IX0) dλ < εK, ŵ ≥ IX0 ,

where K := [1 + (T + 4)λ(X)] < ∞ is a constant. This proves the first statement since ε
was arbitrary.

The second statement immediately follows since given a sequence wk → IX0 in L1 norm,
there exists a subsequence wki that converges almost uniformly to IX0 by [3, Theorems 2.5.2
and 2.5.3] and clearly w̄k(x) ≤ min{wki(x) : ki ≤ k}. �

The following Corollary follows immediately from Theorem 5.

Corollary 1 The sequence of infima of LMI problems (22) converges monotonically from
above to the supremum of the infinite-dimensional LP problem (16), i.e., d∗ ≤ d∗k+1 ≤ d∗k
and limk→∞ d

∗
k = d∗. Similarly, the sequence of maxima of LMI problems (21) converges

monotonically from above to the maximum of the infinite-dimensional LP problem (14), i.e.,
p∗ ≤ p∗k+1 ≤ p∗k and limk→∞ p

∗
k = p∗.

Proof: Monotone convergence of the dual optima d∗k follows immediately from Theorem 5
and from the fact that the higher the relaxation order k, the looser the constraint set of the
minimization problem (22). To prove convergence of the primal maxima observe that from
weak SDP duality we have d∗k ≥ p∗k and from Theorems 5 and 2 it follows that d∗k → d∗ = p∗.
In addition, clearly p∗k ≥ p∗ and p∗k+1 ≤ p∗k since the higher the relaxation order k, the tighter
the constraint set of the maximization problem (21). Therefore p∗k → p∗ monotonically from
above. �

10This follows from an extension of the Stone-Weierstrass theorem that allows for a simultaneous uniform
approximation of a function and its derivatives by a polynomial on a compact set; see, e.g., [24].
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Theorem 5 establishes a functional convergence of wk to IX0 and Corollary 1 a convergence
of the primal and dual optima p∗k and d∗k to the volume of the ROA λ(X0) = p∗ = d∗. Finally,
the following theorem establishes a set-wise convergence of the sets (23) and (24) to the ROA
X0.

Theorem 6 Let (vk, wk) ∈ R2k[t, x] × R2k[x] denote a solution to the dual LMI problem
(22). Then the sets X0k and X̄0k defined in (23) and (24) converge to the ROA X0 from the
outside such that X0k ⊃ X̄0k ⊃ X0 and

lim
k→∞

λ(X0k \X0) = 0 and lim
k→∞

λ(X̄0k \X0) = 0.

Moreover the convergence of X̄0k is monotonous, i.e., X̄0i ⊂ X̄0j whenever i ≥ j.

Proof: The inclusion X0k ⊃ X̄0k ⊃ X0 follows from Lemma 2 since any solution to (22) is
feasible in (16) and since X̄0k = ∩ki=1X0i. The latter fact also proves the monotonicity of the
sequence X̄0k. Next, from Lemma 2 we have wk ≥ IX0 and therefore, since wk ≥ vk(0, ·) + 1
on X, we have wk ≥ IX0k

≥ IX̄0k
≥ IX0 on X. In addition, from Theorem 5 we have

wk → IX0 in L1 norm on X; therefore

λ(X0) =

∫
X

IX0 dλ = lim
k→∞

∫
X

wk dλ ≥ lim
k→∞

∫
X

IX0k
dλ

= lim
k→∞

λ(X0k) ≥ lim
k→∞

λ(X̄0k).

But since X0 ⊂ X̄0k ⊂ X0k we must have λ(X0) ≤ λ(X̄0k) ≤ λ(X0k) and the theorem follows.
�

8 Free final time

In this section we outline a straightforward extension of our approach to the problem of
reaching the target set XT at any time before T < ∞ (and not necessarily staying in XT

afterwards).

It turns out that the set of all initial states x0 from which it is possible to reach XT at a
time t ≤ T can be obtained as the support of an optimal solution µ∗0 to the problem

sup µ0(X)
s.t. µT = µ0 ⊗ δ0 + L′µ

µ ≥ 0, λ ≥ µ0 ≥ 0, µT ≥ 0
spt µ ⊂ [0, T ]×X × U
spt µ0 ⊂ X, spt µT ⊂ [0, T ]×XT ,

(25)

where the supremum is over a vector of nonnegative measures (µ, µ0, µT ) ∈M([0, T ]×X ×
U)×M(X)×M([0, T ]×XT ). Note that the only difference to problem (14) is in the support
constraints of the final measure µT .
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The dual to this problem reads as

inf

∫
X

w(x) dλ(x)

s.t. Lv(t, x, u) ≤ 0, ∀ (t, x, u) ∈ [0, T ]×X × U
w(x) ≥ v(0, x) + 1, ∀x ∈ X
v(t, x) ≥ 0, ∀ (t, x) ∈ [0, T ]×XT

w(x) ≥ 0, ∀x ∈ X.

(26)

The only difference to problem (16) is in the third constraint which now requires that v(t, x)
is nonnegative on XT for all t ∈ [0, T ].

All results from the previous sections hold with proofs being almost verbatim copies.

9 Numerical examples

In this section we present five examples of increasing complexity to illustrate our approach:
a univariate uncontrolled cubic system, the Van der Pol oscillator, a double integrator,
the Brockett integrator and an acrobot. For numerical implementation, one can either use
Gloptipoly 3 [21] to formulate the primal problem on measures and then extract the dual
solution provided by a primal-dual SDP solver or formulate directly the dual SOS problem
using, e.g., YALMIP [28] or SOSTOOLS [35]. As an SDP solver we used SeDuMi [34] for the
first three examples and MOSEK for the last two examples. For computational purposes the
problem data should be scaled such that the constraint sets are contained in, e.g., unit boxes
or unit balls; in particular the time interval [0, T ] should be scaled to [0, 1] by multiplying
the vector field f by T . Computational aspects are further discussed in the Conclusion.

Whenever the approximations X0k defined in (23) are monotonous (which is not guaranteed)
we report these approximations (since then they are equal to the monotonous version X̄0k

defined in (24)); otherwise we report X̄0k.

9.1 Univariate cubic dynamics

Consider the system given by

ẋ = x(x− 0.5)(x+ 0.5),

the constraint set X = [−1, 1], the final time T = 100 and the target set XT = [−0.01, 0.01].
The ROA can in this case be determined analytically as X0 = [−0.5, 0.5]. Polynomial
approximations to the ROA for degrees d ∈ {4, 8, 16, 32} are shown in Figure 1. As expected
the functional convergence of the polynomials to the discontinuous indicator function is
rather slow; however, the set-wise convergence of the approximations X0k (where k = d/2) is
very fast as shown in Table 1. Note that the volume error is not monotonically decreasing –
indeed what is guaranteed to decrease is the integral of the approximating polynomial w(x),
not the volume of X0k. Taking the monotonically decreasing approximations X̄0k defined
in (24) would prevent the volume increase. Numerically, a better behavior is expected when
using alternative polynomial bases (e.g., Chebyshev polynomials) instead of the monomials;
see the conclusion for a discussion.
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Table 1: Univariate cubic dynamics – relative volume error of the outer approximation to
the ROA X0 = [−0.5, 0.5] as a function of the approximating polynomial degree.

degree 4 8 16 32

error 31.60 % 3.31 % 0.92 % 1.49 %
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Figure 1: Univariate cubic dynamics – polynomial approximations (solid line) to the ROA
indicator function IX0 = I[−0.5,0.5] (dashed line) for degrees d ∈ {4, 8, 16, 32}.

9.2 Van der Pol oscillator

As a second example consider a scaled version of the uncontrolled reversed-time Van der Pol
oscillator given by

ẋ1 = −2x2,

ẋ2 = 0.8x1 + 10(x2
1 − 0.21)x2.

The system has one stable equilibrium at the origin with a bounded region of attraction

X0 ⊂ X := [−1.2, 1.2]2.

In order to compute an outer approximation to this region we take T = 100 and XT = {x :
‖x‖2 ≤ 0.01}. Plots of the ROA estimates X0k for d = 2k ∈ {10, 12, 14, 16} are shown in
Figure 2. We observe a relatively-fast convergence of the super-level sets to the ROA – this
is confirmed by the relative volume error11 summarized in Table 2. Figure 3 then shows
the approximating polynomial itself for degree d = 18. Here too, a better convergence is
expected if instead of monomials, a more appropriate polynomial basis is used.

Table 2: Van der Pol oscillator – relative error of the outer approximation to the ROA X0

as a function of the approximating polynomial degree.

degree 10 12 14 16

error 49.3 % 19.7 % 11.1 % 5.7 %

11The relative volume error was computed approximately by Monte Carlo integration.
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Figure 2: Van der Pol oscillator – semialgebraic outer approximations (light gray) to the
ROA (dark gray) for degrees d ∈ {10, 12, 14, 16}.

Figure 3: Van der Pol oscillator – a polynomial approximation of degree 18 of the ROA
indicator function IX0 .

9.3 Double integrator

To demonstrate our approach in a controlled setting we first consider a double integrator

ẋ1 = x2

ẋ2 = u.

The goal is to find an approximation to the set of all initial states X0 that can be steered
to the origin at12 the final time T = 1. Therefore we set XT = {0} and the constraint set
such that X0 ⊂ X, e.g., X = [−0.7, 0.7] × [−1.2, 1.2]. The solution to this problem can be
computed analytically as

X0 = {x : V (x) ≤ 1},
where

V (x) =

x2 + 2
√
x1 + 1

2
x2

2 if x1 + 1
2
x2|x2| > 0,

−x2 + 2
√
−x1 + 1

2
x2

2 otherwise.

The ROA estimates X0k for d = 2k ∈ {6, 8, 10, 12} are shown in Figure 4; again we observe a
relatively fast convergence of the super-level set approximations, which is confirmed by the
relative volume errors in Table 3.

12In this case, the sets of all initial states that can be steered to the origin at time T and at any time
before T are the same. Therefore we could also use the free-final-time approach of Section 8.
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Table 3: Double integrator – relative error of the outer approximation to the ROA X0 as a
function of the approximating polynomial degree.

degree 6 8 10 12

error 75.7 % 32.6 % 21.2 % 16.0 %
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Figure 4: Double integrator – semialgebraic outer approximations (light gray) to the ROA
(dark gray) for degrees d ∈ {6, 8, 10, 12}.

9.4 Brockett integrator

Next, we consider the Brockett integrator

ẋ1 = u1

ẋ2 = u2

ẋ3 = u1x2 − u2x1

with the constraint sets X = {x ∈ R3 : ||x||∞ ≤ 1} and U = {u ∈ R2 : ||u||2 ≤ 1}, the target
set XT = {0} and the final time T = 1. The ROA can be computed analytically (see [27])
as X0 = {x ∈ R3 : T (x) ≤ 1}, where

T (x) =
θ
√
x2

1 + x2
2 + 2|x3|√

θ + sin2 θ − sin θ cos θ
,

and θ = θ(x) is the unique solution in [0, π) to

θ − sin θ cos θ

sin2 θ
(x2

1 + x2
2) = 2|x3|.

The ROA estimates X0k are not monotonous in this case and therefore in Figure 5 we rather
show the monotonous estimates X̄0k defined in (24) for degrees six d = 2k ∈ {6, 10}. We
observe fairly good tightness of the estimates.

9.5 Acrobot

As our last example we consider the acrobot system adapted from [33], which is essentially
a double pendulum with both joints actuated; see Figure 6. The system equations are given
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d = 6 d = 10

Figure 5: Brockett integrator – semialgebraic outer approximations (light red, larger) to the
ROA (dark red, smaller) for degrees d ∈ {6, 10}.

by

ẋ =

 x3

x4

M(x)−1N(x, u)

 ∈ R4,

where

M(x) =

[
3 + cos(x2) 1 + cos(x2)
1 + cos(x2) 1

]
and

N(x, u) =[
g sin(x1 + x2)− a1x3 + a2 sin(x1) + x4 sin(x2)(2x3 + x4) + u1

− sin(x2)x23 − a1x4 + g sin(x1 + x2) + u2

]
with g = 9.8, a1 = 0.1 and a2 = 19.6. The first two states are the joint angles (in radians)
and the second two the corresponding angular velocities (in radians per second). The two
control inputs are the torques in the two joints. Here, rather than comparing our approxi-
mations with the true ROA (which is not easily available), we study how the size of the ROA
approximations is influenced by the actuation of the first joint. We consider two cases: with
both joints actuated and with only the middle joint actuated. In the first case the input con-
straint set is U = [−10, 10]× [−10, 10] and in the second case it is U = {0}× [−10, 10]. The
state constraint set is for both cases X = [−π/2, π/2]× [−π, π]× [−5, 5]× [−5, 5]. Since this
system is not polynomial we take a third order Taylor expansion of the vector field around
the origin. An exact treatment would be possible via a coordinate transformation leading
to rational dynamics to which our approach can be readily extended; this extension is, how-
ever, not treated in this paper and therefore we use the simpler (and non-exact) approach
with Taylor expansion. Figure 7 shows the approximations X0k of degree d = 2k ∈ {6, 8};
as expected disabling actuation of the first joint leads to a smaller ROA approximation.
For this largest example presented in the paper we also report computation times for two
SDP solvers: the recently released MOSEK SDP solver and SeDuMi. Computation times13

reported in Table 4 show that MOSEK outperforms SeDuMi in terms of speed by a large
margin; this finding does not seem to be specific to this particular problem and holds for
all ROA computation problems presented. Before solving, the problem data was scaled such
that the constraint sets become unit boxes.

13Table 4 reports pure solver times, excluding the Yalmip parsing and preprocessing overhead, using Apple
iMac with 3.4 GHz Intel Core i7, 8 GB RAM, Mac OS X 10.8.3 and Matlab 2012a.
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Figure 6: Acrobot – sketch
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−π/2 0 π/2 −π/2 0 π/2−π/2 0 π/2
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5
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0

5

Figure 7: Acrobot – section for x4 = 0 of the semialgebraic outer approximations of degree
d ∈ {6, 8}. Only the middle joint actuated – darker, smaller; both joints actuated – lighter,
larger. The states displayed x1, x2 and x3 are, respectively, the lower pendulum angle, the
upper pendulum angle and the lower pendulum angular velocity.

10 Conclusion

The main contributions of this paper can be summarized as follows:

• contrary to most of the existing systems control literature, we propose a convex for-
mulation for the problem of computing the controlled region of attraction;

• our approach is constructive in the sense that we rely on standard hierarchies of finite-
dimensional LMI relaxations whose convergence can be guaranteed theoretically and
for which public-domain interfaces and solvers are available;

• we deal with polynomial dynamics and semialgebraic input and state constraints, there-
fore covering a broad class of nonlinear control systems;

• additional properties (e.g., convexity) of the approximations can be enforced by addi-
tional constraints on the approximating polynomial v(0, ·) (e.g., Hessian being negative
definite).

• the approach is extremely simple to use – the outer approximations are the outcome
of a single semidefinite program with no additional data required besides the problem
description.
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Table 4: Acrobot – comparison of computation time of MOSEK and SeDuMi for different
degrees of the approximating polynomial. The “–” in the last cell signifies that SeDuMi
could not solve the problem.

degree 4 6 8

MOSEK 0.93 s 23.5 s 2029 s

SeDuMi 7.1 s 2775 s –

The problem of computing the (forward) reachable set, i.e. the set of all states that can
be reached from a given set of initial conditions under input and state constraints, can be
addressed with the same techniques – the problem can be formulated as ROA computation
using a time-reversal argument. Similar ideas can also be used to characterize and com-
pute outer approximations of the maximum controlled invariant set (both for discrete and
continuous time); this is a work in progress.

The hierarchy of LMI relaxations described in this paper generates a sequence of nested outer
approximations of the ROA, but it is also possible, using a similar approach, to compute
valid inner approximations. Results for uncontrolled systems will be reported elsewhere. The
extension to the controlled case is far more involved (both theoretically and computationally)
and is a subject of future research.

Furthermore, there is a straightforward extension to piecewise polynomial dynamics defined
over a semialgebraic partition of the state and input spaces – one measure is then defined
for each region of the partition. Our approach should also allow for extensions to stochas-
tic systems (either discrete-time controlled Markov processes or controlled SDEs) and/or
uncertain systems.

Since it is based on (an extension of) Lasserre’s hierarchy of LMI relaxations (originally
proposed for static polynomial optimization [26]), our approach scales similarly as Lasserre’s
approach. Namely, the number of moments (variables in the LMI relaxation) grows as
O(kn+m) when the problem dimension n+m is kept constant and the relaxation order k = d/2
varies, and grows as O((n + m)k) when k is kept constant and n + m varies. Therefore, at
present, the approach is limited to systems of moderate size (say, n + m ≤ 6) unless one is
willing to compromise the accuracy of the approximations by taking a small relaxation order
k. However, given the rapid progress of computing and optimization, the authors expect
the approach to scale to larger dimensions in the future. One possible direction is sparsity
exploitation; indeed, the recently released MOSEK SDP solver seems to have far superior
performance to SeDuMi on our problem class, most likely due to more sophisticated sparsity
exploitation. Another direction is parallelization; for instance, parallel interior point solvers
(e.g., SDPARA [45]) should allow the approach to scale to larger dimensions. Alternative
algorithms to standard primal-dual interior-point methods, such as first-order methods, are
also worth considering. This is currently investigated by the authors.

Numerical examples indicate that the choice of monomials as a dense basis for the set of
continuous functions on compact sets, while mathematically appropriate (and notationally
convenient), is not always satisfactory in terms of convergence and quality of the approx-
imations due to numerical ill-conditioning of this basis. However, this is not peculiar to
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ROA computation problems – a similar behavior was already observed when computing the
volume (and moments) of semialgebraic sets in [22]. To achieve better performance, we
recommend the use of alternative polynomial bases such as Chebyshev polynomials; see [19,
Section 4] for more details.

Appendix A

In this Appendix we state and prove the correspondence between the Liouville PDE on
measures (10) and the convexified differential inclusion (12). We will need the notion of a
stochastic kernel. Let Y and Z be two Borel sets (in two Euclidean spaces of not necessarily
the same dimension). The object ν(· | ·) is called a stochastic kernel on Y given Z if, first,
ν(· | z) is a probability measure on Y for every fixed z ∈ Z, and, second, if ν(A | ·) is a
measurable function on Z for every fixed A ⊂ Y . Let also µ̄(t, x) denote the (t, x)-marginal
of the occupation measure µ defined through (7), that is,

µ̄(A×B) := µ(A×B × U) ∀ A ⊂ [0, T ], B ⊂ X.

Lemma 3 Let (µ0, µ, µT ) be a triplet of measures satisfying the Liouville equation (10) such
that sptµ0 ⊂ X, sptµ ⊂ [0, T ] × X × U and sptµT ⊂ XT . Then there exists a family of
absolutely continuous admissible trajectories of (12) starting from µ0 (i.e., trajectories in
X̄ (x0)) such that the occupation measure and the terminal measure generated by this family
of trajectories are equal to µ̄ and µT , respectively.

Proof: Since the occupation measure µ is defined on a Euclidean space which is Polish and
therefore Souslin, it can be, in view of [7, Corollary 10.4.13], disintegrated as

dµ(t, x, u) = dν(u | t, x)dµ̄(t, x),

where dν(u | t, x) is a stochastic kernel on U given [0, T ]×X. Then we can rewrite equation (9)
as ∫

XT

v(T, ·) dµT −
∫
X

v(0, ·) dµ0

=

∫
[0,T ]×X

∫
U

∂v

∂t
+ grad v · f(t, x, u) dν(u | t, x) dµ̄(t, x)

=

∫
[0,T ]×X

∂v

∂t
+ grad v ·

[ ∫
U

f(t, x, u) dν(u | t, x)
]
dµ̄(t, x)

=

∫
[0,T ]×X

∂v

∂t
+ grad v · f̄(t, x) dµ̄(t, x), (27)

where

f̄(t, x) :=

∫
U

f(t, x, u) dν(u | t, x) ∈ conv f(t, x, U).

Therefore we will study the trajectories of the differential equation

ẋ(t) = f̄(t, x(t)). (28)
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In the remainder of the proof we show that the measures µT and µ̄ are generated by a family
of absolutely continuous trajectories of this differential equation (which is clearly a subset
of trajectories of the convexified inclusion (12)) starting from µ0. Note that the vector field
f̄ is only known to be measurable14, so this equation may not admit a unique solution.

Observe that the t-marginal of µ (and hence of µ̄) is equal to the Lebesgue measure restricted
to [0, T ] scaled by ρ := µ0(X) (=µT (X)). Indeed, plugging v(t, x) = tk, k ∈ N, in (9), we
obtain µT (X) =

∫
tkdµ0 +

∫
ktk−1 dµ; taking k = 0 gives µT (X) = µ0(X) and k ≥ 1 gives∫

tk−1 dµ = µT (X)T k/k, which is nothing but the Lebesgue moments on [0, T ] scaled by
µT (X) = µ0(X). Therefore, using [7, Theorem 6.4], we can disintegrate µ̄ as

dµ̄(t, x) = dµt(x)dt, (29)

where dµt(x) is a stochastic kernel on X given t scaled by ρ and dt is the standard Lebesgue
measure on [0, T ]. The kernel µt can be thought of as the distribution15 of the state at time
t. The kernel µt is defined uniquely dt-almost everywhere, and we will show that there is a
version such that the function t 7→

∫
X
w(x) dµt(x) is absolutely continuous for all w ∈ C1(X)

and such that the continuity equation

d

dt

∫
X

w(x) dµt(x) =

∫
X

gradw(x) · f̄(t, x) dµt(x) ∀w ∈ C1(X) (30)

with the initial condition µ0 is satisfied almost everywhere w.r.t. the Lebesgue measure on
[0, T ].

Fix w ∈ C1(X) and define the test function v(t, x) := ψ(t)w(x), where ψ ∈ C1([0, T ]). Then
from equation (27)

ψ(T )

∫
XT

w dµT − ψ(0)

∫
X

w dµ0

=

∫
[0,T ]×X

∂(ψw)

∂t
+ grad(ψw) · f̄(t, x) dµ̄(t, x)

=

∫ T

0

∫
X

ψ̇(t)w(x) + ψ(t)gradw(x) · f̄(t, x) dµt(x)dt

=

∫ T

0

[
ψ̇

∫
X

w dµt + ψ

∫
X

gradw · f̄ dµt
]
dt,

which can be seen as an equation of the form

ψ(T )d − ψ(0)c =

∫ T

0

ψ̇(t)a(t) + ψ(t)b(t) dt ∀ψ ∈ C1([0, T ]), (31)

14Measurability of f̄(t, x) follows by first observing that for f(t, x, u) = IA×B×C(t, x, u) we have f̄(t, x) =
IA(t)IB(x)ν(C | t, x), which is a product of measurable functions, and then by approximating an arbitrary
measurable f(t, x, u) by simple functions (i.e., sums of indicator functions). This is a standard measure
theoretic argument; details are omitted for brevity.

15It will become clear from the following discussion that for t = 0 and t = T this kernel (or a version
thereof) coincides with µ0 and µT , respectively; hence there is no ambiguity in notation. Note also that the
kernel µt, t ∈ [0, T ], is defined uniquely up to a subset of [0, T ] of Lebesgue measure zero; by a “version” we
then mean a particular choice of the kernel.
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where c :=
∫
X
w(x) dµ0(x), d :=

∫
XT

w(x) dµT and b(t) :=
∫
X

gradw · f̄(t, x) dµt(x) are

constants and a(t) is an unknown function. One solution is clearly a(t) =
∫
X
w dµt. Now we

show that

ã(t) := c+

∫ t

0

b(τ) dτ =

∫
X

w dµ0 +

∫ t

0

∫
X

gradw · f̄ dµτdτ

also solves the equation. Indeed, since from (27) with v replaced by w we have ã(T ) =∫
X
w dµT = d, integration by parts gives∫ T

0

ψ̇(t)ã(t) dt = ψ(T )d− ψ(0)c−
∫ T

0

ψ(t)b(t) dt,

so ã(t) indeed solves equation (31). Now we prove that this solution is unique. Since ã is a
solution we have

ψ(T )d− ψ(0)c =

∫ T

0

ψ̇(t)ã(t) + ψ(t)b(t) dt,

and subtracting this from (31) we get

0 =

∫ T

0

ψ̇(t)[a(t)− ã(t)] dt ∀ ψ ∈ C1([0, T ]),

or equivalently

0 =

∫ T

0

φ(t)[a(t)− ã(t)] dt ∀ φ ∈ C([0, T ]).

Since C([0, T ]) is dense in L1([0, T ]), this implies a(t) = ã(t) dt-almost everywhere. Conse-
quently, since C1(X) is separable,∫

X

w dµt=

∫
X

w(x)dµ0 +

∫ t

0

∫
X

gradw · f̄ dµτdτ ∀ w ∈ C1(X) (32)

dt-almost everywhere. The right-hand side of this equality is an absolutely continuous func-
tion of time for each w ∈ C1(X) and the left-hand side is a bounded positive linear functional
on C(X) for all t ∈ [0, T ]. By continuity of the right-hand-side of (32) with respect to time,
this right-hand side is a bounded positive linear functional on C1(X) for all t ∈ [0, T ] and
therefore can be uniquely extended to a bounded positive linear functional on C(X) (since
C1 is dense in C). Therefore, for all t ∈ [0, T ] the right-hand side has a representing mea-
sure [39, Theorem 2.14] and hence there is a version of µt such that the equality (32) holds
for all t ∈ [0, T ]. With this version of µt the function t 7→

∫
X
w(x) dµt(x) is absolutely

continuous and µt solves the continuity equation (30).

To finish the proof, we use [1, Theorem 3.2] which asserts the existence of a nonnegative
measure σ on C([0, T ];Rn) which corresponds to a family of absolutely continuous solutions
to ODE (28) whose projection at each time t ∈ [0, T ] coincides with µt. More precisely,
there is a nonnegative measure σ ∈ M(C([0, T ];Rn)) supported on a family of absolutely
continuous solutions to ODE (28) such that for all measurable w : Rn → R∫

X

w(x)µt(x) =

∫
C([0,T ];Rn)

w(x(t)) dσ(x(·)) ∀ t ∈ [0, T ]. (33)
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Using IA×B(t, x) = IA(t)IB(x), it follows from (29) that

µ̄(A×B) =

∫
[0,T ]×X

IA(t)IB(x) dµ̄(t, x) =

∫ T

0

IA(t)

∫
X

IB(x) dµt(x) dt.

Therefore, using (33) with w(x) = IB(x) and Fubini’s theorem [39, Theorem 8.8], we get

µ̄(A×B) =

∫
C([0,T ];Rn)

∫ T

0

IA×B(t, x(t)) dt dσ(x(·)),

and so the occupation measure of the family of trajectories coincides with µ̄. Clearly, the
initial and the final measures of this family coincide with µ0 and µT as well. As a result
σ-almost all trajectories of this family are admissible. The proof is completed by discarding
the null-set of trajectories that are not admissible, which does not change the measure σ and
the generated measures µ̄, µ0, µT . �

Appendix B

In this Appendix we elaborate further on the discussion from Section 3.2 on the connection
between the classical ROA and the relaxed ROA. Let us recall the definition of the classical
ROA

X0 :=
{
x0 ∈ X : X (x0) 6= ∅

}
,

where

X (x0) :=
{
x(·) : ẋ(t) ∈ f(t, x(t), U) a.e., x(0) = x0, x(T ) ∈ XT , x(t) ∈ X ∀t ∈ [0, T ]

}
and x(·) is required to be absolutely continuous. Similarly, recall the definition of the re-
laxed ROA

X̄0 :=
{
x0 ∈ X : X̄ (x0) 6= ∅

}
,

where

X̄ (x0) :=
{
x(·) : ẋ(t) ∈ conv f(t, x(t), U) a.e., x(0) = x0,

x(T ) ∈ XT , x(t) ∈ X ∀t ∈ [0, T ]
}

with x(·) absolutely continuous. Obviously, it holds

X0 ⊂ X̄0, (34)

and the question is whether this inclusion is strict or not.

Denote Bε(a) := {x ∈ Rn : ||x− a||2 < ε} and define the dilated constraint sets

Xε := X ⊕Bε(0) and Xε
T := XT ⊕Bε(0),

where ⊕ denotes the Minkowski sum of two sets. Accordingly, the dilated ROA and the
dilated relaxed ROA are

Xε
0 :=

{
x0 ∈ X : X ε(x0) 6= ∅

}
,

X̄ε
0 :=

{
x0 ∈ X : X̄ ε(x0) 6= ∅

}
,
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where

X ε(x0) :=
{
x(·) : ẋ(t) ∈ f(t, x(t), U) a.e., x(0) = x0, x(T ) ∈ Xε

T , x(t) ∈ Xε ∀t ∈ [0, T ]
}
,

X̄ ε(x0) :=
{
x(·) : ẋ(t) ∈ conv f(t, x(t), U) a.e., x(0) = x0, x(T ) ∈ Xε

T , x(t) ∈ Xε ∀t ∈ [0, T ]
}
.

Since the constraint sets are compact and the vector field f Lipschitz, it follows from the
equivalence between the trajectories of the convexified inclusion (12) and solutions to the
Liouville equation (10), stated in Lemma 3 of Appendix A, and from Filippov-Ważewski’s
relaxation Theorem (see, e.g., [5]) that

X̄0 = sptµ0 ⊂
⋂
ε>0

Xε
0.

In contrast, for all ε > 0 it holds
Xε

0 = X̄ε
0.

In general inclusion (34) is strict. However, we argue that for most practical purposes the
relaxed ROA X̄0 and the true ROA X0 are the same. Indeed, for any x0 ∈ X̄0 there exists
a sequence of admissible control functions uk(·) such that

sup
t∈[0,T ]

distX(xk(t))→ 0 and distXT
(xk(T ))→ 0

as k → ∞, where xk(·) denotes the solution to the ODE (1) corresponding to the control
function uk(·), and distA(x) := inf{‖z − x‖2 : z ∈ A} denotes the distance to a set A.

Appendix C

In this Appendix we describe two contrived examples of control systems (1) for which the
relaxed ROA X̄0 is strictly larger than the classical ROA X0; see Appendix B for definitions.

Let f(t, x, u) = u, U = {−1,+1}, X = XT = {0} for, e.g., T = 1. Obviously there is no
admissible trajectory in X (0), whereas there is a feasible triplet of measures satisfying (10)
given by µ0 = δ0, µT = δ0 and µ = λ[0,1] ⊗ δ0 ⊗ 1

2
(δ−1 + δ+1), where λ[0,1] denotes the

restriction of the Lebesgue measure to [0, 1]. Therefore in this case X0 = ∅ 6= X̄0 = {0},
but λ(X0) = λ(X̄0). Assumption 2 is therefore satisfied. Note that the relaxed solution
corresponds to an infinitely fast chattering of the control input between −1 and +1 which
can be arbitrarily closely approximated by chattering solutions of finite speed; the singleton
constraint set X, however, renders such solutions infeasible.

Another example for which the gap (e.g., in volume) between X̄0 and X0 can be as large as
desired is the following. Consider ẋ = u ∈ R2 with

x ∈ X := Br(c1) ∪ ([−1, 1]× {0}) ∪B1(c2) ⊂ R2

with the centers c1 = (−1 − r, 0) and c2 = (+2, 0) and a given radius r > 0. The input
and terminal constraints are u ∈ U := {−1, 1}2 and XT := B1(c2). That is, the constraint
set consist of two balls (one of radius r and the other of radius 1) connected by a line; the
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target set is the ball of radius 1. Then X0 = XT is strictly smaller than X̄0 = X, and
λ(X0) = π, whereas λ(X̄0) = (1 + r2)π. Assumption 2 is therefore not satisfied for r > 0. In
this example, regular solutions starting in the left ball cannot transverse the line to the right
ball; this is, by contrast, possible for the relaxed solutions using an infinitely fast chattering.

Appendix D

In this appendix we prove Theorem 4. In order to prove the theorem we rewrite primal LMI
problem (21) in a vectorized form as follows

p∗k = min c′y
s.t. Ay = b

e + Dy ∈ K,
(35)

where y := [y′, y′0, y
′
T , ŷ

′
0]′ and K is a direct product of cones of positive semidefinite matrices

of appropriate dimensions, here corresponding to the moment matrix and localizing matrix
constraints. The notation e+Dy ∈ K means that vector e+Dy contains entries of positive
semidefinite moment and localizing matrices, and by construction matrix D has full column
rank (since a moment matrix is zero if and only if the corresponding moment vector is zero).
Dual LMI problem (22) then becomes

d∗k = max b′x− e′z
s.t. A′x + D′z = c

z ∈ K,
(36)

and we want to prove that p∗k = d∗k. The following instrumental result is a minor extension of
a classical lemma of the alternatives for primal LMI (35) and dual LMI (36). The notation
int K stands for the interior of K.

Lemma 4 If matrix D has full column rank, exactly one of these statements is true:

• there exists x and z ∈ int K such that A′x + D′z = c

• there exists y 6= 0 such that Ay = 0, Dy ∈ K and c′y ≤ 0.

Proof of Lemma 4: A classical lemma of alternatives states that if matrix D̄ has full column
rank, then either there exists z ∈ int K such that D̄′z = c̄ or there exists ȳ such that
D̄ȳ ∈ K and c̄′ȳ ≤ 0, but not both, see e.g. [41, Lemma 2] for a standard proof based on
the geometric form of the Hahn-Banach separation theorem. Our proof then follows from
restricting this lemma of alternatives to the null-space of matrix A. More explicitly, there
exists x and z such that A′x + D′z = c if and only if z is such that D̄′z = c̄ with D̄ = DF,
c̄ = F′c for F a full-rank matrix such that AF = 0. Matrix D̄ has full column rank since it
is the restriction of the full column rank matrix D to the null-space of A. �

Proof of Theorem 4: First notice that the feasibility set of LMI problem (35) is nonempty
and bounded. Indeed, a triplet of zero measures is a trivial feasible point for (14) and hence
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(0, 0, 0, λ) is feasible in (15); consequently a concatenation of truncated moment sequences
corresponding to the quadruplet of measures (0, 0, 0, λ) is feasible in (35) for each relaxation
order k. Boundedness of the even components of each moment vector follows from the
structure of the localizing matrices corresponding to the functions from Assumption 3 and
from the fact that the masses (zero-th moments) of the measures are bounded because of the
constraint µ0 + µ̂0 = λ and because T <∞. Boundedness of the whole moment vectors then
follows since the even moments appear on the diagonal of the positive semidefinite moment
matrices.

To complete the proof, we follow [41, Theorem 4] and show that boundedness of the feasibility
set of LMI problem (35) implies existence of an interior point for LMI problem (36), and
then from standard SDP duality it follows readily that p∗ = d∗ since D has a full column
rank; see, e.g., [41, Theorem 5] and references therein.

Let ȳ denote a point in the feasibility set of LMI problem (35), i.e. a vector satisfying
Aȳ = b and e + Dȳ ∈ K. Suppose that there is no interior point for LMI problem (36),
i.e. there is no x and z ∈ int K such that A′x + D′z = c. Then from Lemma 4 there exists
y 6= 0 such that Ay = 0, Dy ∈ K and c′y ≤ 0. It follows that there exists a ray ȳ + ty,
t ≥ 0 of feasible points for LMI problem (35), hence implying that the feasibility set is not
bounded. �
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