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Abstract

We address the long-standing problem of computing the region of attraction
(ROA) of a target set (typically a neighborhood of an equilibrium point) of a con-
trolled nonlinear system with polynomial dynamics and semialgebraic state and
input constraints. We show that the ROA can be computed by solving a convex
linear programming (LP) problem over the space of measures. In turn, this problem
can be solved approximately via a classical converging hierarchy of convex finite-
dimensional linear matrix inequalities (LMIs). Our approach is genuinely primal in
the sense that convexity of the problem of computing the ROA is an outcome of
optimizing directly over system trajectories. The dual LP on nonnegative continu-
ous functions (approximated by polynomial sum-of-squares) allows us to generate a
hierarchy of semialgebraic outer approximations of the ROA at the price of solving a
sequence of LMI problems with asymptotically vanishing conservatism. This sharply
contrasts with the existing literature which follows an exclusively dual Lyapunov
approach yielding either nonconvex bilinear matrix inequalities or conservative LMI
conditions.

Keywords: Region of attraction, polynomial control systems, occupation measures, linear
matrix inequalities (LMIs), convex optimization, viability theory, capture basin.

1 Introduction

Given a nonlinear control system, a state-constraint set and a target set (e.g. a neigh-
borhood of an attracting orbit or an equilibrium point), the constrained controlled region
of attraction (ROA) is the set of all initial states that can be steered with an admis-
sible control to the target set without leaving the state-constraint set. The target set
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can be required to be reached at a given time or at any time before a given time!. The
problem of computing the ROA (and variations thereof) lies at the heart of viability the-
ory (see, e.g., [4]) and goes by many other names, e.g., the reach-avoid or target-hitting
problem (see, e.g., [21]); in the language of viability theory the ROA itself is sometimes
referred to as the capture basin [4].

We show that, in the case of polynomial dynamics, semialgebraic state-constraint, input-
constraint and target sets, the computation of the ROA boils down to solving an infinite-
dimensional linear programming (LP) problem in the cone of nonnegative Borel measures.
Our approach is genuinely primal in the sense that we optimize over state-space system
trajectories modeled with occupation measures [19, 9].

In turn, this LP can be solved approximately by a classical hierarchy of finite-dimensional
convex linear matrix inequality (LMI) relaxations. The dual LP on nonnegative continu-
ous functions and its LMI relaxations on polynomial sum-of-squares provide explicitly an

asymptotically converging sequence of nested semialgebraic outer approximations of the
ROA.

Most of the existing literature on ROA computation follows Zubov’s approach [22, 32, 12]
and uses a dual Lyapunov certificate; see [29], the survey [10], Section 3.4 in [11], and more
recently [27] and [6] and the references therein. These approaches either enforce convexity
with conservative LMI conditions (whose conservatism is difficult if not impossible to
evaluate systematically) or they rely on nonconvex bilinear matrix inequalities (BMIs),
with all their inherent numerical difficulties. In contrast, we show in this paper that the
problem of computing the ROA has actually a convex infinite-dimensional LP formulation,
and that this LP can be solved with a hierarchy of convex finite-dimensional LMIs with
asymptotically vanishing conservatism.

We believe that our approach is closer in spirit to set-oriented approaches [7], level-set
and Hamilton-Jacobi approaches [17, 21, 23] or transfer operator approaches [30], even
though we do not discretize w.r.t. time and/or space. In our approach, we model a
measure with a finite number of its moments, which can be interpreted as a frequency-
domain discretization (by analogy with Fourier coefficients which are moments w.r.t. the
unit circle).

Another way to evaluate the contribution of our paper is to compare it with the recent
works [15, 13] which deal with polynomial approximations of semialgebraic sets. In these
references, the sets to be approximated are given a priori (as a polynomial sublevel set,
or as a feasibility region of a polynomial matrix inequality). In contrast, in the current
paper the set to be approximated (namely the ROA of a nonlinear dynamical system)
is not known in advance, and our contribution can be understood as an application and
extension of the techniques of references [15, 13] to sets defined implicitly by differential
equations.

The benefits of our occupation measure approach are overall the convexity of the problem
of finding the ROA, and the availability of publicly available software to implement and
solve the hierarchy of LMI relaxations.

!The cases of an arbitrarily long but finite time and of asymptotic convergence are not addressed in
this paper.



Our primary focus in this paper is the computation of the constrained finite-time con-
trolled region of attraction of a given set. This problem is formally stated in Section 2 and
solved using occupation measures in Section 4; the occupation measures themselves are
introduced in Section 3. A dual problem on the space of continuous functions is discussed
in Section 5. The hierarchy of finite-dimensional LMI relaxations of the infinite dimen-
sional LP is described in Section 6. An extension to the free final time case is sketched in
Section 7. Numerical examples are presented in Section 8, and we conclude in Section 9.

2 Problem statement

Consider the control system
(t) = f(t,z(t),u(t)), =z(t)eX, wu(t)eU, tel0,T] (1)

with a given polynomial vector field f with entries f; € R[¢,z,u], i =1,...,n, given final
time 7" > 0, and given compact semialgebraic state and input constraints

z(t) e X ={z eR" : gx;,(x) >0,i=1,2,...,nx}, t€[0,T] @)
ut) eU ={ueR™: gy,(u) >0,i=1,2,...,ny}, te€0,T]
with gx,; € R[z], gu; € Rlu]. Given a compact semialgebraic target set
Xr={zeR" : gr;(x)>0,i=1,2,...,np} C X,

with gr; € Rlz], let

X(z9) = {:L’() cx(t) = xg +/0 f(r, (1), u(r))dr, (3)
u(t) € U, z(t) € X, z(T) € Xy, Vt € [0,T]}

denote the set of all absolutely continuous admissible controlled trajectories x(-) starting
from zg, generated by an admissible control u(-) € L([0, T]; R™).

The constrained controlled region of attraction (ROA) is then defined as
Xo:={z0 € X : X(xg) # 0}. (4)

In words, the ROA is the set of all initial conditions for which there exists an admissible
controlled trajectory. By construction the set Xj is bounded and unique.

In the sequel we propose an infinite-dimensional LP approach to computing ROA X,
and show how this reformulation can be approximated by a sequence of LMI problems
converging to the solution to the LP.

3 Occupation measures

In the paper we use the following notations:

3



e [4(+) is the indicator function of a set A, i.e., a function equal to 1 on A and 0
elsewhere;

e ) denotes the Lebesgue measure on X C R" such that

MMzAM@M@ILAmMIAM

is the standard n-dimensional volume of a set A C X

e spt i denotes the support of a measure pu, that is, the closed set of all points x such
that p(A) > 0 for every neighborhood A of x.

3.1 Liouville’s equation

Given an initial condition zy and an admissible trajectory z(- | zg) € X'(xo) with its
corresponding control u(-|zy) € L*([0, T]; R™) that we assume to be a measurable function
of xq, define the occupation measure

T
WA X B x C|xg) = / Taxpxo(t,x(t]|zo), u(t|zo)) dt
0

for all subsets A x B x C' in the Borel og-algebra of subsets of [0,7] x X x U. Next, for
a set K let M(K) denote the Banach space of signed Borel measures supported on K,
so that a measure v € M(K) can be interpreted as a function that takes any subset of
K and returns a number in R. Alternatively, elements of M(K) can be interpreted as
linear functionals acting on the Banach space of continuous functions C'(K), that is, as
elements of the dual space C'(K)'. The action of a measure v € M(K) on a test function
v € C(K) can be modeled with the duality pairing

(v, v) ::/Kv(z) dv(z).

Define further the linear operator £ : C'([0,T] x X) — C([0,T] x X x U) by

av av fi(t,l',U) = @

av b do -
ot " 2o, or Terdv-t

v Lui=

and its adjoint operator £ : C([0,T] x X x U) — C'([0,T] x X )" by the adjoint relation
(L'v,v) = (v, Lv) = Lo(t, z,u) dv(t, z,u)
[0, T|x X xU

forall v € M([0,T)] x X xU) = C([0,T] x X x U) and v € C'([0,T] x X). This operator

is sometimes expressed symbolically as

, v &NO(fw)  ov
yr—>£u——at—z oz, _—at—dlvfz/

1=



where the derivatives of measures are understood in the sense of distributions (i.e., via
their action on suitable test functions), and the change of sign comes from the integration
by parts formula.

Given a test function v € C'([0,T] x X), it follows from the above definition of the
occupation measure y that

o(T,z(T)) = v(O,x(O))—i—/o 0(t, x(t|xg)) dt
= U(O,x(O))—i-/O Lo(t,x(t|xo), u(t|xo)) dt

= v(0,2(0)) +/ Lo(t, x,u) du(t, z,u|xz). (5)

[0, T]xXxU

Now consider that the initial state is not a single point but that its distribution in space is
modeled by an initial measure py € M(X), and that to each initial state zy an admissible
control function u(- | zo) € L*([0,T];R™) is assigned in such a way that z(- | zg) is
admissible?. Then we can define the average occupation measure p € M([0,T] x X x U)
by

(A x B x () := /XM(A X B x C|xg) duo(xo), (6)

and the final measure pur € M(Xr) by

yr(B) = /X 1(2(T | 20) dpo(o). (7)

It follows by integrating (5) with respect to po that

/XT v(T,x)dpr(x) = /XU(O,SL‘) duo(:v)—i—/ Lo(t,z,u)du(t, z,u)

0, T]xX xU

or more concisely
(ur, v(T,)) = (uo, v(0,)) + (u, Lv) Vv e CH[0,T] x X), (8)

which is a linear equation linking the nonnegative measures pr, jo and p. Denoting d; the
Dirac measure at a point ¢ and ® the product of measures, we can write (ug, v(0,-)) =
(00 @ o, v) and (up, v(T,-)) = (7 @ pr, v). Then, Eq. (8) can be rewritten equivalently
using the adjoint £’ as

<£/:u7 1)> = <5T®MT>U> - <50 & Ho, U> Vo e Cl([O,T] X X)7

and since this equation is required to hold for all test functions v, we obtain a linear
operator equation
L' =67 & pr — do ® pio. (9)

2The measure jig can be thought of as the probability distribution of 2y although we do not require
that its mass be normalized to one.



This equation is classical in fluid mechanics and statistical physics, where £’ is usually
written using distributional derivatives of measures as remarked above; then the equation
is referred to as Liouville’s partial differential equation (PDE).

Each family of admissible trajectories starting from a given initial distribution g € M (X)
satisfies Liouville’s equation (9). The converse may not hold in general although for the
computation of the ROA the two formulations can be considered equivalent, at least from
a practical viewpoint. Let us briefly elaborate more on this subtle point now.

3.2 Relaxed ROA

The control system @(t) = f(t,z(t),u(t)), u(t) € U, can be viewed as a differential
inclusion

#(t) € f(t,2(t),U) == {f(t,2(t),u) : ue U} (10)

We show in Lemma 4 in Appendix A that any triplet of measures satisfying Liouville’s
equation (9) corresponds to a family of trajectories of the convexified inclusion

&(t) € conv f(t,z(t),U) (11)

starting from the initial distribution py, where conv denotes the convex hull. Let us
denote the set of absolutely continuous admissible trajectories of (11) by

X(20) := {x(-) : &(t) € conv f(t,2(t),U), x(0) = xo, 2(t) € X x(T) € Xy, Vt € [0,T]}.

Given a family® of admissible trajectories of the convexified inclusion starting from an
initial distribution g, the occupation and final measures can be defined in a complete
analogy via (6) and (7), but now there are only the time and space arguments in the
occupation measure, not the control argument. In Appendix A, we state and prove the
correspondence between the convexified inclusion (11) and the measures satisfying the
Liouville equation (9).

Define now the relaxed region of attraction as
Xo:={r9 € X : X(xg) # 0}.

Clearly Xy C X, and the inclusion can be strict; see Appendix C for concrete examples.
However, by the Filippov-Wazewski relaxation Theorem [5], the trajectories of the original
inclusion (10) are dense (w.r.t. the metric of uniform convergence of absolutely continuous
functions of time) in the set of trajectories of the convexified inclusion (11). This implies
that the relaxed region of attraction X corresponds to the region of attraction of the
original system but with infinitesimally dilated constraint sets X and Xr; see Appendix B
for more details. Therefore, we argue that there is little difference between the two ROAs
from a practical point of view. Nevertheless, because of this subtle distinction we make
the following standing assumption in the remainder of the paper.

3Each such family can be described by a measure on C([0, T]; R") which is supported on the absolutely
continuous solutions to (11). Note that there may be more than one trajectory corresponding to a single
initial condition z( since the inclusion (11) may admit multiple solutions.



Assumption 1 Control system (1) is such that A\(Xo) = M(Xo).

In other words, the volume of the classical ROA X is assumed to be equal to the volume
of the relaxed ROA X,. Obviously, this is satisfied if X, = X, but otherwise these sets
may differ by a set of zero Lebesgue measure. Any of the following conditions on control
system (1) is sufficient for Assumption 1 to hold:

o i(t) € f(t,z(t),U) with f(t,z,U) convex for all ¢, x,
o i(t) = f(t,z(t)) + g(t,z(t))u(t), u(t) € U with U convex,

e uncontrolled dynamics 2(t) = f(t, z(t)),

as well as all controllability assumptions allowing the application of the constrained
Filippov-Wazewski Theorem; see, e.g., [8] and the discussion around Assumption I in [9].

3.3 ROA via optimization

The problem of computing ROA X, can be reformulated as follows:
¢ = sup A(spt o)
s.t. ,C/[L = (ST ®MT - 50 ®M0
”207 /’LOZOa ILLTZO
spt u C [0, 7] x X x U, spt ug C X, spt ur C Xr,

(12)

where the given data are f, X, Xp, U, and the supremum is over a vector of nonnegative
measures (i, o, i) € M([0,T] x X x U) x M(X) x M(Xr). Problem (12) is an infinite-
dimensional optimization problem on the cone of nonnegative measures.

Lemma 1 The optimal value of problem (12) is equal to the volume of the ROA Xy, that
is, ¢* = M Xo).

Proof By definition of the ROA, for any initial condition zy € X, there is an admissible
trajectory in X'(zg). Therefore for any initial measure o with spt g C X there exist an
occupation measure p and a final measure pp such that the constraints of problem (12)
are satisfied. Thus, ¢* > A\(X) = A(Xy), where the equality follows from Assumption 1.

Now we show that ¢* < M\(Xy) = M(X;). Suppose that a triplet of measures (u, p, fir)
is feasible in (12) and that A(spt o \ Xo) > 0. From Lemma 4 in Appendix A there is
a family of admissible trajectories of the inclusion (11) starting from pug generating the
(t, z)-marginal of the occupation measure p and the final measure pr. However, this is
a contradiction since no trajectory starting from spt o \ Xo can be admissible. Thus,

A(spt o \ Xo) = 0 and so A(spt pp) < A(Xp). Consequently, ¢* < A(Xp) = \(Xp). O



4 Primal LP on measures

The key idea behind the presented approach consists in replacing the optimization over
the support of the measure o by the maximization of its mass under the constraint that
o is dominated by the Lebesgue measure. This leads to the following LP:
p* = sup po(X)
S.t. £’,u = 5T ® Hur — 60 ® ,u()
=0, A>pg >0, upr >0
spt u C [0, 7] x X x U, spt ug C X, spt pur C Xr,

(13)

where the supremum is over a vector of nonnegative measures (i, o, i) € M ([0, T] x X X
U) x M(X) x M(Xr). In problem (13) the constraint A > py means that A(A) > py(A)
for all sets A C X. Note how the objective functions differ in problems (12) and (13).

The following theorem is then almost immediate.

Theorem 1 The optimal value of LP problem (13) is equal to the volume of the ROA
Xo, that is, p* = XN(Xo). Moreover, the supremum is attained by the restriction of the
Lebesgue measure to the ROA X.

Proof: Since the constraint set of problem (13) is tighter than that of problem (12),
we have by Lemma 1 that A(sptug) < A(Xj) for any feasible po. From the constraint
o < A we get po(X) = po(spt o) < A(spt o) < A(Xp) for any feasible pg. Therefore
p* < A(Xp). But by definition of the ROA X, the restriction of the Lebesgue measure to
Xp is feasible in (13), and so p* > A(Xj). Consequently p* = A(Xy). O

Now we reformulate problem (13) to an equivalent form more convenient for dualization
and subsequent theoretical analysis. To this end, let us define the complementary measure
(a slack variable) fip € M(X) such that the inequality A > 1o > 0 in (13) can be written
equivalently as the constraints o + fio = A, po > 0, jig > 0. Then problem (13) is
equivalent to

p* = sup po(X)
st. L'p=0p @ pup — do @ po
Ho + flo = A (14)

/1’207 NOZO7MT207 :&020
spt u C [0, 7] x X x U, spt ug C X, spt ur C Xr, spt o C X.

5 Dwual LP on functions

In this section, we derive a dual formulation of problem (14) (and hence (13)) on the
space of continuous functions. A certain super-level set of any feasible solution to the
dual problem yields an outer approximation to the ROA Xj.



Consider the LP problem

d* = inf / w(x) dA(z)
X
s.t. Lo(t,z,u) <0, V(t,z,u) € [0,T] x X x U 15
w(z) >v(0,2)+1, VeeX (15)
(T, z) >0, Vo e Xr
w(z) >0, Vre X,

where the infimum is over (v,w) € C'([0,7] x X) x C(X). The interpretation of the
dual is intuitive: the constraint Lv < 0 forces v to decrease along trajectories and hence
necessarily v(0,z) > 0 on X, because of the constraint v(7,x) > 0 on X7. Consequently,
w(z) > 1 on Xy. This instrumental observation is formalized in the following Lemma.

Lemma 2 If Lo <0 on [0,T] x X x U, v(T,-) > 0 on X7 and w > v(0,-) + 1 on X,
then w > 1 on Xg.

Proof: By definition of X, given any xy € X, there exists u(t) such that x(t) € X,
u(t) € U for all t € [0,T] and z(T') € Xp. Therefore, since Lo < 0 on [0,7] x X x U and
v(T,-) >0 on Xr,

0 <o(T,z(T)) = v(0,z0) + /OT Lo(t,z(t),u(t)) dt <v(0,z0) < w(zg) — 1. O

We have the following salient result:

Theorem 2 There is no duality gap between primal LP problems (13) and (14) on mea-
sures and dual LP problem (15) on functions, in the sense that p* = d*.

Proof: To streamline the exposition, let

C:=C(0,T] x X xU) x C(X) x C(X7) x C(X),
M= M(0,T] x X xU) x M(X) x M(Xr) x M(X),

and let IC and K’ denote the positive cones of C and M respectively. Note that the cone
K of nonnegative measures of M can be identified with the topological dual of the cone
KC of nonnegative continuous functions of C. The cone K’ is equipped with the weak-*
topology; see [20, Chapter 5].

Then the LP problem (14) can be rewritten as

p* = sup (v, ¢)
st. Ay=p (16)
v €K,

where the infimum is over the vector
v := (4 fo, i, o),

9



the linear operator A’ : K’ — C1([0,T] x X)" x M(X) is defined by
Ay = (L'~ 00 @ pro — 00 @ pr , o + flo)
the right hand side of the equality constraint in (16) is the vector of measures
B:=(0,X) e M0, T] x X) x M(X),
the vector function in the objective is
c:=(0,1,0,0) € C,

and the objective function itself is

(v, ¢ :/Xd,uoz,uo(X)'

The LP problem (16) can be interpreted as a dual to the LP problem

d* = inf (B, (v,w))
s.t. A(v,w) —c e K, (17)
where the infimum is over (v,w) € CY([0,T7] x X) x C(X), and the linear operator
A:CYH[0,T] x X) x C(X) — C is defined by

Av = (=Lv, w—v(0,-), v(T,-), w)

and satisfies the adjoint relation (A'y, v) = (v, Av). The LP problem (17) is exactly the
LP problem (15).

To conclude the proof we use an argument similar to that of [18, Section C.4]. From [2,
Theorem 3.10] there is no duality gap between LPs (16) and (17) if the supremum p*
is finite and the set P := {(A'y, (7, ¢)) : v € K'} is closed in the weak-* topology of
K'. The fact that p* is finite follows readily from the constraint g + fig = A, fig > 0,
and from compactness of X. To prove closedness, we first remark that A’ is weakly-*
continuous* since A(v,w) € C for all (v,w) € C'([0,T] x X) x C(X). Then we consider a
sequence 7, € M and we want to show that its accumulation point limy e (A" vk, (Y&, €))
belongs to P. Since the supports of the measures are compact and p* is finite (hence
o, pr and fip are bounded) and since T' < oo (hence p is bounded), the sequence 7 is
bounded and from the weak-* compactness of the unit ball (Alaoglu’s Theorem, see [20,
Chapter 5]) there is a subsequence 7, that converges weakly-* to an element v € M so
that lim; oo (A" Yk, (Yii» €)) € P. O

In the above proof we observed that the equivalent LPs (13) and (14) are formulated in
the dual of a Banach space equipped with the appropriate topology. It follows that the
supremum in LPs (13) and (14) is attained (by the restriction of the Lebesgue measure
to Xp), a statement already proved by a different means in Theorem 1. In contrast, the

4The weak-* topology on C'([0,7] x X)" x M(X) is induced by the standard topologies on C' and
C — the topology of uniform convergence of the function and its derivative on C' and the topology of
uniform convergence on C'.

10



infimum in problem (15) is not attained in C*([0,7] x X) x C'(X), but the w-component
of feasible solutions of (15) converges to the discontinuous indicator Ix, as we show next.

Before we state our convergence results, we recall the following types of convergence of a
sequence of functions wy : X — R to a function w : X — R on a compact set X C R".
As k — oo, the functions wy, converge to w:

e in L' norm if [, [w, —w|d\ — 0,

e in Lebesgue measure if A({z : |wg(x) —w(x)| >€}) - 0Ve >0,

e almost everywhere if 3B C X, A(B) = 0, such that w; — w pointwise on X\ B,

e almost uniformly if Ve > 0,3B C X, A(B) < ¢, such that w, — w uniformly on

X\B.

We also recall that convergence in L' norm implies convergence in Lebesgue measure and
that almost uniform convergence implies convergence almost everywhere (see [3, Theorems
2.5.2 and 2.5.3]). Therefore we will state our results in terms of the stronger notions of
L' norm and almost uniform convergence.

Theorem 3 There is a sequence of feasible solutions to problem (15) such that its
w-component converges from above to Ix, in L' norm and almost uniformly.

Proof: By Theorem 1, the optimal solution to the primal is attained by the restriction
of the Lebesgue measure to X,. Consequently,

pr= / Iy, dA. (18)
X

By Theorem 2, there is no duality gap (p* = d*), and therefore there exists a sequence
(v, wi) € CH([0,T] x X) x C(X) feasible in (15) such that

pr=d" = lim [ wy(z)dA(z). (19)

k—o0 X

From Lemma 2 we have wy > 1 on X, and since wy, > 0 on X, we have wy, > Iy, on X
for all k. Thus, subtracting (18) from (19) gives

lim [ (wg(x) — Ix,(z)) d\(x) =0,

k—o0 X

where the integrand is nonnegative. Hence wj, converges to Iy, in L' norm. From [3,
Theorems 2.5.2 and 2.5.3] there exists a subsequence converging almost uniformly. [J
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6 LMI relaxations

In this section we show how the infinite dimensional LP problem (14) can be approximated
by a hierarchy of LMI problems with the approximation error vanishing as the relaxation
order tends to infinity. The dual LMI problem then yields a converging sequence of outer
approximations to the ROA.

The measures in equation (8) (or (9)) are fully determined by their values on a family
of functions whose span is dense in C*([0,7] x X). Hence, since all sets are assumed
compact, the family of test functions in (8) can be restricted to any polynomial basis (since
polynomials are dense in the space of continuous functions on compact sets equipped with
the supremum norm). The basis of our choice is the set of all monomials.

Let Ry[z] denote the vector space of real multivariate polynomials of total degree less
than or equal to k. Each polynomial p(z) € Ri[x] can be expressed in the monomial basis

asS
p(a:) = Z paxaa

lal<k

where « runs over the multi-indices (vectors of nonnegative integers) such that |a| =
Yo < k,and z® =[], «*. A polynomial p(z) is identified with its vector of coefficients
p = (p.) whose entries are indexed by . Given a vector of real numbers y = (y,)
indexed by «, we define the linear functional L, : Ri[z] — R such that

Ly(p) =Py =Y Pala

where the prime here denotes transposition. When entries of y are moments of a measure
v, le.,

Yo = /w“dV(w%

the linear functional models integration of a polynomial w.r.t. v, i.e.,

L) = w9 = [pe)avta) = [ > puatdv(a) =3 [atdvia) = .

When this linear functional acts on the square of a polynomial p of degree k, it becomes
a quadratic form in the polynomial coefficients space, and we denote by My (y) and call
the moment matriz of order k the matrix of this quadratic form, which is symmetric and
linear in y:

Ly(p*) = o' My(y)p.
Finally, given a polynomial g(z) € R[z] we define the localizing matriz My(g, y) by the
equality
Ly(gp*) = p'Mi(g, y)p.
The matrix Mg(g, y) is also symmetric and linear in y.

Let vy, yo, yr and go respectively denote the sequences of moments of measures u, pg, pr
and fip such that the constraints in problem (14) are satisfied. Then it follows that these
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sequences satisfy an infinite-dimensional linear system of equations corresponding to the
equality constraints of problem (14) written explicitly as

/X (T, x)dur(z) — /XU(O,x) dpo(z) — Lo(t,z,u) du(t,z,u) =0,

[0,T]x X xU

[ w@duato)+ [ v dinfe) = [ w)ire

for the particular choice of test functions v(¢, ) = t*2® and w(x) = 2# for all & € N and
£ € N". Let us denote by

Ak(%!/()ﬂ%%) = by

the finite-dimensional truncation of this system obtained by considering only the test
functions of total degree less than or equal to 2k. Let further

and consider the primal linear semidefinite programming problem

pi = max (yo)o
8.t Ak(y yo,?/T,QO) = by,
( ) Mk dxl(ngy) 0 1= 1,2, ,Nx
Mk 1(t( ) ) >' O, Mk—dUi(gUw y) >' O 1 = 1, 2, , Ny (20)
M (yo) t 0, Mk—dxl(ngyO) >‘ 07 Z = 1, 2, ,Nx
My (yr) = 0, My—a,.(g7;,yr) = 0, 1=1,2,...,np
Mi.(go) = 0, My—ax,(9x:,%0) =0, i=1,2,... ny

where the notation > 0 stands for positive semidefinite and the minimum is over sequences
(Y, Yo, yr, Yo) truncated to degree 2k. Problem (20) is a semidefinite program (SDP),
where a linear function is minimized subject to convex linear matrix inequality (LMI)
constraints, or equivalently a finite-dimensional LP in the cone of positive semidefinite
matrices.

For the remainder of the section we make the following standard assumption.

Assumption 2 One of the polynomials modeling the sets X, U resp. Xr, is equal to
9xi(7) = RX — |lz]3, gui(u) = Ry — ||ull3 resp. gri(x) = R} — |[z]|3, with Rx, Ry resp.
Ry sufficiently large constants.

Assumption 2 is made without loss of generality since X, U and X7 are bounded, and
polynomials modeling ball constraints can be added to the semialgebraic descriptions of
these sets.

The dual to the SDP problem (20) is given by
dy = inf 'l
st. —Lu(t,z,u) = p(t,x,u) + q(t, x,u)t(T —t)
+ 20020 6t @, w) g () + D000 it @, w) g ()
w(z) —v(0,2) = 1 =po(x) + 332 qoi(x)gx;(x)
o(T,x) = pr(z) + 327, qri(@)gri(2)
w(r) = So( ) + 2202 s0i(w)gxi(),

13



where [ is the vector of Lebesgue moments over X indexed in the same basis in which
the polynomial w(x) with coefficients w is expressed. The minimum is over polynomials
v(t,x) € Roxlt,z] and w € Ryyz], and polynomial sum-of-squares p(t,z,u), ¢(t,x,u),
i=0,1,...,nx, ri(t,z,u), i = 1,...,ny, po(x), pr(x), qo;(x), qr;(x), so(x), se;(x), i =
1,...,nx of appropriate degrees. The constraints that polynomials are sum-of-squares can
be written explicitly as LMI constraints (see, e.g., [18]), and the objective is linear in the
coefficients of the polynomial w(z); therefore problem (21) can be formulated as an SDP.

Theorem 4 There is no duality gap between primal LMI problem (20) and dual LMI
problem (21), i.e. p; = dj.

In order to prove Theorem 4 we rewrite primal LMI problem (20) in a vectorized form as
follows

p* = min cy
st. Ay=Db (22)
e+ Dy e K,

where y := [V, v), v, U0) and K is a direct product of cones of positive semidefinite ma-
trices of appropriate dimensions, here corresponding to the moment matrix and localizing
matrix constraints. The notation e + Dy € K means that vector e + Dy contains entries
of positive semidefinite moment and localizing matrices, and by construction matrix D
has full column rank (since a moment matrix is zero if and only if the corresponding
moment vector is zero). Dual LMI problem (21) then becomes

d* = max b'x—e€'z
st. Ax+Dz=c (23)
z € K,

and we want to prove that p* = d*. The following instrumental result is a minor extension
of a classical lemma of the alternatives for primal LMI (22) and dual LMI (23). The
notation int K stands for the interior of K.

Lemma 3 If matrix D has full column rank, exactly one of these statements is true:

o there exists x and z € int K such that A'x + D'z = ¢

o there exists y # 0 such that Ay =0, Dy € K and c'y < 0.

Proof of Lemma 3: A classical lemma of alternatives states that if matrix D has full
column rank, then either there exists z € int K such that D’z = € or there exists § such
that Dy € K and €y < 0, but not both, see e.g. [28, Lemma 2] for a standard proof
based on the geometric form of the Hahn-Banach separation theorem. Our proof then
follows from restricting this lemma of alternatives to the null-space of matrix A. More
explicitly, there exists x and z such that A’x + D’z = c if and only if z is such that
D’z = ¢ with D = DF, ¢ = F'c for F a full-rank matrix such that AF = 0. Matrix D
has full column rank since it is the restriction of the full column rank matrix D to the
null-space of A. [.
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Proof of Theorem 4: First notice that the feasibility set of LMI problem (22) is
nonempty and bounded. Indeed, a triplet of zero measures is a trivial feasible point
for (13) and hence (0,0,0,A) is feasible in (14); consequently a concatenation of trun-
cated moment sequences corresponding to the quadruplet of measures (0, 0,0, A) is feasible
in (22) for each relaxation order k. Boundedness of the even components of each moment
vector follows from the structure of the localizing matrices corresponding to the functions
from Assumption 2 and from the fact that the masses (zero-th moments) of the measures
are bounded because of the constraint po + fip = A and because T' < co. Boundedness of
the whole moment vectors then follows since the even moments appear on the diagonal
of the positive semidefinite moment matrices.

To complete the proof, we follow [28, Theorem 4] and show that boundedness of the
feasibility set of LMI problem (22) implies existence of an interior point for LMI problem
(23), and then from standard SDP duality it follows readily that p* = d* since D has a
full column rank; see, e.g., [28, Theorem 5] and references therein.

Let ¥ denote a point in the feasibility set of LMI problem (22), i.e. a vector satisfying
Ay =Db and e + Dy € K. Suppose that there is no interior point for LMI problem (23),
i.e. there is no x and z € int K such that A’x + D’z = ¢. Then from Lemma 3 there
exists y # 0 such that Ay = 0, Dy € K and c'y < 0. It follows that there exists a ray
y + ty, t > 0 of feasible points for LMI problem (22), hence implying that the feasibility
set is not bounded. [J

Now we prove convergence results analogous to those of Theorem 3 as well as a set-wise
convergence to the ROA X of certain super-level sets of the polynomial solutions to (21).

Theorem 5 Let w, € Rog[x] denote the w-component of a solution to the dual LMI
problem (21) and let wy(x) = min;<;, w;(x). Then wy converges from above to Ix, in L'
norm and Wy, converges from above to Ix, in L' norm and almost uniformly.

Proof: From Lemma 2 and Theorem 3, for every € > 0 there exists a (v,w) € C'([0, T] x
X) x C(X) feasible in (15) such that w > Iy, and [ (w — Ix,)d\ < e. Set

(t,x) == wv(t,z) — et + (T + 1),
w(z) = w(z)+ (T + 3)e.

Since v is feasible in (15), we have L0 = Lv — ¢, and 9(T,z) = v(T,z) + €. Since also
w(x) —v(0,2) > 1+ 2, it follows that (0,w) is strictly feasible in (15) with a margin
at least €. Since [0,7] x X and X are compact, there exist® polynomials ¢ and w of a
sufficiently high degree such that ||0 — 9||o < €, |[£0 — LV]]|oo < € and || — V|| < €.
The pair of polynomials (0, w) is therefore strictly feasible in (15) and as a result, under
Assumption 2, feasible in (21) for a sufficiently large relaxation order k (this follows from

the classical Positivstellensatz by Putinar; see, e.g., [18] or [24]), and moreover W > w.
Consequently, [, [ —w|d\ < eA(X), and so [, (0 — w) dX < eA(X)(T + 4). Therefore

/(w—lxo)d)\ <eK, w>Ix,,
b's

5This follows from an extension of the Stone-Weierstrass theorem that allows for a simultaneous
uniform approximation of a function and its derivatives by a polynomial on a compact set; see, e.g., [16].
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where K = [1+ (T + 4)A\(X)] < 0o is a constant. This proves the first statement since e
was arbitrary.

The second statement immediately follows since given a sequence wy, — Iy, in Ly norm,
there exists a subsequence wy, that converges almost uniformly to Iy, by [3, Theorems
2.5.2 and 2.5.3] and clearly wg(z) < min{wy,(z) : k; < k}. O

The following Corollary follows immediately from Theorem 5.

Corollary 1 The sequence of infima of LMI problems (21) converges monotonically from
above to the supremum of the LP problem (15), i.e., d* < df,, < dj and lim,_, dj = d*.
Similarly, the sequence of maxima of LMI problems (20) converges monotonically from
above to the maximum of the LP problem (13), i.e., p* < pi.y < pi, and limy_, pj, = p*.

Proof: Monotone convergence of the dual optima dj, follows immediately from Theorem 5
and from the fact that the higher the relaxation order k, the looser the constraint set of
the minimization problem (21). To prove convergence of the primal maxima observe that
from weak SDP duality we have d; > p; and from Theorems 5 and 2 it follows that
dy, — d* = p*. In addition, clearly p; > p* and p;_,, < pj, since the higher the relaxation
order k, the tighter the constraint set of the maximization problem (20). Therefore
Py — p* monotonically from above. [J

Theorem 5 establishes a functional convergence of wy to Ix, and Corollary 1 a convergence
of the primal and dual optima p; and dj to the volume of the ROA A\(X,) = p* = d*.
Finally, the following theorem establishes a set-wise convergence of the unit super-level
sets of wy, to Xj.

Theorem 6 Let w, € Rog[x] denote the w-component of a solution to the dual LMI
problem (21) and let Xoy, := {x € R" : wg(x) > 1}. Then Xo C Xop,

k—o00
and

Proof: From Lemma 2, we have wy > Ix, and therefore wy, > Ix, > Ix,. From
Theorem 5, we have wy — Ix, in L' norm on X. Consequently,

A(Xo) = /X Iy,d\ = lim [ wpd\ > lim [ Iy, d\ = lim A(Xop)

k—oo [x k—oo [ x k—o00
> lim A<m§:1X0i) = )\(mioleOk>

T k—oo

But since X C Xy for all k£, we must have

Hm A(Xor) = A(Xo) and MM, Xow) = AMXo).

k—o0

This proves the theorem since Xo, D Xy and N2, Xor D Xo. U
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7 Free final time

In this section we outline a straightforward extension of our approach to the problem of
reaching the target set X7 at any time before T' < oo (and not necessarily staying in Xrp
afterwards).

It turns out that the set of all initial states xy from which it is possible to reach Xt at a
time ¢ <T' can be obtained as the support of an optimal solution s to the problem

sup  fio(X)
st L'p=0r ® pr — po
=0, A>po >0, ur >0
spt  C [0,T] x X x U, sptug C X, sptur C [0,T] x Xr,

(26)

where the supremum is over a vector of nonnegative measures (i, o, pr) € M([0,T] X
X xU) x M(X) x M([0,T] x Xr). Note that the only difference to problem (13) is in
the support constraints of the final measure pr.

The dual to this problem reads as

inf / w(z) dA\(z)
X
s.t. Lo(t,z,u) <0, V(t,z,u) € [0,T] x X xU o7
w(z) >v(0,z)+1, VrelX (27)
v(t,x) >0, V(t,z) € [0,7] x Xr
w(x) >0, Vo e X.

The only difference to problem (15) is in the third constraint which now requires that
v(t, z) is nonnegative on Xy for all t € [0,T].

All results from the previous sections hold with proofs being almost verbatim copies.

8 Numerical examples

In this section we present three examples to illustrate our approach: a univariate uncon-
trolled cubic system, an uncontrolled Van der Pol oscillator and a minimum-time control
of a double integrator. For numerical implementation, one can either use Gloptipoly 3 [14]
to formulate the primal problem on measures and then extract the dual solution provided
by SeDuMi [25] or formulate directly the dual SOS problem using, e.g., YALMIP [31] or
SOSTOOLS [26].

8.1 Univariate cubic dynamics

Consider the system given by

t=uxz(x —0.5)(x+0.5),
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Figure 1: Univariate cubic dynamics — polynomial approximations (solid line) to the ROA
indicator function Ix, = Ij_g5,0.5 (dashed line) for degrees d € {4,8, 16, 32}.

the constraint set X = [—1,1], the final time 7" = 100 and the target set Xy =
[—0.01,0.01]. The ROA can in this case be determined analytically as Xy, = [—0.5,0.5].
Polynomial approximations to the ROA for degrees d € {4,8,16,32} are shown in Fig-
ure 1. As expected the functional convergence of the polynomials to the discontinuous
indicator function is rather slow; however, the set-wise convergence of the unit super-level
set is very fast as shown in Table 1. Note that the volume error is not monotonically
decreasing — indeed what is guaranteed to decrease is the integral of the approximating
polynomial, not the volume of its unit super-level set. Numerically, a better behavior is
expected when using alternative polynomial bases (e.g., Chebyshev polynomials) instead
of the monomials; see the conclusion for a discussion.

Table 1: Univariate cubic dynamics — relative error of the outer approximation to the ROA
Xo = [-0.5,0.5] as a function of the approximating polynomial degree.

degree‘ 4 8 16 32
error ‘31.60% 3.32% 0.96% 1.56%
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8.2 Van der Pol oscillator
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Figure 2: Van der Pol oscillator — polynomial outer approximations (light gray) to the
ROA (dark gray) for degrees d € {10, 12,14, 16}.

As a second example consider a scaled version of the uncontrolled reversed-time Van der Pol
oscillator given by

Ztl = —21’2,
iy = 0.871 + 10(z] — 0.21) 5.

The system has one stable equilibrium at the origin with a bounded region of attraction
Xo C X :=[-1.2, 1.2]%

In order to compute an outer approximation to this region we take T' = 100 and Xy =
{z : ||z||2 < 0.01}. Plots of polynomial super-level set approximations of degree d €
{10,12,14,16} are shown in Figure 2. We observe a relatively fast convergence of the
super-level sets to the ROA — this is confirmed by the relative volume error® summarized

5The relative volume error was computed approximately by Monte Carlo integration.
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Figure 3: Van der Pol oscillator — a polynomial approximation of degree 18 of the ROA
indicator function Ix,.

in Table 2. Figure 3 then shows the approximating polynomial itself for degree d = 18.
Here too, a better convergence is expected if instead of monomials, a more appropriate
polynomial basis is used.

Table 2: Van der Pol oscillator — relative error of the outer approximation to the ROA X as a
function of the approximating polynomial degree.

degree | 10 12 14 16

error | 62.7% 29.6% 208% 14.2%

8.3 Double integrator

In our last example we consider a minimum time control of a double integrator

.’tlzflfg

:'ngu.

The goal is to find an approximation of the set of initial states X that can be steered to the
origin in 7' = 1. Therefore we set X7 = {0} and the constraint set such that X, C X, e.g.,
X =[-0.7,0.7] x [-1.2,1.2]. The solution to this problem can be computed analytically
as

Xo={x : V(z) <1},

Vi) Ty + 24/ @1 + 323 if 21+ faalzs| >0,
€T =
—Ty + 24/ —x1 + %x% otherwise.

The computation results are depicted in Figure 4; again we observe a relatively fast
convergence of the super-level set approximations, which is confirmed by the relative
volume errors in Table 3.

where
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Figure 4: Double integrator — polynomial outer approximations (light gray) to the ROA
(dark gray) for degrees d € {6, 8,10, 12}.

9 Conclusion

The main contributions of this paper can be summarized as follows:

e contrary to most of the existing systems control literature, we propose a convex
formulation for the problem of computing the controlled region of attraction;

e our approach is constructive in the sense that we rely on standard hierarchies of
finite-dimensional LMI relaxations whose convergence can be guaranteed theoreti-
cally and for which public-domain interfaces and solvers are available;

e we deal with polynomial dynamics and semialgebraic input and state constraints,
therefore covering a broad class of nonlinear control systems;

e the outer approximation obtained is relatively simple in the sense that it is given
by a super-level set of a single polynomial of degree given a priori;

e additional properties (e.g., convexity) of the approximations can be enforced by
additional constraints on the polynomial (e.g., Hessian being negative definite).
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Table 3: Double integrator — relative error of the outer approximation to the ROA Xj as a
function of the approximating polynomial degree.

degree ‘ 6 8 10 12

error | 789% 34.6% 21.1% 16.6%

The problem of computing the reachability set, i.e. the set of all states that can be
reached from a given set of initial conditions under input and state constraints, can be
addressed with the same techniques. Basically, the initial and final measures exchange
roles. Computation of maximum (controlled) invariant sets should also be amenable to
our approach. Furthermore, there is a straightforward extension to piecewise polynomial
dynamics defined over a semialgebraic partition of the state and input spaces — one mea-
sure is then defined for each region of the partition. Our approach should also allow for
extensions to discrete-time controlled systems, stochastic systems (either discrete-time
controlled Markov processes or controlled SDEs) and/or uncertain systems.

The hierarchy of LMI relaxations described in this paper generates a sequence of nested
outer approximations of the ROA, but it should also be possible, using a similar approach,
to compute valid inner approximations.

Numerical examples indicate that the choice of monomials as a dense basis for the set of
continuous functions on compact sets, while mathematically appropriate (and notationally
convenient), is not always satisfactory regarding convergence and quality of the approxi-
mations. However, this is not peculiar to ROA computation problems — a similar behavior
was already observed when computing the volume (and moments) of semialgebraic sets
in [15]. To achieve better performance, we recommend the use of alternative polynomial
bases such as (appropriately scaled tensor products of) Chebyshev polynomials.

Appendix A

In this Appendix we state and prove the correspondence between the Liouville PDE on
measures (9) and the convexified differential inclusion (11). Let fi(t, ) denote the (¢, z)-
marginal of the occupation measure p defined through (6), that is,

p(Ax B):=pu(AxBxU) VACI[0,T], BC X.

Lemma 4 Let (ug, i, i) be a triplet of measures satisfying the Liouville equation (9)
such that spt g C X, sptu C [0, 7] x X x U and spt ur C Xp. Then there ezists a family
of absolutely continuous admissible trajectories of (11) starting from uo (i.e., trajectories
in X (o)) such that the occupation measure and the terminal measure generated by this
family of trajectories are equal to i and pr, respectively.

Proof: First, disintegrate the occupation measure p as du(t,z,u) = dv(u|t,z)du(t, ),
where dv(u | t,z) is a stochastic kernel, i.e. a probability measure on U for each (¢, )
which is measurable in (¢, z) for a fixed first argument. Then we can rewrite equation (8)
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as

e

/v d,uo—i-/ ov +gradv - f(t,z,u) dv(ult, z) du(t, z)
X [0,T]x X v Ot

/ d,uo—l—/ 8 + grad v - /ftxu)du( |t, )| du(t, x)
b'e [0TxXa

/ -) dptg -I—/ g +gradwv - f(t,2) d(t, z), (28)
X [0,T]x X

where
ft,z) = / f(t,z,u)dv(ult,x) € conv f(t,z,U).
U

Therefore we will study the trajectories of the differential equation

() = f(t, 2(1)). (29)

In the remainder of the proof we show that the measures ur and i are generated by a
family of absolutely continuous trajectories of this differential equation (which is clearly
a subset of trajectories of the convexified inclusion (11)) starting from pg. Note that the
vector field f is only known to be measurable, so this equation may not admit a unique
solution.

Observe that the t-marginal of p (and hence of i) is equal to the Lebesgue measure
restricted to [0, 7] scaled by p := po(X) (=pr(X)) — this follows by plugging in the family
of test functions v(t, ) = t*, k € N, into equation (8). Therefore we can disintegrate i as

di(t,x) = du(z)dt, (30)

where du(x) is a stochastic kernel on X given ¢ scaled by p and dt is the standard
Lebesgue measure. The kernel p; can be thought of as the distribution” of the state at
time t. The kernel p, is defined uniquely dt-almost everywhere, and we will show that
there is a version such that the function ¢ — [, w(x) du(z) is absolutely continuous for
all w € C'(X) and such that the continuity equation

G [ e@du@ = [ madu@ - fendue) veecn @)

is satisfied almost everywhere on [0, 7] with the initial condition .

Fix w € C'(X) and define the test function v(t,z) := ¥ (t)w(x), where ¢ € C*([0,T]).
Then from equation (28)

XTw(T)wduT:/zp(o)wdqur/ A(Ypw)

[0,T7] ><Xa

T grad(vw) - F(t, ) da(t, )
— (0) / wipy + / / b(tyw(z) + (grad w(z) - (¢, ) dp(z)dt

— (0 )/deuﬁ/n [¢/deut+¢/gradw Fdpue] .

It will become clear from the following discussion that for t = 0 and ¢ = T this kernel (or a version
thereof) coincides with ug and pr, respectively; hence there is no ambiguity in notation.

23



which can be seen as an equation of the form
T .
»(T)d =¥ (0)c +/0 D(t)at) +p()b(t) dt vy € C'([0,T1), (32)

where ¢ := [, w(x)duo(x), d = fXT w(z) dpr and b(t) = [ gradw - f(t,z) dp,(z) are
constants and a(t) is an unknown function. One solution is clearly a(t) = [, w du;. Now
we show that

t t
a(t) := c+/ b(r)dr = / w d g +/ / gradw - f dp,dr
0 X 0 Jx

also solves the equation. Indeed, since from (28) with v replaced by w we have a(T) =
Jx wdpr = d, integration by parts gives

/0 D(t)a(t) dt = (T)d — p(0)c — / B(E)b(E) dr,

so a(t) indeed solves equation (32). Now we prove that this solution is unique. Since a is
a solution we have

B(T)d = p(0)c + / B(0)a(t) + (6)b(t) dr,

and subtracting this from (32) we get

0— /0 d(t)la() —a@)dt Vo e C(0,T)),

or equivalently .
0= [ o0l —awlar voe .1,

Since C([0,T1]) is dense in L'([0,T]), this implies a(t) = a(t) dt-almost everywhere. Con-
sequently, since C(X) is separable,

¢
/wdut:/w(x)duo+/ /gradw-fd,quT Vwe CHX) (33)
X X 0 Jx

dt-almost everywhere. The right-hand side of this equality is an absolutely continuous
function of time for each w € C*(X) and the left-hand side is a bounded positive linear
functional on C'(X) for all t € [0,7]. By continuity, the right-hand side is a bounded
positive linear functional on C'(X) for all ¢ € [0,T] which can be uniquely extended to
a bounded positive linear function on C(X) (since C' is dense in C). Therefore, for all
t € [0, 7] the right-hand side has a representing measure and hence there is a version of
¢ such that the equality (33) holds for all t € [0, T]. With this version of y; the function
t — [ w(z)du(x) is absolutely continuous and g, solves the continuity equation (31).

To finish the proof, we use [1, Theorem 3.2] which asserts the existence of a nonnega-
tive measure o on C([0,T]; R™) which corresponds to a family of absolutely continuous
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solutions to ODE (29) whose projection at each time t € [0, 7] coincides with p;. More
precisely, there is a nonnegative measure o € M (C([0,T];R")) supported on a family of
absolutely continuous solutions to ODE (29) such that for all measurable w : R" — R

[ vt = [ D) do(e() Ve 0.7 (34)

sR™)
It follows from (30) that
T
a(A x B) = / Ia(t)Ip(x)du(t,x) = / IA(t)/ Ip(z) duy(x) dt.
[0,T]x X 0 b
Therefore, using (34) with w(z) = Ig(z) and Fubini’s theorem, we get

iaxB) - |

C([0,T];R™

)/0 Luws(t, 2(1)) dt do (2 (),

and so the occupation measure of the family of trajectories coincides with . Clearly,
the initial and the final measures of this family coincide with g and pr as well. As a
result o-almost all trajectories of this family are admissible. The proof is completed by
discarding the null-set of trajectories that are not admissible, which does not change the
measure o and the generated measures i, pg, pp. U

Appendix B

In this Appendix we elaborate further on the discussion from Section 3.2 on the connection
between the classical ROA and the relaxed ROA. Let us recall the definition of the classical
ROA

Xo:={xo € X : X(x9) # 0},

where
X (o) :={z() : 2(t) € f(t,z(t),U), x(0) =z, x(t) € X, z(T) € Xr},

and z(-) is required to be absolutely continuous. Similarly, recall the definition of the
relaxed ROA B )
Xo:={zo € X : X(x9) # 0},

where
X (z0) == {x(:) : @(t) € conv f(t,z(t),U), x(0) =z, 2(t) € X, x(T) € Xp}
with z(-) absolutely continuous. Obviously, it holds
Xy C Xo, (35)

and the question is whether this inclusion is strict or not.
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Denote B(a) := {x € R" : ||z — a||2 < €} and define the dilated constraint sets
X :=X®B(0) and X :=Xr® B.(0),

where @ denotes the Minkowski sum of two sets. Accordingly, the dilated ROA and the
dilated relaxed ROA are

where
X(xo) = {x():2(t) € f(t, (1), U), 2(0) = xo, x(t) € X, x(T) € X7},
X(z) = {z(:):&(t) € conv f(t,z(t),U), x(0) = zo, x(t) € X, z(T) € X&}.

Since the constraint sets are compact and the vector field f Lipschitz, it follows from the
equivalence between the trajectories of the convexified inclusion (11) and solutions to the
Liouville equation (9), stated in Lemma 4 of Appendix A, and from Filippov-Wazewski’s
relaxation Theorem (see, e.g., [5]) that

X, = spt g C ﬂxg.

e>0

In contrast, for all € > 0 it holds B
X5 = X§.

In general inclusion (35) is strict. However, we argue that for most practical purposes
the relaxed ROA X and the true ROA X are the same. Indeed, for any xq € X, there
exists a sequence of admissible control functions () such that

sup distx(zx(t)) = 0 and distx,.(zx(T)) =0 as k — oo,
t€[0,T]

where 7 () denotes the solution to the ODE (1) corresponding to the control function
ug(+), and dist4(z) := inf{||z — x|z : z € A} denotes the distance to a set A.

Appendix C

In this Appendix we describe two contrived examples of control systems (1) for which
the relaxed ROA X is strictly larger than the classical ROA X,; see Appendix B for
definitions.

Let f(t,x,u) =u, U ={-1,41}, X = Xy = {0} for, e.g., T = 1. Obviously there is no
admissible trajectory in X'(0), whereas there is a feasible triplet of measures satisfying (9)
given by pg = do, pr = 0o and p = A1) ® dp @ %(5_1 + d41), where A1) denotes the
restriction of the Lebesgue measure to [0,1]. Therefore in this case Xo = 0 # X, =
{0}, but A(Xy) = A(Xp). Assumption 1 is therefore satisfied. Note that the relaxed
solution corresponds to an infinitely fast chattering of the control input between —1 and
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+1 which can be arbitrarily closely approximated by chattering solutions of finite speed;
the singleton constraint set X, however, renders such solutions infeasible.

Another example for which the gap (e.g., in volume) between X and X, can be as large
as desired is the following. Consider & = u € R? with

z € X :=Bp((=1 = R,0))U[—1,1] x {0} U B,((+2,0)) C R?

for a given R > 0 and with v € U := {—1,1}? and X7 := B;((+2,0)). Then X, = X7 is
strictly smaller than X, = X, and \(Xy) = 7, whereas A\(Xy) = (1+ R?)7. Assumption 1
is therefore not satisfied for R > 0. In this example, regular solutions starting in the
left ball cannot transverse the line to the right ball; this is, by contrast, possible for the
relaxed solutions using an infinitely fast chattering.
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