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Abstract

The fundamental matrix can be estimated from point matches. The current

gold standard is to bootstrap the eight-point algorithm and two-view projective

bundle adjustment. The eight-point algorithm first computes a simple linear least

squares solution by minimizing an algebraic cost and then computes the closest

rank-deficient matrix. This article proposes a single-step method that solves both

steps of the eight-point algorithm. Using recent result from polynomial global op-

timization, our method finds the rank-deficient matrix that exactly minimizes the

algebraic cost. The current gold standard is known to be extremely effective but

is nonetheless outperformed by our rank-constrained method boostrapping bundle

adjustment. This is here demonstrated on simulated and standard real datasets.

With our initialization, bundle adjustment consistently finds a better local mini-

mum (achieves a lower reprojection error) and takes less iterations to converge.

Keywords : Global optimization, convex optimization, linear matrix inequality,

fundamental matrix.

1 Introduction

The fundamental matrix has received a great interest in the computer vision commu-

nity (see for instance [24, 2, 33, 13, 31, 7, 3]). This (3×3) rank-two matrix encapsu-

lates the epipolar geometry, the projective motion between two uncalibrated perspec-

tive cameras, and serves as a basis for 3D reconstruction, motion segmentation and

camera self-calibration, to name a few. Given n point matches (qi,q
′
i), i = 1, . . . ,n

between two images, the fundamental matrix is estimated in two phases. The initial-

ization phase finds some suboptimal estimate while the refinement phase iteratively
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minimizes an optimal but nonlinear and nonconvex criterion. The gold standard uses

the eight-point algorithm and projective bundle adjustment for these two phases, re-

spectively. A ‘good enough’ initialization is necessary to avoid local minima at the

refinement phase as much as possible. The main goal of this article is to improve the

current state of the art regarding the initialization phase.

The eight-point algorithm follows two steps [24]. In its first step, it relaxes the

rank-deficiency constraint and solves the following convex problem:

F̃ = argmin
F∈R3×3

C(F) s.t. ‖F‖2 = 1, (1)

where C is a convex, linear least squares cost, hereinafter called the algebraic cost:

C(F) =
n

∑
i=1

(
q′⊤

i Fqi

)2

. (2)

This minimization is subject to the normalization constraint ‖F‖2 = 1. This is to avoid

the trivial solution F = 0. Normalization will be further discussed in section 3. The

estimated matrix F̃ is thus not a fundamental matrix yet. In its second step, the eight-

point algorithm computes the closest rank-deficient matrix to F̃ as:

F8pt = argmin
F∈R3×3

‖F− F̃‖2 s.t. det(F) = 0. (3)

Both steps can be easily solved. The first step is a simple linear least squares problem

and the second step is solved by nullifying the least singular value of F̃. It has been

shown [13] that this simple algorithm performs extremely well in practice, provided

that the image point coordinates are standardized by simply rescaling them so that they

lie in [−
√

2;
√

2]2.

Our main contribution in this paper is an approach that solves for the fundamental

matrix minimizing the algebraic cost. In other words, we find the global minimum of:

F̃ = argmin
F∈R3×3

C(F) s.t. det(F) = 0 and ‖F‖2 = 1. (4)

Our algorithm uses polynomial global optimization [23, 15]. Previous attempts [36, 6,

19] in the literature differ in terms of optimization strategy and parameterization of the

fundamental matrix. None solves problem (4) optimally for a general parameteriza-

tion: they either do not guarantee global optimality [6, 19] or prescribe some camera

configurations [36, 6, 19] (requiring typically that the epipole in the first camera does

not lie at infinity).

Our experimental evaluation on simulated and real datasets compares the difference

between the eight-point algorithm and ours used as initialization to bundle adjustment.

We observe that (i) bundle adjustment consistently converges within less iterations with

our initialization and (ii) bundle adjustment always achieves an equal or lower repro-

jection error with our initialization. We provide numerous examples of real image pairs

from standard datasets. They all illustrate practical cases for which our initialization

method allows bundle adjustment to reach a better local minimum than the eight-point

algorithm.

2 State of the Art

Accurately and automatically estimating the fundamental matrix from a pair of images

is a major research topic. We first review a four-class categorization of existing meth-
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ods, and specifically investigate the details of existing global methods. We finally state

the improvements brought by our proposed global method.

2.1 Categorizing Methods

A classification of the different methods in three categories –linear, iterative and robust–

was proposed [2]. Linear methods directly optimize a linear least squares cost. They

include the eight-point algorithm [24], SVD resolution [2] and variants [33, 13, 31, 7].

Iterative methods iteratively optimize a nonlinear and nonconvex cost. They require,

and are sensitive to the quality of, an initial estimate. The first group of iterative meth-

ods minimizes the distances between points and epipolar lines [17, 5]. The second

group minimizes some approximation of the reprojection error [25, 37, 34, 8]. The third

group of methods minimizes the reprojection error, and are equivalent to two-view pro-

jective bundle adjustment. Iterative methods typically use a nonlinear parameterization

of the fundamental matrix which guarantees that the rank-deficiency constraint is met.

For instance, a minimal 7-parameter update can be used over a consistent orthogonal

representation [3]. Finally, robust methods estimate the fundamental matrix while clas-

sifying each point match as inlier or outlier. Robust methods use M-Estimators [12],

LMedS (median least squares) [37] or RANSAC (random sampling consensus) [32].

Both LMedS and RANSAC are stochastic.

To these three categories, we propose to add a fourth one: global methods. Global

methods attempt at finding the global minimum of a nonconvex problem. Convex

relaxations have been used to combine a convex cost with the rank-deficiency con-

straint [6]. However, the relaxations do not converge to a global minimum and the

solution’s optimality is not certified.

2.2 Global Methods

In theory, for a constrained optimization problem, global optimization methods do not

require an initial guess and are guaranteed to reach the global minimum. There are

two ways to obtain this certificate of optimality. The first way consists in describing

the search space the most exhaustively as possible in order to test as many candidate

solutions as possible. In this category, there are methods such Monte-Carlo sampling,

which tests random elements of space constraints, and reactive tabu search [9, 11],

which continues searching even after a local minimum has been found. The major

drawback of these methods is mainly in the prohibitive computing time, required to

guarantee a sufficiently high probability of success. The second class of methods pro-

vides a certificate of optimality using the mathematical theory from which they are

built. Branch and Bound algorithms [20] or global optimization by interval analy-

sis [10, 27] are examples of methods lying in this second family. However, although

these methods can be faster than those of the first category, their major drawback is

their lack of generality. Indeed, these approaches are usually dedicated to one particu-

lar type of cost function because they use highly specific computing mechanisms to be

as efficient as possible. A review of global methods may be found in [35].

A good deal of research has been conducted over the last few decades on apply-

ing global optimization methods in order to solve polynomial minimization problems

under constraints. The major drawback of these applications has been the difficulty

to take constraints into account. But, through simplification of the problem, these ap-

proaches have mainly been used to find a starting point for local iterative methods.
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However, recent results in the areas of convex and polynomial optimization have fa-

cilitated the emergence of new approaches. These have attracted great interest in the

computer vision community. In particular, global polynomial optimization [23, 15] has

been used in combination with a finite-epipole nonlinear parameterization of the fun-

damental matrix [36]. This method does not cover camera setups where the epipole

lies at infinity. A global convex relaxation scheme [23, 15] was used to minimize the

Sampson distance [19]. Because this implies minimizing a sum of many rational func-

tions, the generic optimization method had to be specifically adapted. The solution’s

global optimality can thus not be certified.

2.3 The proposed method.

The proposed method lies in the fourth category: it is a global method. Similarly to

the eight-point algorithm, it minimizes the algebraic cost, under the nonlinear rank-

deficiency constraint. Contrarily to previous global methods [36, 6, 19], ours handles

all possible camera configurations (it does not make an assumption on the epipoles

being finite or infinite) and certifies global optimality.

3 Polynomial Global Optimization

3.1 Background on the Optimization Method

Our optimization method is based on an idea first described in [21]. It consists in refor-

mulating a nonconvex global optimization problem P with polynomial data (i.e., min-

imization of a polynomial objective function subject to polynomial inequalities and/or

equations) as an equivalent convex linear programming (LP) problem over probability

measures. Instead of optimizing over a vector in a finite-dimensional Euclidean space,

we thus optimize over probability measures, i.e., in an infinite-dimensional space. The

unknown measures are supported on the feasibility set of the optimization problem

which in our case is a basic semi-algebraic set, i.e., a set defined by finitely many

polynomial equalities and inequalities. In addition, we assume that the set is compact.

More concretely, a probability measure is understood as a linear functional acting on

the space of continuous functions, and we manipulate a measure only through its mo-

ments which are images of monomials (dense in the space of continuous functions with

compact support). Using results from Functional Analysis (in duality with counterpart

results of Real Algebraic Geometry), a sequence of numbers are moments of a prob-

ability measure on a compact basic semi-algebraic set K if and only if this sequence

satisfies countably many semidefinite constraints on so-called moment and localizing

matrices of increasing size. Then, accordingly, we construct a hierarchy of semidefinite

programs Qd , d ∈ N, where each Qd , d ∈ N, is concerned with moment and localiz-

ing matrices of fixed size d, and is a convex relaxation of the original problem P. The

sequence of corresponding optimal values is monotone non decreasing and converges

to the global optimal value of P. In fact, solving a linear program on the space of fi-

nite measures on a compact basic semi-algebraic set boils down to solving a hierarchy

of semidefinite programming (SDP) problems, also called linear matrix inequalities

(LMIs).

Practice reveals that convergence is fast and very often finite. In fact, finite conver-

gence is guaranteed in a number of cases, e.g., discrete optimization and some convex

problems as well. Moreover there is a sufficient condition (on the rank of moment ma-
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trices) which permits to detect whether the optimal value is attained at some step in the

hierarchy and to extract corresponding global optimizers. We then obtain a numerical

certificate of global optimality of the solution(s). Moreover, very recent results by Nie

[28] show that finite convergence is even generic! This approach has been success-

fully applied to globally solve various polynomial optimization problems (see [22] for

an overview of results and applications). In computer vision this approach was first

introduced in [18] and used in [19].

Concretely, we formulate each of our polynomial optimization problems as an LP

on measures which in turn reduces to solving a hierarchy of finite-dimensional SDP

problems. Each SDP can be formulated with the help of the Matlab interface Glop-

tiPoly 3 [16] and then is solved by using public-domain implementations of primal-

dual interior point algorithms for semidefinite programming. These algorithms rely

on a suitable logarithmic barrier function for the SDP cone, and they proceed by it-

eratively reducing the duality gap between the primal problem and its dual (which is

also an SDP problem). Each iteration consists of solving a linear system of equations,

involving the gradient and the Hessian of a Lagrangian built from the barrier function.

Most of the computational burden comes from the construction and the storage of the

Hessian matrix, and problem sparsity can be largely exploited at this stage. For more

information on SDP and related optimization methods, see [4] and [1].

3.2 Application to Fundamental Matrix Estimation

An important feature of our approach is that the rank-2 constraint can be directly in-

cluded in the problem description and moreover we do not need an initial estimate as

in other methods. Nevertheless, the problem being homogeneous, an additional nor-

malization constraint is needed to avoid the trivial solution F = 0. This is generally

done by setting one of the fi j coefficients of the F matrix to 1. However with such a

normalization there is no guarantee that the feasible set is compact which is a neces-

sary condition for the convergence of our polynomial optimization method. Thus, to

guarantee compactness of the feasible set and to avoid the trivial solution, we include

the additional normalization constraint ‖F‖2 = 1.

Alternatively, the rank-2 constraint can be inferred by parameterizing the F matrix

using one or two epipoles. For instance, in [10] the authors have tried to use polynomial

optimization to estimate the F matrix, parametrized by using a single epipole. However

such an approach has several drawbacks. Firstly, the coefficients of F are not bounded

and the convergence of the method is not guaranteed. Secondly, using the epipole

explicitly increases the degree of the polynomial criterion and consequently, the size

of the corresponding relaxations in the hierarchy. This results in a significant increase

of the computational time. Finally, the choice of this parametrization is arbitrary and

does not cover all camera configurations.

Notice also that even though the parametrization based on two epipoles is theoret-

ically optimal, this method is not practical as it would be necessary to cover all the

36 possible parameter sets. Therefore it is preferable to introduce the rank constraint

directly in the problem description rather than via some parametrization of F. A simi-

lar approach has been developed in [11] by using a specific hierarchy of convex relax-

ations, a similar technique. But the optimization variables are not bounded since like in

[10], the constraint “‖F‖2 = 1” is removed and a normalization constraint is introduced

by fixing one of the fi j coefficients to 1. Moreover, the constraint “det(F) = 0” is taken

into account by introducing additional optimization variables and there is no proof that

this specific hierarchy of convex relaxations converges to the global minimum.
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Finally, in [12] the authors minimize the Sampson distance via solving a hierar-

chy of convex relaxations built upon an epigraph formulation. Nevertheless, even if the

rank correction is achieved using the constraint “det(F) = 0”, the normalization is done

by setting the coefficient f33 to 1, and so the other coefficients of F are not bounded.

Moreover there is no guarantee of convergence to global minimum.

Our method is summarized in Algorithm 1 below. Its main features are:

• In contrast with [18, 19] the optimization problem is formulated with an explicit

Frobenius norm constraint on the decision variables. This enforces compactness

of the feasibility set which is included in the Euclidean ball of radius 1. We have

observed that enforcing this Frobenius norm constraint has a dramatic influence

on the overall numerical behavior of the SDP solver, especially with respect to

convergence and extraction of global minimizers.

• We have chosen the SDPT3 solver [29, 30] since our experiments revealed that

for our problem it was the most efficient and reliable solver;

• We force the interior-point algorithm to decrease the duality gap as much as

possible, overruling the default parameter tuning in SDPT3;

• Generically, polynomial optimization problems on a compact set have a unique

global minimizer; this is confirmed in our numerical experiments as the mo-

ment matrix has almost always rank-one (which certifies global optimality) at

the second SDP relaxation of the hierarchy. In some (very few) cases the global

optimum is not fully accurate, but yet largely satisfactory; if a more accurate

optimum is required, a local refinement based on Newton’s method can be tried

(which we did not do in our implementation).

Algorithm 1 Polynomial optimization for fundamental matrix estimation

Require: Matched points (qi,q
′
i), i = 1, . . . ,n

1: Create the cost function:

mpol(’F’,3,3);

for k = 1:size(q1)

n(k) = (q2’*F*q1)^2;

end;

Crit = sum(n);

2: Create the constraints:

K_det = \det(F) == 0; K_fro trace(F*F’) == 1;

3: Tune duality gap:

pars.eps = 0; mset(pars);

4: Change the solver to SDPT3:

mset(’yalmip’,true); mset(sdpsettings(’solver’,’sdpt3’));

5: Form the problem and call the solver:

P = msdp(min(crit),K_det,K_fro);msol(P);
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4 Experimental Results

This section presents results obtained by the test procedure presented below with the

8-point method and our global method. First, criteria to evaluate the performance of

a fundamental matrix estimate are described. Next, the evaluation methodology is

detailed. Experiments were then carried out on synthetic data to test the robustness to

noise and to the number of extracted points. Finally, experiments on real data were

performed to confirm previous results and to study the influence of the motion between

the two images.

4.1 Evaluation Criteria

Various evaluation criteria were proposed in the literature [37] to evaluate the quality

of a fundamental matrix estimate. Driven by practice, a fundamental matrix estimate

F is evaluated with respect to the behavior of its subsequent refinement by projective

bundle adjustment. It is worth of note that a pair of uncalibrated perspective cameras

are, up to some projective basis, equivalent to the fundamental matrix. In other words,

a fundamental matrix is an implicit projective 3D reconstruction.

Bundle Adjustment from two uncalibrated views is described as a minimization

problem. The cost function is the mean value of reprojection errors of measurement

points (qi,q
′
i)i=1,...,n. The unknowns are the 3D points (Qi)i and the projection matrices

P and P′.

• The first criterion is then the initial reprojection error written eInit(F).

• The second criterion is the value of the cost function achieved at the optimum

(i.e. the final reprojection error eBA(F)).

• The third criterion is the number of iterations taken to converge, Iter(F).

These three criteria assess whether the estimate provided by the two methods, denoted

by F8pt and FGp, is in the ‘good’ basin of attraction. Indeed, the number of iterations

gives an indication of the distance between the estimate and the optimum while eBA(F)
gives an indication on the quality of the optimum.

4.2 Evaluation Method

The following algorithm summarizes our evaluation method:

Evaluate(F)

1. Inputs: fundamental matrix estimate F, n point matches (qi,q
′
i), i = 1, . . . ,n

2. Form initial projective cameras [26]:

Find the second epipole from F⊤e′ ∼ 0(3×1)

Find the canonical plane homography H∗ ∼ [e]×F

Set P ∼
[
I(3×3) 0(3×3)

]
and P′ ∼ [H∗ e′]

3. Form initial 3D points [14]:

Triangulate each point independently by minimizing the reprojection error
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4. Compute eInit(F)

5. Run two-view uncalibrated bundle adjustment [12]

6. Compute eBA(F) and Iter(F)

7. Outputs: eInit(F), eBA(F) and Iter(F)

4.3 Experiments on Simulated Data

4.3.1 Simulation Procedure

For each simulation series and for each parameter of interest (noise, number of points

and number of motions), the same methodology is applied with the following four

steps:

1. For two given motions between two succesives images ([Rk tk]) and for a given

matrix of internal parameters, a set of 3D-points (Qi)i (i = 1 . . .N) is generated

and two projection matrices P1 and P2 are defined. In practice, the rotations

matrices, R1 and R2, of two motions are defined by:

Rk
△

=




cos(θk) 0 sin(θk)
0 1 0

−sin(θk) 0 cos(θk)


 with





θ1 =
π

3
and

θ2 =
π

6

(5)

and their translation vectors by t1 = (20,0,5)⊤ and t2 = (6,0,0)⊤. These ma-

trices are chosen such that [R1, t1] is a large movement and [R2, t2] is a small

movement (see Figure 1). We simulated points lying in a cube with 10 meter

side length. The first camera looks at the center of the cube and it is located 15

meters from the center of the cube. The focal length of the camera is 700 pixels

and the resolution is 640×480 pixels.

2. Thanks to projection matrices P1 and P2, the set of 3D-points (Qi)i is projected

onto the two images as (qi,q
′
i)i. At each of their pixel coordinates, a centered

Gaussian noise with a variance σ
2 is added. In order to have statistical evidence,

the results are averaged over M trials.

3. The resulting noisy points (q̃i, q̃
′
i)i are used to estimate F by our method FGp and

the reference 8-point method F8pt .

4. Finally, via our evaluation procedure we evaluate the estimation error with re-

spect to the variance of the noise (σ2) and the number of points (N).

4.3.2 Robustness to Noise

We tested in two simulation series the influence of the variation of the noise standard

deviation σ ranging from 0 to 2 pixels. The number of simulated points is 50. The

number of trials M is 100. The first (resp. second) simulation serie is based on the

first motion [R1 t1] (resp. the second motion [R2 t2]). Figure 2 gathers the influence

of noise on evaluation criteria. The first line shows the reproduction errors before,

eInit(F), and after eBA(F) refinement through Bundle Adjustment with respect to the

noise standard deviation. The second line shows the number of iterations Iter(F) of the
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Bundle Adjustment versus the noise standard deviation. The first (resp. second) row

concerns the first (resp. second) motion.

For the two motions, re-projection errors, eInit(F) or eBA(F), increase with the same

slope when the noise level increases. Notice that for both movements, the Bundle-

Adjustment step does not improve the results. Indeed, the noise gaussian noise is added

to the projections (qi,q
′
i)i. So this is noise which in practice would be produced by the

extraction points process. Thus the solution produced by the resolution of the linear

system is very close to the optimum and does not need to be refined. The initial solution

provided by the triangulation step is then very close to a local minimum of the Bun-

dle Adjustment problem. Moreover, the variation of the errors of initial re-projection

before (8pt − Init et Gp− Init) and after (8pt −BA et Gp−BA) Bundle Adjustment

versus the noise standard deviation is linear. However, the number of iterations needed

for convergence is different in the two methods. The initial estimate of the triangula-

tion computed from FGp is closer to the local minimum than that obtained from F8pt .

For the first motion (large displacement between camera 1 and 2), the number of it-

erations of the global method (in green) remains smaller than for the 8-point method

(in blue) even though their difference seems to decrease when the noise level is high

(σ > 1). For a significant displacement the quality of the estimate F by the global

method remains better even though the difference in quality diminishes with the noise

level. Conversely, for the second motion (small displacement between the camera 1

and 2) both methods are equivalent since the difference in quality is only significant

for a high level of noise (σ > 1). This is logical as the movement is less important. As

a conclusion, the 8-point method provides a solution equivalent to that obtained with

the global method when the displacement is not too important. For more significant

movements the provided solution is not so close even though still in the same basin of

attraction of a local minimum.

4.3.3 Influence of the Number of Points

In this experiment, we kept the noise level constant with a standard deviation σ
2 = 0.5

pixels. We tested the influence of the number of matches (qi,q
′
i)i on the quality of the

resulting estimate of F. The number of points N varied from 10 to 100. Two simulation

series are also carried out with the two motions.

Figure 3 brings with the same organization the evaluation criteria. It displays the

influence of the number of matches for estimating F on the re-projection errors and

on the number of iterations. For both motions and for a sufficiently high number of

matches (N > 50), re-projection errors, before and after refinement with Bundle Ad-

justment, or the number of iterations versus the number of matches converge to the

same asymptote. From a high number of matches, the initial estimate from triangula-

tion computed with F8pt and with FGp are both in the same basin of attraction for the

Bundle Adjustment problem. However, for a number of matches smaller than 50, the

number of iterations to converge is smaller for given re-projection errors. The quality

of the estimation by the global method seems better. The initial estimate from triangu-

lation computed with F8pt goes away from the basin of convergence whereas the one

computed with FGp remains in the basin.

4.3.4 Influence of the Number of Points with Wide Baseline

In order to sustain the previous behavior, for a noise standard deviation of σ
2 = 1 pixel

and for the significant displacement [R1 t1], the influence of the number of matching

9



(I) (II) (III)

Fig. 1: Projection of the cube in the camera on initial position (I) and in the camera

after applying the rigid transformation [R1 t1] (II) and the rigid transformation [R2 t2]
(III).
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Fig. 2: For two movements, [R1 t1] (left column) and [R2 t2] (right column), reprojec-

tion errors and number or iterations measured against image noise.
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Fig. 3: For two movements, [R1 t1] (left column) and [R2 t2] (right column), reprojec-

tion errors and number or iterations measured against number of points for a gaussian

noise with a variance fixed to 0.5.
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points on the re-projection errors and on the number of iterations was tested. In this

difficult context, Figure 4 demonstrates that the initial estimate computed from FGp is

always closer to the local minimum than that computed from F8pt . No matter what is

the number of matching points, the number of iterations needed to converge is always

smaller.

10 20 30 40 50 60 70 80 90 100
0.4

0.6

0.8

1

Number of points

o
e(

F
)

–
P

ix
el

s

8pt–Init

8pt–BA

Gp–Init

Gp–BA

10 20 30 40 50 60 70 80 90 100
3

4

5

6

7

8

9

10

11

12

Number of points

It
er
(F
)

8pt

Gp

Fig. 4: For the movement [R1 t1], reprojection errors and number or iterations mea-

sured against number of points for a gaussian noise with a variance fixed to 1 (left and

right).

As a conclusion, the quality of solutions obtained by both methods is almost iden-

tical when the movement is not too important, the number of matching points is suf-

ficiently large, and the noise level is not too high. However, when one of these three

parameters varies then the 8-point method lacks precision whereas the global method

still allows Bundle Adjustment to convergence to the global minimum. The 8-point

method computes the projection of an unconstrained local minimizer on the feasible set

whereas the global method provides a global minimizer of the constrained optimization

problem. It is already surprising that even for good values of the three parameters the

resulting solutions are not too far apart. But for bad values of the parameters it would

be even more surprising.

4.4 Experiments on Real Data

The evaluation criteria remain the same, eInit(F), eBA(F) and Iter(F) and the compu-

tation time is added. Two experiments were carried out with two sets of images that

illustrate different motions between two successive images.

4.4.1 Experiment 1

The first set of four images (see Table 5) shows all possible epipolar configurations

(right or left epipole at infinity . . . ). With four images, six motions between a pair of

images are possible: A−B, A−C, A−D, B−C, B−D and C−D. For every pair

of images, 60 matches are available to compute an estimate of F. The values of the

evaluation criteria are summarized in table 5. No matter what pair of images is used,

12



the re-projection errors and the number of iterations are almost always better when

FGp is used as initial guess. In addition, for three motions (A−C, A−D and C−D), in

contrast with the initial guess FGp, the initial guess from the 8-point method is not in a

better basin of attraction. This may explain why the initial re-projection errors eInit(F)
are sometimes larger for FGp as the initial guess may be in a good basin of attraction but

with a larger re-projection error. For the four motions A−B, B−C, B−D and B−D,

both initializations are in the same basin of attraction but the number of iterations

demonstrates that the initial guess from the global method is always closer to the local

minimizer. Finally, even though the computation time of the latter is significantly larger

than for the 8-point method, it still remains compatible with a practical use.

4.4.2 Experiment 2

The second experiment compares the two methods on large motions. It is based on

many series of images. First we test our algorithm with the classic series Library, Mer-

ton, dinosaur and house that are available at www.robots.ox.ac.uk/~vgg/data/

data-mview.html. For the set of three images of Library and Merton serie, Ta-

ble 6, 7, 8 and Table 9 demonstrate that the quality of the solution achieved by the

global method is always better than with the 8-point method (in some cases both solu-

tions are very close).

We also conducted the same tests on other pairs of images. For the first pair, we

used images from a standard cylinder graciously provided by the company NOOMEO

(http://www.noomeo.eu/). This cylinder is use to evaluate the accuracy of 3D re-

constructions. Matched points are calculated with digital image correlation method.

They are located in a window inside the cylinder. Thus, we have 6609 pairs (qi,qi)i

matched to sub-pixel precision. Results are presented in the Table 10. We observe that

the computation time of the 8-point method exceeds one second. This is due to the

large number of matched points which leads to the resolution of a large linear system.

However, as the points are precisely matched, this system is well conditioned. But the

quality of the fundamental matrix estimated with the 8-point method is not sufficient to

properly initialize the Bundle-Adjustment because the final re-projection error is 1.47

pixels. At the same time, even if the number of iterations is larger, our global method

supplies a good estimation because the final re-projection error is 0.25 pixels. Fur-

thermore, the calculation time remains constant in approximately 2 seconds. For the

second pair, we use images taken by an endoscope. Table 11 shows the results obtained

on this difficult case. As for the previous example, we observe that the fundamental

matrix estimated by our global method is good quality because the final error is 0.93

pixels. At the same time, Bundle Adjustement puts more iterations to converge on a

less precise solution when we use F8pt to initialize it.

For the set of 36 images of the Dinosaur series and 9 images of the house series,

we tested the influence of motion amplitude between a pair of image on the quality of

the resulting estimates obtained by both methods. For this purpose, we had both es-

timates with all possible motions ((0,1),(1,2),(2,3), . . .) with 1-image distance, then

all possible motions ((0,2),(1,3),(2,4), . . .) with 2-image distance, and so on. With

this process, we can measure the influence of the average angle on the quality of the

fundamental matrix estimated by both methods. Figures from 12 to 17 shows the av-

erage of re-projection errors and the average of number of iterations with respect to

average angle for the two series. The re-projection error after Bundle Adjustment is

always smaller with the global method and with always a smaller number of iterations.

Next, the larger the movement the more the solution by both methods deteriorates. But
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www.robots.ox.ac.uk/~vgg/data/data-mview.html
www.robots.ox.ac.uk/~vgg/data/data-mview.html
http://www.noomeo.eu/


the deterioration is larger for the 8-point method than for the global method. One may

also observe that in some cases the re-projection error before Bundle Adjustment is in

favor of the 8-point method. In analogy with the real cases studied before, this may

be due to the fact that for these cases the initial guess FGp is in a basin of attraction

with a better local minimum than in the basin of attraction associated with F8Pt , but the

‘distance’ between the initial guess and the corresponding local minimizer is larger for

FGp than for F8Pt . Indeed in such cases the number of iterations is larger for FGp than

for F8Pt .

— A — — B —

— C — — D —

Views Epipoles eInit(F) eBA(F) Iter(F) Time

e e′ F8Pt FGp F8Pt FGp F8Pt FGp F8Pt FGp

A B ∞ ∞ 0.597617 0.65270 0.00252 0.00252 6 6 0.017 2.39

A C ∞ ∞ 5.61506 5.61996 2.48258 0.00342 122 175 0.017 1.98

A D ∞ ∞ 21.0855 21.5848 4.74837 0.00344 105 30 0.017 2.12

B C ∞ ∞ 2.49098 1.91136 0.00260 0.00260 17 12 0.018 1.97

B D ∞ ∞ 22.0071 23.6253 0.00268 0.00268 122 81 0.018 1.92

C D ∞ ∞ 28.6586 28.6174 16.6507 0.25921 39 1001 0.018 2.1

Fig. 5: Reprojection Error before (eInit(F)) and after Bundle Adjustment (eBA(F)),
Number of Iterations (Iter(F)), and CPU time to compute F (Time), obtained when

combining pairs of images to obtain epipoles close to the images or toward infinity
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1 2 3

Views nb Points eInit(F) eBA(F) Iter(F) Time

F8Pt FGp F8Pt FGp F8Pt FGp F8Pt FGp

1 2 310 18.27449 18.32095 11.39809 11.287591 65 57 0.035 2.05

2 3 439 61.84817 63.79435 41.81854 40.2224 29 28 0.020 2.22

1 3 439 42.67438 42.23867 28.65971 27.90128 40 32 0.043 2.10

Fig. 6: Reprojection Error before (eInit(F)) and after Bundle Adjustment (eBA(F)),
Number of Iterations (Iter(F)), and CPU time to compute F (Time), obtained when

combining pairs of images of the Library series

1 2 3

Views nb Points eInit(F) eBA(F) Iter(F) Time

F8Pt FGp F8Pt FGp F8Pt FGp F8Pt FGp

1 2 485 15.1771 15.3126 9.8859 9.7360 77 55 0.048 2.02

2 3 439 61.84817 63.79435 41.81854 40.2224 29 28 0.020 2.22

1 3 384 51.3128 2.3690 7.5245 0.56180 5 52 0.040 2.71

Fig. 7: Reprojection Error before (eInit(F)) and after Bundle Adjustment (eBA(F)),
Number of Iterations (Iter(F)), and CPU time to compute F (Time), obtained when

combining pairs of images of the Merton1 series
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1 2 3

Views nb Points eInit(F) eBA(F) Iter(F) Time

F8Pt FGp F8Pt FGp F8Pt FGp F8Pt FGp

1 2 345 24.7158 29.6530 14.0481 2.7599 69 42 0.037 2.91

2 3 197 143.431 154.880 73.8776 72.8977 14 19 0.026 2.52

1 3 270 59.8109 77.9734 30.3824 15.6367 38 32 0.031 2.37

Fig. 8: Reprojection Error before (eInit(F)) and after Bundle Adjustment (eBA(F)),
Number of Iterations (Iter(F)), and CPU time to compute F (Time), obtained when

combining pairs of images of the Merton2 series

1 2 3

Views nb Points eInit(F) eBA(F) Iter(F) Time

F8Pt FGp F8Pt FGp F8Pt FGp F8Pt FGp

1 2 400 62.7290 68.6030 52.6557 23.1740 5 32 0.041 3.03

2 3 197 135.950 140.801 83.3365 76.8614 13 14 0.025 2.52

1 3 264 116.7659 118.1754 24.7184 13.5496 9 11 0.032 2.39

Fig. 9: Reprojection Error before (eInit(F)) and after Bundle Adjustment (eBA(F)),
Number of Iterations (Iter(F)), and CPU time to compute F (Time), obtained when

combining pairs of images of the Merton3 series
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Views nb Points eInit(F) eBA(F) Iter(F) Time

F8Pt FGp F8Pt FGp F8Pt FGp F8Pt FGp

1 2 6609 6.3142 6.4021 1.4701 0.2531 401 237 1.23 2.33

Fig. 10: Reprojection Error before (eInit(F)) and after Bundle Adjustment (eBA(F)),
Number of Iterations (Iter(F)), and CPU time to compute F (Time), obtained when

combining pairs of images of the Cylinder series. The matched points are located in

blue bounding boxes.

Views nb Points eInit(F) eBA(F) Iter(F) Time

F8Pt FGp F8Pt FGp F8Pt FGp F8Pt FGp

1 2 730 5.6624 5.6366 3.8566 0.9386 163 401 0.07 1.69

Fig. 11: Reprojection Error before (eInit(F)) and after Bundle Adjustment (eBA(F)),
Number of Iterations (Iter(F)), and CPU time to compute F (Time), obtained when

combining pairs of images of the Endoscope series
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Fig. 12: Initial re-projections errors measured against movement amplitude for the

dinosaur series
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Fig. 13: Final re-projections errors measured against movement amplitude for the

dinosaur series
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Fig. 14: Number of iterations performed by Bundle-Adjustment to converge measured

against movement amplitude for the dinosaur series
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Fig. 15: Initial re-projections errors measured against movement amplitude for the

House series

19



11.6° 16.9° 22° 27.7° 32.8° 37.2° 40.2° 41.4°
0

20

40

60

80

Average angle between the optical centers – degrees

e
B
A
(F

)
–
P
ix
el
s

Fig. 16: Final re-projections errors measured against movement amplitude for the

House series
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Fig. 17: Number of iterations performed by Bundle-Adjustment to converge measured

against movement amplitude for the House series

20



5 Conclusion

We have studied the problem of estimating globally the fundamental matrix over nine

parameters and under rank and normalisation constraints. We have proposed a polynomial-

based approach which enables one to estimate the fundamental matrix with good pre-

cision. More generally, we have shown how to modify the constraints on the numerical

certificate of optimality to obtain fast and robust convergence. The method converges

in a reasonable amount of time compared to other global optimization methods.

From computational experiments conducted on both simulated and real data we

conclude that the global method always provides an accurate initial estimation for the

subsequent bundle adjustment step. Moreover, we have shown that if the eight-point

method has a lower computational cost, its resulting estimate is frequently far from the

global optimum obtained by the global method.
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