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Abstract

The fundamental matrix can be estimated from point matches. The cur-

rent gold standard is to bootstrap the eight-point algorithm and two-view

projective bundle adjustment. The eight-point algorithm first computes a

simple linear least squares solution by minimizing an algebraic cost and

then projects the result to the closest rank-deficient matrix. We propose a

single-step method that solves both steps of the eight-point algorithm. Us-

ing recent results from polynomial global optimization, our method finds the

rank-deficient matrix that exactly minimizes the algebraic cost. In this spe-

cial case, the optimization method is reduced to the resolution of very short

sequences of convex linear problems which are computationally efficient

and numerically stable. The current gold standard is known to be extremely

effective but is nonetheless outperformed by our rank-constrained method

for bootstrapping bundle adjustment. This is here demonstrated on simu-

lated and standard real datasets. With our initialization, bundle adjustment

consistently finds a better local minimum (achieves a lower reprojection er-

ror) and takes less iterations to converge.
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1 Introduction

The fundamental matrix has received a great interest in the computer vision com-

munity (see for instance [1, 2, 3, 4, 5, 6, 7]). This (3× 3) rank-two matrix en-

capsulates the epipolar geometry, the projective motion between two uncalibrated

perspective cameras, and serves as a basis for 3D reconstruction, motion segmen-

tation and camera self-calibration, to name a few. Given n point matches (qi,q
′
i),

i = 1, . . . ,n between two images, the fundamental matrix may be estimated in

two phases. The initialization phase finds some suboptimal estimate while the

refinement phase iteratively minimizes an optimal but nonlinear and nonconvex

criterion. The gold standard uses the eight-point algorithm and projective bun-

dle adjustment for these two phases, respectively. A ‘good enough’ initialization

is necessary to avoid local minima at the refinement phase as much as possible.

The main goal of this article is to improve the current state of the art regarding

the initialization phase. We here focus on input point matches that do not contain

mismatches (a pair of points incorrectly associated). The problem of mismatches

has been specifically addressed by the use of robust methods in the literature.

The eight-point algorithm follows two steps [1]. In its first step, it relaxes the

rank-deficiency constraint and solves the following convex problem:

F̃ = argmin
F∈R3×3

C(F) s.t. ‖F‖2 = 1, (1)

where C is a convex, linear least squares cost, hereinafter called the algebraic

cost:

C(F) =
n

∑
i=1

(
q′⊤

i Fqi

)2

. (2)

This minimization is subject to the normalization constraint ‖F‖2 = 1. This is

to avoid the trivial solution F = 0. Normalization will be further discussed in

section 3. The estimated matrix F̃ is thus not a fundamental matrix yet. In its

second step, the eight-point algorithm computes the closest rank-deficient matrix

to F̃ as:

F8pt = argmin
F∈R3×3

‖F− F̃‖2 s.t. det(F) = 0. (3)

Both steps can be easily solved. The first step is a simple linear least squares

problem and the second step is solved by nullifying the least singular value of

F̃. It has been shown [4] that this simple algorithm performs extremely well in
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practice, provided that the image point coordinates are standardized by simply

rescaling them so that they lie in [−
√

2;
√

2]2.

Our main contribution in this paper is an approach that solves for the funda-

mental matrix minimizing the algebraic cost. In other words, we find the global

minimum of:

F̃ = argmin
F∈R3×3

C(F) s.t. det(F) = 0 and ‖F‖2 = 1. (4)

Perhaps more importantly, we also quantify the impact that each of F8pt and F̃ has

when used as an initial estimate in Bundle Adjustment. Each initial estimate will

lead Bundle Adjustment to its own refined estimate. The two final estimates may

thus be different since, as the difference between the two initial estimates grows

larger, the probability that they lie in different basins of attraction increases. Our

measure quantifies:

1. how far are these two basins of attractions,

2. how many iterations will Bundle Adjustment take to converge.

The proposed algorithm uses polynomial global optimization [8, 9]. Previous at-

tempts [10, 11, 12] in the literature differ in terms of optimization strategy and pa-

rameterization of the fundamental matrix. None solves problem (4) optimally for

a general parameterization: they either do not guarantee global optimality [11, 12]

or prescribe some camera configurations [10, 11, 12] (requiring typically that the

epipole in the first camera does not lie at infinity). Furthermore, the main criticism

made to the optimization method we use is the resolution of a hierarchy of con-

vex linear problems of increasing size, which is computationally ineffective and

numerically unstable. The proposed solution overcomes this drawback: experi-

ments show that, in most of cases, the proposed algorithm only requires solving

the second relaxation of the sequences used in the exposed optimization method.

Our experimental evaluation on simulated and real datasets compares the dif-

ference between the eight-point algorithm and ours used as initialization to bundle

adjustment. We observe that (i) bundle adjustment consistently converges within

less iterations with our initialization and (ii) bundle adjustment always achieves

an equal or lower reprojection error with our initialization. We provide numerous

examples of real image pairs from standard datasets. They all illustrate practi-

cal cases for which our initialization method allows bundle adjustment to reach a

better local minimum than the eight-point algorithm.

3



2 State of the Art

Accurately and automatically estimating the fundamental matrix from a pair of

images is a major research topic. We first review a four-class categorization of ex-

isting methods, and specifically investigate the details of existing global methods.

We finally state the improvements brought by our proposed global method.

2.1 Categorizing Methods

A classification of the different methods in three categories –linear, iterative and

robust– was proposed in [2]. Linear methods directly optimize a linear least

squares cost. They include the eight-point algorithm [1], SVD resolution [2]

and variants [3, 4, 5, 6]. Iterative methods iteratively optimize a nonlinear and

nonconvex cost. They require, and are sensitive to the quality of, an initial es-

timate. The first group of iterative methods minimizes the distances between

points and epipolar lines [13, 14]. The second group minimizes some approx-

imation of the reprojection error [15, 16, 17, 18]. The third group of methods

minimizes the reprojection error, and are equivalent to two-view projective bun-

dle adjustment. Iterative methods typically use a nonlinear parameterization of

the fundamental matrix which guarantees that the rank-deficiency constraint is

met. For instance, a minimal 7-parameter update can be used over a consistent

orthogonal representation [7]. Finally, robust methods estimate the fundamental

matrix while classifying each point match as inlier or outlier. Robust methods

use M-Estimators [19], LMedS (median least squares) [16] or RANSAC (random

sampling consensus) [20]. Both LMedS and RANSAC are stochastic.

To these three categories, we propose to add a fourth one: global methods.

Global methods attempt at finding the global minimum of a nonconvex prob-

lem. Convex relaxations have been used to combine a convex cost with the rank-

deficiency constraint [11]. However, these relaxations do not converge to a global

minimum and the solution’s optimality is not certified.

2.2 Global Methods

In theory, for a constrained optimization problem, global optimization methods

do not require an initial guess and may be guaranteed to reach the global mini-

mum, thereby certifying optimality. Such global methods can be separated in two

classes. The methods of the first class describe the search space as exhaustively

as possible in order to test as many candidate solutions as possible. Following

this way, there are methods such as Monte-Carlo sampling, which test random el-

ements satisfisying constraints, and reactive tabu search [21, 22], which continues

searching even after a local minimum has been found. The major drawback of
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these methods is mainly in the prohibitive computation time required to have a

sufficiently high probability of success. Moreover, even in case of convergence,

there is no certificate of global optimality. Contrary to the methods of the first

class, methods lying in the second class provide a certificate of global optimal-

ity using the mathematical theory from which they are built. Branch and Bound

algorithms [23] or global optimization by interval analysis [24, 25] are some ex-

amples. However, although these methods can be faster than those of the first

category, their major drawback is their lack of generality. Indeed, these meth-

ods are usually dedicated to one particular type of cost function because they use

highly specific computing mechanisms to be as efficient as possible. A review of

global methods may be found in [26].

A good deal of research has been conducted over the last few decades on ap-

plying global optimization methods in order to solve polynomial minimization

problems under polynomial constraints. The major drawback of these applica-

tions has been the difficulty to take constraints into account. But, by solving

simplified problems, these approaches have mainly been used to find a starting

point for local iterative methods. However, recent results in the areas of convex

and polynomial optimization have facilitated the emergence of new approaches.

These have attracted great interest in the computer vision community. In partic-

ular, global polynomial optimization [8, 9] has been used in combination with

a finite-epipole nonlinear parameterization of the fundamental matrix [10]. This

method does not consequently cover camera setups where the epipole lies at infin-

ity. A global convex relaxation scheme [8, 9] was used to minimize the Sampson

distance [12]. Because this implies minimizing a sum of many rational functions,

the generic optimization method had to be specifically adapted and lost the prop-

erty of certified global optimality.

2.3 The Proposed Method

The proposed method lies in the fourth category: it is a global method. Simi-

larly to the eight-point algorithm, it minimizes the algebraic cost, but explicitly

enforces the nonlinear rank-deficiency constraint. Contrarily to previous global

methods [10, 11, 12], the proposed method handles all possible camera configu-

rations (it does not make an assumption on the epipoles being finite or infinite)

and certifies global optimality. Moreover, the presented algorithm is based on the

resolution of a very short sequence of convex linear problems and is therefore

computationally efficient.

A large number of attemps to introduce global optimization have been made

in the literature. In [11], a dedicated hierarchy of convex relaxations is defined

in order to globally solve the problem of fundamental matrix estimation. The

singularity constraint is taken into account by introducing additional optimization
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variables, not introduced directly in the problem description. The resulting opti-

mization algorithm is not generic and, contrary to Lasserre’s hierarchy, there is

no proof that the sequence of solutions of this specific hierarchy converges to the

global minimum.

In [10], Lasserre’s hierarchy is used jointly with the introduction of the singu-

larity constraint in the problem description. However, the normalization constraint

‖F‖2 = 1 is replaced by fixing, a priori, one of the F coefficients to 1. Hence the

other F coefficients are not bounded. Consequently, there is no guarantee that the

sequence of solutions ( f̂t)t∈N converges to the global minimum.

In [27] the authors minimize the Sampson distance by solving a specific hi-

erarchy of convex relaxations built upon an epigraph formulation. This specific

hierarchy is obtained by extending Lasserre’s hierarchy, where the contraints are

linear (LMIs), to a hierarchy of convex relaxations where constraints are polyno-

mial (polynomial matrix inequality - PMI). Consequently, no asymptotic conver-

gence of the hierarchy to the global optimum can be guaranteed. Moreover, even if

the rank correction is achieved using the singularity constraint, the normalization

is replaced by setting, a priori, the coefficient f33 to 1 and so the other coefficients

of F are not bounded.

Finally, in a very recent work [28], the algebraic error is globally minimized

thanks to the resolution of seven subproblems. Each subproblem is reduced to a

polynomial equation system solved via a Gröbner basis solver. The singularity

constraint is satisfied thanks to the right epipole parametrization. Although this

parametrization ensures that F is singular while using the minimum number of

parameters, this method is not practical since it would be necessary to solve 126

subproblems in order to cover all the 18 possible parameter sets [16]. Therefore

it is preferable to introduce the singularity constraint directly in the problem de-

scription rather than via some parametrization of F.

3 Polynomial Global Optimization

3.1 Introduction

Given a real-valued polynomial f (x) : Rn → R, we are interested in solving the

problem:

f ⋆ = inf
x∈K

f (x) (5)

where K ⊆ R
n is a (not necessarily convex) compact set defined by polynomial

inequalities: g j(x) ≥ 0, j = 1, . . . ,m. Our optimization method is based on an

6



idea first described in [29]. It consists in reformulating the nonconvex global

optimization problem (5) as the equivalent convex linear programming problem:

f̂ = inf
µ∈P(K)

∫

K
f (x)dµ, (6)

where P(K) is the set of probability measures supported on K. Note that this

reformulation is true for any continuous function (not necessarily polynomial)

and any compact set K ⊆ R
n. Indeed, as f ⋆ ≤ f (x), then f ⋆ ≤ ∫

K f dµ and thus

f ⋆ ≤ f̂ . Conversely, if x⋆ is a global minimizer of (5), then the probability mea-

sure µ⋆ △
= δx⋆ (the Dirac at x⋆) is admissible for (6). Moreover, because f̂ is a

solution of (6), the following inequality holds:
∫

K f (x)dµ ≥ f̂ , ∀µ ∈ P(K) and

thus f ⋆ =
∫

K f (x)δx⋆ ≥ f̂ . Instead of optimizing over the finite-dimensional eu-

clidean space K, we optimize over the infinite-dimensional set of probability mea-

sures P(K). Thus, Problem (6) is, in general, not easier to solve than Problem (5).

However, in the special case of f being a polynomial and K being defined by poly-

nomial inequalities, we will show how Problem (6) can be reduced to solving an

(generically finite) sequence of convex linear matrix inequality (LMI) problems.

3.2 Notations and Definitions

First, given vectors α = (α1, . . . ,αn)
⊤ ∈N

n and x = (x1, . . . ,xn)
⊤ ∈R

n, we define

the monomial xα by:

xα △
= x

α1

1 x
α2

2 . . .xαn
n (7)

and its degree by deg(xα)
△
= ‖α‖1 =

n

∑
i=1

αi. For t ∈ N, we define N
n
t the space of

the n-dimensional integer vector with a norm lower than t as:

N
n
t

△
= {α ∈ N

n | ‖α‖1 ≤ t} . (8)

Then, consider the family:

{xα}α∈Nn
t

=
{

1,x1,x2, . . . ,xn,x
2
1,x1x2, . . . ,x1xn,x2x3, . . . ,x

2
n, . . . ,x

t
1, . . . ,x

t
n

}
(9)

of all the monomials xα of degree at most t, which has dimension s(t)
△
=

(n+ t)!

t!n!
.

Those monomials form the canonical basis of the vector space Rt [x] of real-valued

multivariate polynomials of degree at most t. Then, a polynomial p ∈ Rt [x] is

understood as a linear combination of monomials of degree at most t:

p(x) = ∑
α∈Nn

t

pαxα
, (10)
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and p
△
= (pα)‖α‖1≤t ∈R

N
n
t ≃R

s(t) is the vector of its coefficients in the monomial

basis {xα}α∈Nn
t
. Its degree is equal to deg(p)

△
= max{‖α‖1 | pα 6= 0} and dp de-

notes the smallest integer not lower than
deg(p)

2
.

Example: The polynomial

x ∈ R
2 7→ p(x) = 1+2x2 +3x2

1 +4x1x2 (11)

has a vector of coefficients p ∈R
6 with entries p00 = 1, p10 = 0, p01 = 2, p20 = 3,

p11 = 4 and p02 = 0.

Next, given y = (yα)α∈Nn ∈ R
N

n
, we define the Riesz functional Ly by the

linear form:

Ly : R [x] → R

p = ∑
α∈Nn

pαxα → y⊤p = ∑
α∈Nn

pαyα .

(12)

Thus, the Riesz functional can be seen as an operator that linearizes polynomials.

Example: For the polynomial (11), the Riesz functional reads

p(x) = 1+2x2 +3x2
1 +4x1x2 7→ Ly(p) = y00 +2y01 +3y20 +4y11. (13)

For t ∈ N and y ∈ R
N

n
2t , the matrix Mt(y) of size s(t) defined by:

(Mt(y))α,β = Ly(x
αxβ ) = yα+β ∀α,β ∈ N

n
t (14)

is called the moment matrix of order t of y. By construction, this matrix is sym-

metric and linear in y. Then, given q ∈ Rt [x] and q ∈ R
N

n
t the vector of its coeffi-

cients in the monomial basis, the vector:

qy
△
= Mt(y)q ∈ R

N
n
t (15)

is called the shifted vector with respect to q. Mt(qy), the moment matrix of order

t of qy, is called the localizing matrix of degree t of q. This matrix is also sym-

metric and linear in y.
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Example: If n = 2 then:

M0(y) = y00,

M1(y) =




y00 y10 y01

y10 y20 y11

y01 y11 y02


 ,

M2(y) =




y00 y10 y01 y20 y11 y02

y10 y20 y11 y30 y21 y12

y01 y11 y02 y21 y12 y03

y20 y30 y21 y40 y31 y22

y11 y21 y12 y31 y22 y13

y02 y12 y03 y22 y13 y04



,

(16)

and if q(x) = a+2x2
1 +3x2

2 then:

M1(qy) =




ay00 +2y20 +3y02 ay10 +2y30 +3y12 ay01 +2y21 +3y03

ay10 +2y30 +3y12 ay20 +2y40 +3y22 ay11 +2y31 +3y13

ay01 +2y21 +3y03 ay11 +2y31 +3y13 ay02 +2y22 +3y04


 .(17)

Finally, recall that a symmetric matrix F ∈ S
n is positive semidefinite, denoted

by F � 0, if and only if x⊤Fx ≥ 0, ∀x ∈ R
n or equivalently, if and only if the

minimum eigenvalue of F is non-negative. A linear matrix inequality (LMI) is a

convex constraint:

F0 +
n

∑
k=1

xkFk � 0, (18)

on a vector x ∈ R
n, where matrices Fk ∈ S

m, k = 0, . . . ,n are given.

3.3 Optimization Method

Let f be a real-valued multivariate polynomial, Problem (6) can be reduced to a

convex linear programming problem. Indeed, if f (x) = ∑α∈Nn fαxα then:
∫

K
f dµ =

∫

K
∑

α∈Nn

fαxαdµ = ∑
α∈Nn

fα

∫

K
xαdµ = Ly( f ) (19)

where each coordinate yα of the infinite sequence y ∈R
N

n
is equal to

∫

K
xα µ(dx),

also called the moment of order α . Consequently, if f is polynomial, then Prob-

lem (6) is equivalent to:

f̂ = inf Ly( f )
s.t. y0 = 1

y ∈MK.

(20)

9



with:

MK
△
=

{
y ∈ R

N
n | ∃µ ∈M+(K) such that yα =

∫

K
xαdµ ∀α ∈ N

n

}
,(21)

and M+(K) is the space of finite Borel measures supported on K. Remark that

the constraint y0 = 1 is added in order to impose that if y ∈MK then y represents

a measure in P(K) (and no longer in M+(K)). Although Problem (20) is a con-

vex linear programming problem, it is difficult to describe the convex cone MK

with simple constraints on y. But, the problem “y ∈MK”, also called K-moment

problem, is solved when K is a basic semi-algebraic set, namely:

K
△
= {x ∈ R

n | g1(x)> 0, . . . ,gm(x)> 0} (22)

where g j ∈R[x], ∀ j = 1, . . .m. Note that K is assumed to be compact. Then, with-

out loss of generality, we assume that one of the polynomial inequalities g j(x)> 0

is of the form R2−‖x‖2
2 > 0 where R is a sufficiently large positive constant. In this

particular case, MK can be modelled using LMI conditions on the matrices Mt(y)
and Mt(g jy), j = 1, . . .m. More precisely, thanks to the Putinar Theorem [30, 31],

we have:

MK = M�(g1, . . . ,gm), (23)

where:

M�(g1, . . . ,gm)
△
=

{
y ∈ R

N
n |Mt(y)� 0, Mt(g jy)� 0 ∀ j = 1, . . ,m ∀t ∈ N

}
.

(24)

Then, Problem (6) is equivalent to:

f̂ = inf
y∈RNn

Ly( f )

s.t. y0 = 1

Mt(y)� 0

Mt(g jy)� 0 j = 1, . . ,m ∀t ∈ N.

(25)

To summarize, if f is polynomial and K a semi-algebraic set, then Problem (5)

is equivalent to a convex linear programming problem with an infinite number of

linear constraints on an infinite number of decision variables. Now, for t ≥ dK
△
=

max(d f ,dg1
, . . . ,dgm

) consider the finite-dimensional truncations of Problem (25):

Qt
△
=





f̂t
△
= min

y∈R
Nn

2t

Ly( f )

s.t. y0 = 1

Mt(y)� 0,

Mt−dg j
(g jy)� 0 ∀ j ∈ {1, . . . ,m} .

(26)
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By construction, Qt , t ∈ N generates a hierarchy of LMI relaxations of Prob-

lem (25) [8], where each Qt , t ∈ N, is concerned with moment and localizing

matrices of fixed size t. Each relaxation (26) can be solved by using public-

domain implementations of primal-dual interior point algorithms for semidefinite

programming (SDP) [32, 33, 34, 35, 36]. When the relaxation order t ∈ N tends

to infinity, we obtain the following results [8, 37]:

f̂t ≤ f̂t+1 ≤ f̂ and lim
t→+∞

f̂t = f̂ . (27)

Practice reveals that this convergence is fast and very often finite, i.e. there ex-

ists a finite t0 such that f̂t = f̂ , ∀t ≥ t0. In fact, finite convergence is guaranteed

in a number of cases (e.g. discrete optimization) and very recent results by Nie

[37] show that finite convergence is even generic as well as an optimal solution y⋆t
of (26).

Example: Consider the polynomial optimization problem

f̂ = min
x∈R2

−x2

s.t. 3−2x2 − x2
1 − x2

2 ≥ 0

−x1 − x2 − x1x2 ≥ 0

1+ x1x2 ≥ 0.

(28)

The first LMI relaxation Q1 is

f̂1 = min
y∈R6

−y01

s.t. y00 = 1


y00 y10 y01

y10 y20 y11

y01 y11 y02


� 0

3y00 −2y01 − y20 − y02 ≥ 0

−y10 − y01 − y11 ≥ 0

y00 + y11 ≥ 0,

(29)
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and the second LMI relaxation Q2 is

f̂2 = min
y∈R15

−y01

s.t. y00 = 1


y00 y10 y01 y20 y11 y02

y10 y20 y11 y30 y21 y12

y01 y11 y02 y21 y12 y03

y20 y30 y21 y40 y31 y22

y11 y21 y12 y31 y22 y13

y02 y12 y03 y22 y13 y04




� 0,




3y00 −2y01 − y20 − y02 3y10 −2y11 − y30 − y12 3y01 −2y02 − y21 − y03

3y10 −2y11 − y30 − y12 3y20 −2y21 − y40 − y22 3y11 −2y12 − y31 − y13

3y01 −2y02 − y21 − y03 3y11 −2y12 − y31 − y13 3y02 −2y03 − y22 − y04


� 0



−y10 − y01 − y11 −y20 − y11 − y21 −y11 − y02 − y12

−y20 − y11 − y21 −y30 − y21 − y31 −y21 − y31 − y21

−y11 − y02 − y12 −y21 − y12 − y22 −y12 − y03 − y13


� 0




y00 + y11 y10 + y21 y01 + y12

y10 + y21 y20 + y31 y11 + y22

y01 + y12 y11 + y22 y02 + y13


� 0.

(30)

It can be checked that f̂1 = −2 ≤ f̂2 = f̂ = −1+
√

5
2

. Note that the constraint

3−2x2 − x2
1 − x2

2 ≥ 0 certifies boundedness of the feasibility set.

However, we do not know a priori at which relaxation order t0 the convergence

occurs. Practically, to detect whether the optimal value is attained, we can use

conditions on the rank of the moment and localization matrices. Indeed, let y⋆ ∈
R
N

n
2t be a solution of Problem (26) at a given relaxation order t ≥ dK , if:

rank(Mt(y
⋆)) = rank(Mt−dK

(y⋆)) (31)

then f̂t = f̂ . In particular, if rank(Mt(y
⋆)) = 1 then condition (31) is satisfied.

Moreover, if these rank conditions are satisfied, then we can use numerical linear

algebra to extract rank(Mt(y
⋆)) global optima for Problem (5). We do not describe

the algorithm in this article, but the reader can refer to [30, Sections 4.3] for more

advanced information. Figure 3.3 summarizes the optimization process.

A Matlab interface called GloptiPoly [38] has been designed to construct

Lasserre’s LMI relaxations in a format understandable by any SDP solver inter-

faced via YALMIP [39]. It can be used to construct an LMI relaxation (26) of a

given order corresponding to a polynomial optimization problem (5) with given

polynomial data entered symbolically. A numerical algorithm is implemented

in GloptiPoly to detect global optimality of an LMI relaxation, using the rank
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min
x∈K

f (x) min
µ∈P(K)

∫

K
f (x)dµ

inf Ly( f )
△
= ∑α fα yα

s.t. y ∈
{

y ∈ R
N

n | ∃µ ∈ P(K) : yα =
∫

K
xα dµ ∀α ∈ N

n

}

inf Ly( f )
s.t. y0 = 1, Mt(y)� 0, Mt(g jy)� 0 j = 1, . . ,m ∀t ∈ N.

Qt





f̂t
△
= min

y∈R
Nn

2t

Ly( f )

s.t. y0 = 1

Mt(y)� 0,

Mt−dg j
(g jy)� 0 j = 1, . . ,m.

f continuous and K compact

f polynomial

K = {x ∈ R
n | g1(x)> 0, . . . ,gm(x)> 0}

f = ∑
α∈Nn

t

fα

∫

K
xα dµ

︸ ︷︷ ︸
yα

Putinar

theorem

Truncation

Convergence

of the sequence(
f̂t

)
t∈N

Figure 1: Polynomial optimization process; see the main text for details.
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tests (31). The algorithm also extracts numerically the global optima from the

moment matrix. This approach has been successfully applied to globally solve

various polynomial optimization problems (see [30] for an overview of results

and applications). In computer vision this approach was first introduced in [27]

and used in [12].

3.4 Application to Fundamental Matrix Estimation

An important feature of our approach is that the singularity constraint can be di-

rectly satisfied by our solution and that we do not need an initial estimate as in

other methods. Nevertheless, the problem being homogeneous, an additional nor-

malization constraint is needed to avoid the trivial solution F= 0. This is generally

done by setting one of the coefficients of the F matrix to 1. However with such

a normalization there is no guarantee that the feasible set is compact which is a

necessary condition for the convergence of our polynomial optimization method.

Moreover, this normalisation excludes a priori some geometric configurations.

Thus, to guarantee compactness of the feasible set and to avoid the trivial solu-

tion, we include the additional normalization constraint ‖F‖2 = 1.

Alternatively, the singularity constraint can be inferred by parameterizing the

F matrix using one or two epipoles. For instance, in [10] the authors have tried

to use polynomial optimization to estimate the F matrix, parametrized by using

a single epipole. However such an approach has several drawbacks. Firstly, the

coefficients of F are not bounded and the convergence of the method is not guaran-

teed. Secondly, using the epipole explicitly increases the degree of the polynomial

criterion and consequently, the size of the corresponding relaxations in the hierar-

chy. This results in a significant increase of the computational time. Finally, the

choice of this parametrization is arbitrary and does not cover all camera configu-

rations.

Our method is summarized in Algorithm 1 below. Its main features are:

• In contrast with [27, 12] the optimization problem is formulated with an

explicit Frobenius norm constraint on the decision variables. This enforces

compactness of the feasibility set which is included in the Euclidean ball

of radius 1. We have observed that enforcing this Frobenius norm con-

straint has a dramatic influence on the overall numerical behavior of the

SDP solver, especially with respect to convergence and extraction of global

minimizers.

• We have chosen the SDPT3 solver [40, 35] since our experiments revealed

that for our problem it was the most efficient and reliable solver.
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• We force the interior-point algorithm to increase the accuracy as much as

possible, overruling the default parameter set in SDPT3. Then the solver

runs as long as it can make progress.

• Generically, polynomial optimization problems on a compact set have a

unique global minimizer; this is confirmed in our numerical experiments

as the moment matrix has almost always rank-one (which certifies global

optimality) at the second SDP relaxation of the hierarchy. In some (very

few) cases, due to the numerical extraction, the global minimum is not fully

accurate but yet largely satisfactory.

Algorithm 1 Polynomial optimization for fundamental matrix estimation

Require: Matched points (qi,q
′
i), i = 1, . . . ,n

1: Create the cost function Crit = ∑
n
i=1

(
q′⊤

i Fqi

)2
:

mpol(’F’,3,3);

for k = 1:size(q1)

n(k) = (q2’*F*q1)^2;

end;

Crit = sum(n);

2: Create the constraints det(F) = 0 and ‖F‖2 = 1:

K_det = det(F) == 0; K_fro = trace(F*F’) == 1;

3: Fix the accuracy of the solver to 0, then the solver runs as long as it can make

progress:

pars.eps = 0; mset(pars);

4: Change the default SDP solver to SDPT3:

mset(’yalmip’,true); mset(sdpsettings(’solver’,’sdpt3’));

5: Form the second LMI relaxation of the problem:

P = msdp(min(crit),K_det,K_fro,2);

6: Solve the second LMI relaxation:

msol(P);

4 Experimental Results

This section presents results obtained by the test procedure presented below with

the 8-point method and our global method. First, criteria to evaluate the per-

formance of a fundamental matrix estimate are described. Next, the evaluation

methodology is detailed. Experiments were then carried out on synthetic data to
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test the sensitivity to noise and to the number of point matches. Finally, exper-

iments on real data were performed to confirm previous results and to study the

influence of the type ofmotion between the two images.

4.1 Evaluation Criteria

Various evaluation criteria were proposed in the literature [16] to evaluate the

quality of a fundamental matrix estimate. Driven by practice, a fundamental ma-

trix estimate F is evaluated with respect to the behavior of its subsequent refine-

ment by projective bundle adjustment. Bundle Adjustment from two uncalibrated

views is described as a minimization problem. The cost function is the RMS

reprojection errors. The unknowns are the 3D points Qi, i = 1, . . . ,n and the pro-

jection matrices P and P′. The criteria we use are:

1. The initial reprojection error written eInit(F).

2. The final reprojection error eBA(F).

3. The number of iterations taken by Bundle Adjustment to converge, Iter(F).

These three criteria assess whether the estimates provided by the two methods,

denoted by F8pt and FGp, are in a ‘good’ basin of attraction. Indeed, the num-

ber of iterations gives an indication of the distance between the estimate and the

optimum while eBA(F) gives an indication on the quality of the optimum.

4.2 Evaluation Method

The following algorithm summarizes our evaluation method:

Evaluate(F)

1. Inputs: fundamental matrix estimate F, n point matches (qi,q
′
i), i= 1, . . . ,n

2. Form initial projective cameras [41]:

Find the second epipole from F⊤e′ ∼ 0(3×1)

Find the canonical plane homography H∗ ∼ [e]×F

Set P ∼
[
I(3×3) 0(3×1)

]
and P′ ∼ [H∗ e′]

3. Form initial 3D points [42]:

Triangulate each point independently by minimizing the reprojection

error
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4. Compute eInit(F)

5. Run two-view uncalibrated bundle adjustment [19]

6. Compute eBA(F) and Iter(F)

7. Outputs: eInit(F), eBA(F) and Iter(F)

4.3 Experiments on Simulated Data

4.3.1 Simulation Procedure

For each simulation series and for each parameter of interest (noise, number of

points and number of motions), the same methodology is applied with the follow-

ing four steps:

1. For two given motions between two successives images ([Rk tk]) and for a

given matrix K of internal parameters, a set of 3D points (Qi)i, i = 1, . . . ,n

is generated and two projection matrices P and P′ are defined. In practice,

the rotations matrices, R1 and R2, of two motions are defined by:

Rk
△
=




cos(θk) 0 sin(θk)
0 1 0

−sin(θk) 0 cos(θk)


 with





θ1 =
π

3
and

θ2 =
π

6

(32)

and their translation vectors by t1 = (20,0,5)⊤ and t2 = (6,0,0)⊤. These

matrices are chosen such that [R1, t1] is a large movement and [R2, t2] is a

small movement (see Figure 2). We simulated points lying in a cube with

10 meter side length. The first camera looks at the center of the cube and

it is located 15 meters from the center of the cube. The focal length of the

camera is 700 pixels and the resolution is 640×480 pixels.

2. Thanks to projection matrices P = K [R1, t1] and P′ = K [R2, t2], the set of

3D points (Qi)i is projected into the two images as (qi,q
′
i)i. At each of their

pixel coordinates, a centered Gaussian noise with a variance σ2 is added. In

order to have statistical evidence, the results are averaged over 100 trials.

3. The resulting noisy points (q̃i, q̃
′
i)i are used to estimate F by our method

FGp and the reference 8-point method F8pt .

4. Finally, via our evaluation procedure we evaluate the estimation error with

respect to the noise standard deviation σ and the number of points n.
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4.3.2 Sensitivity to Noise

We tested in two simulation series the influence of σ ranging from 0 to 2 pixels.

The number of simulated points is 50. The first (resp. second) simulation series

is based on the first motion [R1 t1] (resp. the second motion [R2 t2]). Figure 3

gathers the influence of noise on the evaluation criteria. The first line shows the

reproduction errors before, eInit(F), and after eBA(F) refinement through Bundle

Adjustment with respect to the noise standard deviation. The second line shows

the number of iterations Iter(F) of the Bundle Adjustment versus the noise stan-

dard deviation. The first (resp. second) row concerns the first (resp. second)

motion.

For the two motions, re-projection errors, eInit(F) or eBA(F), increase with the

same slope when the noise level increases. Notice that for both movements, the

Bundle-Adjustment step does not improve the results. Indeed, the noise gaussian

noise is added to the projections (qi,q
′
i)i. So this is noise which in practice would

be produced by the extraction points process. Thus the solution produced by the

resolution of the linear system is very close to the optimum and does not need to

be refined. The initial solution provided by the triangulation step is then very close

to a local minimum of the Bundle Adjustment problem. Moreover, the variation

of the errors of initial re-projection before (8pt − Init and Gp− Init) and after

(8pt −BA and Gp−BA) Bundle Adjustment versus the noise standard deviation

is linear. However, the number of iterations needed for convergence is different

in the two methods. The initial estimate of the triangulation computed from FGp

is closer to the local minimum than that obtained from F8pt . For the first motion

(large displacement between camera 1 and 2), the number of iterations of the

global method (in green) remains smaller than for the 8-point method (in blue)

even though their difference seems to decrease when the noise level is high (σ >

1). For a significant displacement the quality of the estimate F by the global

method remains better even though the difference in quality diminishes with the

noise level. Conversely, for the second motion (small displacement between the

camera 1 and 2) both methods are equivalent since the difference in quality is only

significant for a high level of noise (σ > 1). This is logical as the movement is less

important. As a conclusion, the 8-point method provides a solution equivalent to

that obtained with the global method when the displacement is not too important.

For more significant movements the provided solution is not so close even though

still in the same basin of attraction of a local minimum.

4.3.3 Influence of the Number of Points

In this experiment, we kept the noise level constant with a standard deviation

σ2 = 0.5 pixels. We tested the influence of the number of matches (qi,q
′
i)i on the
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quality of the resulting estimate of F. The number of points N varied from 10 to

100. Two simulation series are also carried out with the two motions.

Figure 4 brings with the same organization the evaluation criteria. It displays

the influence of the number of matches for estimating F on the re-projection errors

and on the number of iterations. For both motions and for a sufficiently high

number of matches (N > 50), re-projection errors, before and after refinement with

Bundle Adjustment, or the number of iterations versus the number of matches

converge to the same asymptote. From a high number of matches, the initial

estimate from triangulation computed with F8pt and with FGp are both in the same

basin of attraction for the Bundle Adjustment problem. However, for a number

of matches smaller than 50, the number of iterations to converge is smaller for

given re-projection errors. The quality of the estimation by the global method

seems better. The initial estimate from triangulation computed with F8pt goes

away from the basin of convergence whereas the one computed with FGp remains

in the basin.

Figure 2: Projection of the cube in the camera on initial position (I) and in the

camera after applying the rigid transformation [R1 t1] (II) and the rigid transfor-

mation [R2 t2] (III).

4.3.4 Influence of the Number of Points with Wide Baseline

In order to sustain the previous behavior, for a noise standard deviation of σ2 = 1

pixel and for the significant displacement [R1 t1], the influence of the number of

matching points on the re-projection errors and on the number of iterations was

tested. In this difficult context, Figure 5 demonstrates that the initial estimate

computed from FGp is always closer to the local minimum than that computed

from F8pt . No matter what is the number of matching points, the number of

iterations needed to converge is always smaller.

As a conclusion, the quality of solutions obtained by both methods is almost

identical when the movement is not too important, the number of matching points

is sufficiently large, and the noise level is not too high. However, when one of
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Figure 3: For two movements, [R1 t1] (left column) and [R2 t2] (right column),

reprojection errors and number or iterations measured against image noise.

these three parameters varies then the 8-point method lacks precision whereas the

global method still allows Bundle Adjustment to convergence to the global min-

imum. The 8-point method computes the projection of an unconstrained local

minimizer on the feasible set whereas the global method provides a global mini-

mizer of the constrained optimization problem. It is already surprising that even

for good values of the three parameters the resulting solutions are not too far apart.

But for worst values of the parameters it would be even more surprising.

4.4 Experiments on Real Data

The evaluation criteria remain the same, eInit(F), eBA(F) and Iter(F) and the com-

putation time is added. Two experiments were carried out with two sets of images

that illustrate different motions between two successive images.

4.4.1 Experiment 1

The first set of four images (see Table 6) shows all possible epipolar configurations

(right or left epipole at infinity . . . ). With four images, six motions between a pair

of images are possible: A−B, A− C, A−D, B− C, B−D and C−D. For
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Figure 4: For two movements, [R1 t1] (left column) and [R2 t2] (right column),

reprojection errors and number or iterations measured against number of points

for a gaussian noise with a variance fixed to 0.5.
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Figure 5: For the movement [R1 t1], reprojection errors and number or iterations

measured against number of points for a gaussian noise with a variance fixed to 1

(left and right).
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every pair of images, 60 matches are available to compute an estimate of F. The

values of the evaluation criteria are summarized in table 6. No matter what pair

of images is used, the re-projection errors and the number of iterations are almost

always better when FGp is used as initial guess. In addition, for three motions

(A−C, A−D and C−D), in contrast with the initial guess FGp, the initial guess

from the 8-point method is not in a better basin of attraction. This may explain

why the initial re-projection errors eInit(F) are sometimes larger for FGp as the

initial guess may be in a good basin of attraction but with a larger re-projection

error. For the four motions A−B, B−C, B−D and B−D, both initializations

are in the same basin of attraction but the number of iterations demonstrates that

the initial guess from the global method is always closer to the local minimizer.

Finally, even though the computation time of the latter is significantly larger than

for the 8-point method, it still remains compatible with a practical use.

4.4.2 Experiment 2

The second experiment compares the two methods on large motions. It is based

on many series of images. First we test our algorithm with the classic series

Library, Merton, dinosaur and house that are available at www.robots.ox.ac.

uk/~vgg/data/data-mview.html. For the set of three images of Library and

Merton serie, Table 7, 8, 9 and Table 10 demonstrate that the quality of the solution

achieved by the global method is always better than with the 8-point method (in

some cases both solutions are very close).

We also conducted the same tests on other pairs of images. For the first pair,

we used images from a standard cylinder graciously provided by the company

NOOMEO (http://www.noomeo.eu/). This cylinder is use to evaluate the ac-

curacy of 3D reconstructions. Matched points are calculated with digital image

correlation method. They are located in a window inside the cylinder. Thus, we

have 6609 pairs (qi,qi)i matched to sub-pixel precision. Results are presented in

the Table 11. We observe that the computation time of the 8-point method ex-

ceeds one second. This is due to the large number of matched points which leads

to the resolution of a large linear system. However, as the points are precisely

matched, this system is well conditioned. But the quality of the fundamental ma-

trix estimated with the 8-point method is not sufficient to properly initialize the

Bundle-Adjustment because the final re-projection error is 1.47 pixels. At the

same time, even if the number of iterations is larger, our global method supplies a

good estimation because the final re-projection error is 0.25 pixels. Furthermore,

the calculation time remains constant in approximately 2 seconds. For the second

pair, we use images taken by an endoscope. Table 12 shows the results obtained

on this difficult case. As for the previous example, we observe that the funda-

mental matrix estimated by our global method is good quality because the final
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error is 0.93 pixels. At the same time, Bundle Adjustement puts more iterations

to converge on a less precise solution when we use F8pt to initialize it.

For the set of 36 images of the Dinosaur series and 9 images of the house

series, we tested the influence of motion amplitude between a pair of image on the

quality of the resulting estimates obtained by both methods. For this purpose, we

had both estimates with all possible motions ((0,1),(1,2),(2,3), . . .) with 1-image

distance, then all possible motions ((0,2),(1,3),(2,4), . . .) with 2-image distance,

and so on. With this process, we can measure the influence of the average angle on

the quality of the fundamental matrix estimated by both methods. Figures from

13 to 18 shows the average of re-projection errors and the average of number

of iterations with respect to average angle for the two series. The re-projection

error after Bundle Adjustment is always smaller with the global method and with

always a smaller number of iterations. Next, the larger the movement the more

the solution by both methods deteriorates. But the deterioration is larger for the

8-point method than for the global method. One may also observe that in some

cases the re-projection error before Bundle Adjustment is in favor of the 8-point

method. In analogy with the real cases studied before, this may be due to the

fact that for these cases the initial guess FGp is in a basin of attraction with a

better local minimum than in the basin of attraction associated with F8Pt , but

the ‘distance’ between the initial guess and the corresponding local minimizer is

larger for FGp than for F8Pt . Indeed in such cases the number of iterations is larger

for FGp than for F8Pt .

5 Conclusion

We have studied the problem of estimating globally the fundamental matrix over

nine parameters and under rank and normalisation constraints. We have proposed

a polynomial-based approach which enables one to estimate the fundamental ma-

trix with good precision. More generally, we have shown how to modify the

constraints on the numerical certificate of optimality to obtain fast and robust con-

vergence. The method converges in a reasonable amount of time compared to

other global optimization methods.

From computational experiments conducted on both simulated and real data

we conclude that the global method always provides an accurate initial estima-

tion for the subsequent bundle adjustment step. Moreover, we have shown that

if the eight-point method has a lower computational cost, its resulting estimate is

frequently far from the global optimum obtained by the global method.
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— A — — B —

— C — — D —

Views Epipoles eInit(F) eBA(F) Iter(F) Time (s)

e e′ F8Pt FGp F8Pt FGp F8Pt FGp F8Pt FGp

A B ∞ ∞ 0.597617 0.65270 0.00252 0.00252 6 6 0.017 2.39

A C ∞ ∞ 5.61506 5.61996 2.48258 0.00342 122 175 0.017 1.98

A D ∞ ∞ 21.0855 21.5848 4.74837 0.00344 105 30 0.017 2.12

B C ∞ ∞ 2.49098 1.91136 0.00260 0.00260 17 12 0.018 1.97

B D ∞ ∞ 22.0071 23.6253 0.00268 0.00268 122 81 0.018 1.92

C D ∞ ∞ 28.6586 28.6174 16.6507 0.25921 39 1001 0.018 2.1

Figure 6: Reprojection Error before (eInit(F)) and after Bundle Adjustment

(eBA(F)), Number of Iterations (Iter(F)), and CPU time to compute F (Time),

obtained when combining pairs of images to obtain epipoles close to the images

or toward infinity
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1 2 3

Views nb Points eInit(F) eBA(F) Iter(F) Time (s)

F8Pt FGp F8Pt FGp F8Pt FGp F8Pt FGp

1 2 310 18.27449 18.32095 11.39809 11.287591 65 57 0.035 2.05

2 3 439 61.84817 63.79435 41.81854 40.2224 29 28 0.020 2.22

1 3 439 42.67438 42.23867 28.65971 27.90128 40 32 0.043 2.10

Figure 7: Reprojection Error before (eInit(F)) and after Bundle Adjustment

(eBA(F)), Number of Iterations (Iter(F)), and CPU time to compute F (Time),

obtained when combining pairs of images of the Library series

1 2 3

Views nb Points eInit(F) eBA(F) Iter(F) Time (s)

F8Pt FGp F8Pt FGp F8Pt FGp F8Pt FGp

1 2 485 15.1771 15.3126 9.8859 9.7360 77 55 0.048 2.02

2 3 439 61.84817 63.79435 41.81854 40.2224 29 28 0.020 2.22

1 3 384 51.3128 2.3690 7.5245 0.56180 5 52 0.040 2.71

Figure 8: Reprojection Error before (eInit(F)) and after Bundle Adjustment

(eBA(F)), Number of Iterations (Iter(F)), and CPU time to compute F (Time),

obtained when combining pairs of images of the Merton1 series
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1 2 3

Views nb Points eInit(F) eBA(F) Iter(F) Time (s)

F8Pt FGp F8Pt FGp F8Pt FGp F8Pt FGp

1 2 345 24.7158 29.6530 14.0481 2.7599 69 42 0.037 2.91

2 3 197 143.431 154.880 73.8776 72.8977 14 19 0.026 2.52

1 3 270 59.8109 77.9734 30.3824 15.6367 38 32 0.031 2.37

Figure 9: Reprojection Error before (eInit(F)) and after Bundle Adjustment

(eBA(F)), Number of Iterations (Iter(F)), and CPU time to compute F (Time),

obtained when combining pairs of images of the Merton2 series

1 2 3

Views nb Points eInit(F) eBA(F) Iter(F) Time (s)

F8Pt FGp F8Pt FGp F8Pt FGp F8Pt FGp

1 2 400 62.7290 68.6030 52.6557 23.1740 5 32 0.041 3.03

2 3 197 135.950 140.801 83.3365 76.8614 13 14 0.025 2.52

1 3 264 116.7659 118.1754 24.7184 13.5496 9 11 0.032 2.39

Figure 10: Reprojection Error before (eInit(F)) and after Bundle Adjustment

(eBA(F)), Number of Iterations (Iter(F)), and CPU time to compute F (Time),

obtained when combining pairs of images of the Merton3 series
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Views nb Points eInit(F) eBA(F) Iter(F) Time (s)

F8Pt FGp F8Pt FGp F8Pt FGp F8Pt FGp

1 2 6609 6.3142 6.4021 1.4701 0.2531 401 237 1.23 2.33

Figure 11: Reprojection Error before (eInit(F)) and after Bundle Adjustment

(eBA(F)), Number of Iterations (Iter(F)), and CPU time to compute F (Time),

obtained when combining pairs of images of the Cylinder series. The matched

points are located in blue bounding boxes.

Views nb Points eInit(F) eBA(F) Iter(F) Time (s)

F8Pt FGp F8Pt FGp F8Pt FGp F8Pt FGp

1 2 730 5.6624 5.6366 3.8566 0.9386 163 401 0.07 1.69

Figure 12: Reprojection Error before (eInit(F)) and after Bundle Adjustment

(eBA(F)), Number of Iterations (Iter(F)), and CPU time to compute F (Time),

obtained when combining pairs of images of the Endoscope series
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Figure 13: Initial re-projections errors measured against movement amplitude for

the dinosaur series
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Figure 14: Final re-projections errors measured against movement amplitude for

the dinosaur series
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Figure 15: Number of iterations performed by Bundle-Adjustment to converge

measured against movement amplitude for the dinosaur series
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Figure 16: Initial re-projections errors measured against movement amplitude for

the House series
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Figure 17: Final re-projections errors measured against movement amplitude for

the House series
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Figure 18: Number of iterations performed by Bundle-Adjustment to converge

measured against movement amplitude for the House series
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