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Abstract

The string theory predicts existence of extremely compact objects spinning faster
than the Kerr black holes. The spacetime exterior to such superspinars is de-
scribed by the Kerr naked singularity geometry breaking the black hole limit on
the internal angular momentum. We demonstrate that conversion of Kerr su-
perspinars into a near-extreme black hole due to an accretion counterrotating
Keplerian disc is much more effective in comparison with the case of a coro-
tating one since both the accreted rest mass necessary for conversion and the
evolution time of conversion are by orders smaller for counterrotating discs. The
conversion time of Kerr superspinars is given for several accretion regimes, and
it is shown that the self-regulated accretion flow implies fastest evolution to the
black-hole state. In final stages of the conversion, Kerr superspinars can serve
as very efficient particle accelerators in the region where the black-hole horizon
forms.

PACS: 95.30.Sf, 04.70.-s, 04.70.Bw, 04.60.Cf, 97.60.Lf, 97.10.Gz

1 Introduction

The string theory predicts a very interesting possibility to be tested in the frame-
work of relativistic astrophysics. As shown by Gimon and Hořava [1], Kerr super-
spinars with mass M and angular momentum J violating the general relativistic
bound on the spin of compact objects (a ≡ J/M2 > 1) could be primordial rem-
nants of the high-energy phase of very early period of the evolution of the Universe
when the effects of the string theory were relevant. The spacetime outside a Kerr
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superspinar with boundary at radius R, where the stringy effects become to be
irrelevant, is assumed to be described by the standard Kerr geometry. The exact
solution governing the interior of the superspinar is not known in the 3+1 theory.
It is expected that extension of the internal stringy solution is limited to radii
r < R < M , thus covering the region of causality violations (naked time ma-
chine) and still allowing for the presence of the relevant astrophysical phenomena
related to the Kerr naked singularity spacetimes. There is an expectation that
the pathological naked time machine is replaced by a correctly behaving stringy
solution [1], being motivated by the resolution of the problems of 4 + 1 SUSY
black hole solution [2] where the pathological time machine region is replaced by
a portion of the Gödel universe [3, 4].

The Kerr superspinars (or Kerr naked singularity spacetimes) should have ex-
tremely strong gravity in their vicinity and some properties substantially differing
from those of Kerr black holes [5–7]. The differences could be related both to the
accretion phenomena [8–13] and optical effects [5, 8, 14–19]. Here we focus our
attention to the evolution of Kerr superspinars due to accretion from Keplerian
discs.

Evolution of supermassive black holes plays a crucial role in modelling of galactic
structures in the expanding universe [20, 21]. It is well known that evolution due to
accretion from geometrically thin discs could lead asymptotically to the extreme
black hole states, but a conversion into a Kerr naked singularity spacetime is not
allowed [22]. In fact, there is a general belief that the extreme black holes are
not accessible by astrophysically relevant processes due to laws of the black hole
physics [23] – attempts to find some counterexamples [24] put doubts on their
physical plausibility.

Accretion onto black holes implies growing (lowering) of their spin for corotat-
ing (counterrotating) thin discs. On the other hand, properties of the geodesic
structure of the Kerr naked singularity spacetimes imply lowering of their spin
for both corotating and counterrotating discs and their final conversion into a
black hole. It was shown that in the case of corotating discs the conversion has
to cause changes in their structure in a spectacular way because of the jump
in the properties of corotating circular geodesics of naked singularity and black
hole spacetimes [25], while in the case of counterrotating discs we expect quite
regular behaviour of the discs during the conversion due to regular behaviour of
the counterrotating geodesics [5].

The energy efficiency of accretion in Keplerian discs around Kerr superspinars is
given by the energy of the marginally stable circular geodesic Ems. For corotating
discs the efficiency can strongly exceed the efficiency of the Keplerian discs around
near-extreme Kerr black holes. In the field of Kerr naked singularities with spin a
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very close to the minimal value of a = 1 the radius of marginally stable geodesic
approaches rms = M from below and the efficiency overcomes substantially even
the annihilation efficiency, being ≈ 158 %, and is much larger than the efficiency
≈ 42.3 % of accretion in the field of near-extreme Kerr black holes [5]. For coun-
terrotating discs there is rms > 9M and the efficiency of Keplerian accretion is
lower than for near-extreme black holes [5].

The process of converting Kerr superspinars into near-extreme black holes due
to accretion from a corotating Keplerian disc is very dramatic [25] and could
be interesting with connection to the most extreme cases of Gamma Ray Bursts
(GBR) since a large part of the accretion disc becomes to be dynamically unsta-
ble after the transition of the superspinar into a near-extreme black hole state
and falls freely to the black hole causing a sharp decrease of the disc luminos-
ity [25]. If such an extremely compact object violating the standard Kerr spin
bound a < 1 will be observed in the Universe, it could quite well be naturally in-
terpreted in the framework of the string theory. The astrophysical effects related
to Kerr superspinars could thus belong to relevant experimental tests of the string
theory [1]. On the other hand, one has to be very careful in making any definite
conclusions based on the Kerr spin bound, since breaching of the Kerr bound is
also allowed for braneworld Kerr black holes endowed with a quite regular event
horizon when the tidal charge, the braneworld parameter reflecting the brany
black hole interaction with the external bulk space, takes negative values [26–31].

We shall discuss evolution of a Kerr superspinar due to accretion from a Keplerian,
equatorial, geometrically thin disc. We shall focus our attention on the counterro-
tating discs and compare the results to those of the evolution of Kerr superspinars
due to accretion corotating Keplerian discs [25] and to the evolution of black
holes [21, 22]. The Keplerian discs have quasi-geodetical structure and their edge
is located at the marginally stable geodesic where the relativistic phenomena are
strong. In such discs, the total radiation rate (luminosity L) is given by

L = (1 − Ems)
dm

dt
c2 ,

where 1 − Ems is the efficiency of converting accreting rest mass into outgoing
radiation and dm/dt is the rest mass accretion rate. We assume the superspinar
boundary surface to be located at r(θ) = R = 0.1M which guarantees that the
surface is well under the ISCO that cannot exceed rms = 2M/3 [5]. Further, we
assume that the boundary of the superspinar has properties similar to those of the
horizon, i.e., it is not radiating and eats the accreted matter, in accord with some
other related actual papers investigating the Kerr superspinars [1, 7, 13, 17].
Of course, all results presented here are valid also for evolution of Kerr naked
singularities.
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In Section 2 we present evolution equations of Kerr superspinars due to accretion
from counterrotating Keplerian discs. In Section 3 we construct the time evolution
in selected typical accretion regimes with specific laws for the accretion flow. In
Section 4 we compare the results to those for the accretion corotating Keplerian
discs. In Section 5 we present discussion, and in final Section 6 some conclusions
are given.

2 Evolution equations

The Kerr superspinar spacetime is determined by the standard Kerr geometry [23,
32] characterized by the mass parameter M and the dimensionless spin a = J/M2

where J is the internal angular momentum of the superspinar; magnitude of its
spin |a| > 1.

2.1 Kerr geometry

In the standard Boyer–Lindquist coordinates and geometric units (c = G = 1),
the Kerr geometry is given in the form

ds2 = −
(

1 − 2Mr

Σ

)
dt2 +

Σ

∆
dr2 + Σ dθ2 +

A

Σ
sin2 θ dϕ2 − 4M2ar sin2 θ

Σ
dtdϕ ,

where

∆ = r2 − 2Mr + (aM)2 , Σ = r2 + (aM)2 cos2 θ ,

A =
[
r2 + (aM)2

]2 − ∆(aM)2 sin2 θ .

The physical ring singularity of the spacetime is located at r = 0, θ = π/2.
There is no event horizon for the superspinar (naked singularity) spacetimes since
∆ > 0 for |a| > 1. The pathological causality violation region is determined by
the condition [23]

gφφ =
A

Σ
sin2 θ =

[
r2 + (aM)2 +

2M3a2r sin2 θ

Σ

]
sin2 θ < 0 ,

and we can convince ourselves easily that causality violations can occur only
at r < 0 [33]. Physically realistic models of Kerr superspinars have to remove
the causality violating region and the ring singularity. Therefore, the minimal
condition for the boundary surface of Kerr superspinars reads r(θ) = R = 0. In
recent papers concerning the Kerr superspinars, usually the boundary at r(θ) =
R = 0.1M is assumed and we keep this assumption.
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2.2 Keplerian discs

The structure of Keplerian, thin accretion discs is governed by the equatorial
circular geodesic motion in the Kerr spacetime. In Kerr naked singularity space-
times relevant for the external field of Kerr superspinars, there are two families
of circular geodesics [5] – the 1st (2nd) family orbits are governing corotating
(counterrotating) Keplerian discs.

The Carter equations imply the specific energy and specific angular momentum
of the circular geodesics to be given by the relations [5, 34]

EK =
x3/2 − 2x1/2 ± a

x3/4
√

x3/2 − 3x1/2 ± 2a
, ΦK = ± x2 + a2 ∓ 2ax1/2

x3/4
√

x3/2 − 3x1/2 ± 2a
,

where x = r/M and the upper (lower) sign corresponds to the 1st (2nd) family
orbits. The angular velocity with respect to static observers at infinity Ω = dφ/dt
is given by the relation

ΩK = ± 1

x3/2 ± a
.

In theory of Keplerian discs a crucial role is devoted to the innermost (marginally)
stable circular orbit (ISCO) in the field of a given spacetime that is usually con-
sidered to correspond to the inner edge of Keplerian discs [35]. In Kerr spacetimes
the ISCO is determined by the relation [34]

xms = 3 + Z2 ∓
√

(3 − Z2)(3 + Z1 + 2Z2) ,

where

Z1 = 1 + (1 − a2)1/3
[
(1 + a)1/3(1 − a)1/3

]
, Z2 =

√
3a2 + Z2

1 .

The marginally bound orbits with EK = 1 have radii given by

xmb = 2 + a ∓ 2(1 + a)1/2 .

The 1st family orbits are corotating relative to distant observers (ΩK > 0) – such
orbits are locally corotating (ΦK > 0) in regions distant from superspinars, but
could be locally counterrotating (ΦK < 0) in vicinity of superspinars with the
spin parameter a < a0 = 33/2/4 ≈ 1.299. For superspinars with spin a < ac =
25/2/33/2 ≈ 1.089, the 1st family orbits with ΦK < 0 could have negative energy
(E < 0), while being located close enough to the superspinar boundary – the
marginally stable circular orbit is located under x = 1 for a < 5/3 and xms → 1
from below for a → 1 from above [5]. The 1st family orbits reveal a strong
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Figure 1: The efficiency of Keplerian accretion discs orbiting Kerr superspinars
and black holes. Left panel: Corotating discs. Right panel: Counterrotating discs.
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Figure 2: The ratio of efficiencies of corotating and counterrotating discs.

jump in their properties when transition from a naked singularity spacetime to
a black hole spacetime occurs. On the other hand, the 2nd family orbits are
counterrotating relative to distant observers (ΩK < 0) and locally counterrotating
(ΦK < 0) everywhere for all Kerr superspinars. The Keplerian energy EK and
angular momentum ΦK radial profiles change smoothly when the transition across
a = 1 occurs.

The jump in the structure of corotating discs is most profoundly represented by
the efficiency factor of the Keplerian accretion, given by the relation

η = 1 − Ems

that is illustrated in Fig. 1. We immediately see the large jump in the efficiency of
corotating discs from the factor ηebh ≈ 0.423 to ηens ≈ 1.58. For counterrotating
discs the efficiency factor matches smoothly at a = 1 and is by almost two order
smaller than for corotating discs. For completeness we also compare the efficiency
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factor of corotating and counterrotating discs introducing the ratio

R =
ηco(a)

ηcounter(a)

plotted in Fig. 2 and clearly demonstrating the ratio of energy outputs in the two
different accretion regimes.

2.3 Evolution of spin and mass of accreting Kerr superspinars

Evolution of a Kerr superspinar (naked singularity) is described in terms of the
evolving spin a and is finished when a = 1 and the superspinar is converted into a
near-extreme Kerr black hole. We shall assume positive values of the superspinar
spin during its evolution.

The inner boundary of the counterrotating thin (Keplerian) disc is located at the
marginally stable counterrotating circular geodesic xms satisfying the condition
xms > 9; for xms rising the superspinar spin grows to higher values of a > 1 while
the energy Ems of the ISCO counterrotating orbit falls with spin growing [5]. A
mass element located at the disc inner boundary has a specific energy Ems and
a specific angular momentum Φms that are functions of the superspinar spin a.
Matter falls freely from xms transporting energy Ems and angular momentum
Φms into the superspinar, thus changing its parameters. If a rest mass ∆m is
captured, the superspinar mass M and angular momentum J changes are given
by the relations

∆M = Ems∆m , ∆J = Φms∆m .

The superspinar evolution is then determined by two differential equations giving
evolution of the spin a and mass M due to the amount of the rest mass of accreting
matter m (see [36])

da

d ln M
=

1

M

Φms

Ems
− 2a ,

dM

dm
= Ems . (1)

It is convenient to solve the evolutionary differential equations using radius of the
marginally stable circular orbit as a variable. Therefore, we express the variables
a, Ems, Φms in terms of the dimensionless radius xms = rms/M to obtain, in the
case of counterrotating discs, the relations

a = 1
3

√
xms

(
−4 +

√
3xms − 2

)
,

Ems =

√
1 − 2

3xms
,

Φms = − 2M

3
√

3

(
1 + 2

√
3xms − 2

)
.
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Clearly, the angular momentum of the matter accreted from counterrotating discs
is always negative, while its energy is positive and the r.h.s. of evolution equa-
tion is always negative indicating evolution of a Kerr superspinar to black-hole
states and its conversion into a near-extreme black hole. For corotating discs the
evolution is more complex, but again leads to the conversion into a near-extreme
black hole state as shown in [25].

Expressing the evolutionary equation in the form

M
da

dxms

dxms

dM
=

1

M

Φms

Ems

− 2a (2)

and using the relations a(xms), Ems(xms), Φms(xms), we arrive to

dxms

xms

= −2
dM

M
.

Variations of xms and mass M are thus given by

xms

xmsi
=

(
Mi

M

)2

,

where the index “i” means initial values of the variables. For counterrotating
discs this simple formula enables to present the integrated evolution laws of the
superspinar spin and mass in the following simple form

a =

√
xmsi

3

Mi

M

(
−4 +

√
3xmsi

M2
i

M2
− 2

)
, (3)

and

M

Mi

=

√
3xmsi

2
− 1 sin

(√
2

3xmsi

∆m

Mi

)
+ cos

(√
2

3xmsi

∆m

Mi

)
.

Now we can directly find that a Kerr superspinar of initial mass Mi and spin ai

related to the marginally stable orbit radius xmsi through Eq. (3) will be converted
into a Kerr black hole with a = 1 by accretion of the rest mass ∆mc determined
by the relation

∆mc

Mi
=

√
3xmsi

2
arcsin

[
1

9

√
2

xmsi

(√
3xmsi − 2 − 5

)]
. (4)

The rest mass necessary for conversion ∆mc and the mass Mc of the resulting
black hole expressed in terms of the superspinar initial mass Mi are represented as
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Figure 3: Conversion due to accretion in counterrotating discs. Amount of the
rest mass ∆mc necessary for conversion of a Kerr superspinar with initial values
of parameters Mi, ai, and the mass Mc of the resulting Kerr black hole, expressed
in terms of initial mass Mi.

functions of the initial spin ai in Fig. 3. Both ∆mc/Mi and Mc/Mi grow smoothly
with the initial spin ai. The conversion of superspinars due to accretion from
counterrotating discs is very efficient process since the magnitude of the angular
momentum of matter falling from the counterrotating marginally stable circular
geodesic is much higher than in the case of corotating disc. Consequently, the
superspinar mass increase and the rest mass necessary for the conversion are
relatively small – for example, conversion of a superspinar having initial spin
ai = 3 needs accretion of rest mass ∆mc ' 0.25Mi and leads to resulting black
hole mass Mc ' 1.24Mi.

3 Time evolution for typical accretion regimes

Time evolution of a Kerr superspinar with initial values of mass and spin Mi, ai

can be found by integrating the evolution equation (1) expressed in the form

dM

dt
= Ems

dm

dt
, (5)

assuming that the accretion rate relative to observers at infinity dm/dt is given. In
general situations corresponding to non-Keplerian accretion discs, the time evo-
lution of the superspinar parameters can only be determined numerically [20, 21].
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Here we apply four properly chosen assumptions on the nature of the accretion
rate in Keplerian discs that enable integration of the evolution equations in terms
of elementary functions and can thus serve as a test bed for more complicated sit-
uations. We choose three standard assumptions [8, 9] completed by the fourth case
related to the time evolution due to accretion rate in the spherical accretion [22]
that could correspond to accretion of matter accumulated in large distances to
the superspinar.

3.1 Constant flow

The simplest possibility is represented by the constant flow that can be expressed
in the form

dm

dt
= k1Mi = const .

Using Eq. (5), the time evolution of the superspinar mass is determined by the
formula

M

Mi

=

√
3xmsi

2
− 1 sin

(√
2

3xmsi

k1t

)
+ cos

(√
2

3xmsi

k1t

)
.

Time evolution of its spin is given by the formula (3) where the last expression
for M/Mi is used. The time necessary for the conversion into the black hole state
is simply determined by

tc =
1

k1

∆mc

Mi

with ∆mc/Mi given by Eq. (4).

3.2 Mass-proportional flow

For accretion flow proportional to the superspinar mass

dm

dt
= k2M

we find, using Eq. (5), the time evolution of the superspinar mass in the form

M

Mi
=

(
1 +

√
1 − 2

3xmsi

)
e−k2t

(
1 − 1

3xmsi
+
√

1 − 2
3xmsi

)
e−2k2t + 1

3xmsi

.

Consequently, the superspinar spin evolution is again determined by the Eq. (3).
The conversion time is then given by the formula

tc =
1

k2

ln

∣∣∣∣
(

1 +

√
1 − 2

3xmsi

) √
3xmsi√
27 + 5

∣∣∣∣ .
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3.3 Self-regulated flow

The critical accretion rate of self-regulated accretion discs that can be important
in close binary systems or in dense active galactic nuclei with large amount of
accreting matter is determined by the total disc luminosity that is self-regulated
at the Eddington critical rate LEd = 1.3 × 1031 W (M/M�) [35]. It is expressed
in the form

dm

dt
= k3

M

1 − Ems
.

The time evolution of the superspinar mass (and consequently of its spin) can be
obtained by integrating the evolution equation (5) with given accretion flow and
leads to the formula

M

Mi
=

√
3xmsi

2

(
1 +

√
1 − 2

3xmsi

)
e−k3t

√

2 ek3t

(
1 +

√
1 − 2

3xmsi

)−1

− 1 .

The conversion time then reads

tc =
1

k3
ln

∣∣∣∣∣∣

1 +
√

1 − 2
3xmsi

1 + 5√
27

∣∣∣∣∣∣
.

3.4 Bondi flow

Finally we consider the situation when the accretion rate is controlled by large-
distance influence of the superspinar that could be relevant when the surrounding
matter disposable for accretion is limited. We assume the matter flow of the
Bondi type that is inspired by the case of adiabatic spherical accretion [37, 38].
The accretion rate can then be given in the form

dm

dt
= k̃M2 ,

where the constant k̃ is of different dimensionality in comparison with constants
used in the previous three accretion rate laws. The time evolution of the super-
spinar mass – and its spin due to Eq. (3) – is then given by the formula

M

Mi
=

[
1 + 2

√
1 − 2

3xmsi
k̃Mit + (k̃Mit)

2

]−1/2

and the conversion time can be expressed in the form

tc =
1

k̃Mi

√
2

3xmsi

(√
3xmsi

2
− 1 − 5√

2

)
.
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Figure 4: Left panel: Time evolution due to accretion in counterrotating discs.
Time tc necessary for conversion of a Kerr superspinar into a Kerr black hole
is given as a function of the initial value of spin ai for four typical regimes of
accretion: constant accretion flow, flow proportional to the mass of the Kerr
superspinar, self-regulated critical flow, and Bondi flow. Right panel: Zoom of
the shaded region in the left panel.

The time evolution of a superspinar with initial spin ai up to the extreme black
hole state (a = 1)1 is illustrated in Fig. 4 for all of the four accretion rate laws. For
purposes of the comparison of different accretion flows influence on the conversion
time tc, we put k = k1 = k2 = k3 = k̃Mi. Of course, in astrophysically realistic
situations magnitude of the accretion constants have to be related to concrete
astrophysical conditions that generally imply different regimes of accretion with
substantially different values of the constant k.

Clearly, the self-regulated accretion leads to extremely fast conversion of a Kerr
superspinar into a near-extreme black hole state, but it assumes a large amount of
matter in close vicinity of accreting superspinar. These results are quite different
from those obtained in the case of accretion from corotating thin discs [25].

4 Comparison with accretion from corotating Keplerian
discs

Accretion from a corotating Keplerian disc into a Kerr superspinar (naked sin-
gularity) is more complex in comparison to the case of counterrotating discs,
because of the unusual behaviour of corotating circular geodesics in the Kerr
naked singularity spacetimes [5]. It is reflected by the fact that for Kerr space-
times with spin a < a0 = 33/2/4 ≈ 1.299 counterrotating orbits with Φms < 0

1. Note that in real situations a near-extreme black hole is created due to the conversion
process as discussed in [25].
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appear in the innermost parts of the corotating Keplerian discs and the accre-
tion reduces its angular momentum directly. Moreover, in the spacetimes with
spin a < ac = 25/2/33/2 ≈ 1.089 the counterrotating orbits near the disc edge
have negative energy and Ems < 0. Therefore, the rotation energy of such super-
spinars has to be extracted by the accretion process, lowering thus mass of the
superspinar.

We shall briefly summarize evolution laws of the Kerr superspinars due to coro-
tating discs [25]. The evolution from an initial state with Mi, ai is expressed by
the formulae for spin

a =

√
xmsi

3

Mi

M

(
4 + ε

√
3xmsi

M2
i

M2
− 2

)
,

and mass

M

Mi

= ε

√
3xmsi

2
− 1 sin

(√
2

3xmsi

∆m

Mi

)
+ cos

(√
2

3xmsi

∆m

Mi

)

that is expressed in terms of the amount of accreted rest mass ∆m. The parameter
ε takes value of ε = −1 for superspinar states with a < ac and ε = 1 for states
with a > ac.

The accreted rest mass ∆mc necessary for conversion of a Kerr superspinar with
initial mass Mi and spin ai into a near-extreme black hole state is determined by
the relation

∆mc

Mi
=

√
3xmsi

2
arcsin

[
1

3

√
2

xmsi

(
1 + ε

√
3xmsi − 2

)]
(6)

for ai < 2
√

2, where the parameter ε has the same meaning as before, and by the
relation

∆mc

Mi

=

√
3xmsi

2

{
π − arcsin

[
1

3

√
2

xmsi

(
1 +

√
3xmsi − 2

)]}
(7)

for ai > 2
√

2.

The resulting black hole mass Mc/Mi, and the rest mass ∆mc/Mi required for the
conversion, are shown in Fig. 5. Deceleration of decrease of the superspinar spin
in the region 1 < a < ac occurs due to the energy extraction and superspinar’s
mass decrease due to accretion. For any superspinar with ai < 5/3 the resulting
black hole mass is lower than the initial mass. The largest part of the initial mass
is extracted from a superspinar with ai = ac being

∆M = Mi

(
1 −

√
2
3

)
= 0.1835Mi ,
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Figure 5: Conversion due to accretion in corotating discs. Amount of the rest
mass ∆mc necessary for conversion of a Kerr superspinar with initial values of
parameters Mi, ai, and the mass Mc of the resulting Kerr black hole. The minimum
of M/Mi|min =

√
2/3 ≈ 0.8165 is located at ai = ac = 25/2/33/2 ≈ 1.089. There

is M/Mi = 1 at ai = 5/3.

with corresponding accreted rest mass

∆mc = Mi arcsin 1√
3
≈ 0.6155Mi .

Note that in such a situation both ∆M and ∆mc are converted into outgoing
radiation.

4.1 Conversion time

We present the dependence of the conversion time tc on the superspinar initial spin
ai for all four types of the accretion flow considered in the case of counterrotating
discs.

For the constant flow we arrive again to the simple formula

tc =
1

k1

∆mc

Mi

with ∆mc/Mi given now by Eqs (6) and (7).
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For the mass-proportional flow we obtain

tc =





1
k2

ln

[(
1 + 1√

3

)
1√
xmsi

(
1 +

√
1 − 2

3xmsi

)−1
]

for ai < ac ,

1
k2

ln
[

3
2

(
1 + 1√

3

)√
xmsi

(
1 +

√
1 − 2

3xmsi

)]
for ai > ac .

For the self-regulated accretion the conversion time reads

tc =





1
k3

ln

[(
1 + 1√

3

)
1

xmsi

(
1 +

√
1 − 2

3xmsi

)−1
]

for ai < ac ,

1
k3

ln
[

3
2

(
1 + 1√

3

)(
1 +

√
1 − 2

3xmsi

)]
for ai > ac .

The Bondi flow implies the conversion time in the form

tc =





1
k̃Mi

(
1√

3xmsi
−
√

1 − 2
3xmsi

)
for ai < ac ,

1
k̃Mi

(
1√
2

+
√

1 − 2
3xmsi

)
for ai > ac .

All the expressions for the conversion time are illustrated in Fig. 6 assuming (as
in Fig. 4) that k = k1 = k2 = k3 = k̃Mi. We see that the time evolution of a
superspinar again strongly depends on the assumed law for accretion rate. For
small values of ai < 1.6 the differences of conversion time are relatively small,
but strongly grow for larger values of ai.
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Figure 6: Left panel: Time evolution due to accretion in corotating discs. Time
tc necessary for conversion of a Kerr superspinar into a Kerr black hole is given
as a function of the initial value of spin ai for four typical regimes of accretion:
constant accretion flow, flow proportional to the mass of the Kerr superspinar,
self-regulated critical flow, and Bondi flow. Differences of about one order between
these laws occur for ai ∼ 10. Right panel: Zoom of the shaded region in the left
panel.
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5 Discussion

Using the evolution equations of Kerr superspinars due to the corotating and
counterrotating Keplerian discs, we are able to put some relevant estimates on
limits of survival period of these hypothetical objects, the energy output dur-
ing their evolution, and processes that could be relevant at the conversion of
a superspinar into a near-extreme black hole. Of course, of special interest are
the astrophysical phenomena enabling clear observational distinguishing of Kerr
superspinars and black holes.

5.1 Survival period of Kerr superspinars

The survival time of superspinars is determined by amount of matter available
for accretion, the Kerr accretion regime (co- or counterrotating) and the initial
values of their mass Mi and spin ai. Clearly, the strongest limit is implied by the
most efficient, self-regulated accretion that we consider for our estimates.

The critical, Eddington luminosity governing the self-regulated accretion flow
reads [35]

Ls-r = 1 × 1038

(
M

M�

)
erg/s = ηc2

(
dm

dt

)

s-r

.

Using the relation for the self-regulated flow we arrive to

ks-r
M

η
=

Ls-r

ηc2

and we find the constant giving the time scale of the flow to be

ks-r =
Ls-r

Mc2
' 10−9 yr−1 .

The self-regulated flow is governed by both mass of the central object and accre-
tion efficiency η that is determined by the spin of the central object.

Then the typical black hole self-regulated accretion rate (η ' 0.1) reads

dm

dt

∣∣∣∣
crit

= 10−8 M� yr−1

(
M

M�

)
,

and puts limit on the existence of Keplerian accretion discs [35]. Such an accretion
rate can be relevant for corotating discs orbiting Kerr superspinars with spin
a > 3, while for superspinars with spin a < 2 (η ∼ 1), the self-regulated accretion
rate is rather given by

dm

dt

∣∣∣∣
crit

= 10−9 M� yr−1

(
M

M�

)
.
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Figure 7: Conversion time of Kerr superspinars due to accretion Keplerian discs
in self-regulated accretion regime given as a function of their initial spin. Notice
that for large values of ai the conversion time of corotating discs tc(c) converges
to 1.5× 109 yr and the conversion time of counterrotating discs tc(r) converges to
1.9 × 107 yr.

For Keplerian counterrotating discs around Kerr superspinars of all a < 10, the
efficiency η ∼ 0.01, and the self-regulated flow reads

dm

dt

∣∣∣∣
crit

= 10−7 M� yr−1

(
M

M�

)
,

i.e., it is by two orders larger in comparison with the self-regulated flows in
corotating discs around near-extreme superspinars.

The survival period of Kerr superspinars is given by the characteristic time
of evolution of corotating discs ts(c) ∼ k−1

s-r ∼ 109 yr, since for counterrotating
(retrograde) Keplerian discs the characteristic time is significantly shortened to
ts(r) ∼ 10−2 k−1

s-r ∼ 107 yr. The survival time depends explicitly on the initial
spin ai of the superspinar, but it is independent of its initial mass Mi. The mass
parameter Mi is relevant only in determining the possibility of the superspinar
conversion due to the relation to accreted rest mass ∆mc necessary for the con-
version. Detailed information on the survival (conversion) time is represented in
Fig. 7, where the conversion time tc expressed in units of k−1

s-r ∼ 109 yr is given as
a function of ai. The survival time of a “primordial” superspinar, created in the
very early stages of the Universe evolution, should correspond to the age of the
Universe, i.e., ts ∼ 1010 yr. We can see that self-regulated accretion rate excludes
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possibility of superspinars reaching the recent era tc ∼ 1010 yr, since there is

tc(c)(a → ∞) =
1

ks-r
ln

[
3

(
1 +

1√
3

)]
' 1.5 × 109 yr .

On the other hand, it is quite interesting that the conversion time tc ∼ 1.5×109 yr,
corresponding to the era of high-redshift quasars and active galactic nuclei (AGN)
is reached by superspinars with quite non-extreme initial spin ai ∼ 2. Super-
spinars with ai & 2 would have their spin at the era of high-redshift quasars
very close to the extreme value of a ∼ 1 and could thus demonstrate phenom-
ena related to the conversion process. On the contrary, we could state that if
no superspinars are observed in the high-redshift quasars, and some primordial
superspinars were created, then their initial spin ai < 2.

Concerning the counterrotating accretion, we see immediately that it works on
scales by two orders smaller in comparison with the corotating accretion, and
there is no realistic possibility for primordial Kerr superspinars to survive during
such an accretion regime, if there is rest mass enough for the conversion process;
note that such a rest mass is by one order smaller in comparison with initial mass
of the superspinars. In fact, there is

tc(r)(a → ∞) =
1

ks-r

ln

(
2
√

27

5 +
√

27

)
' 1.9 × 107 yr .

It is clear that if we consider sub-sequent periods of co- and counterrotating self-
regulated accretion, then the full time of evolution is essentially given by the
corotating periods, if the accreted masses of each period are comparable.

Generally, the frequency of accretion episodes and the amount of available accret-
ing matter are crucial for the survival time of Kerr superspinars. These depend
on the conditions in the early universe [21] and on the ratio of the central object
mass (a superspinar or a black hole) to the galaxy mass which is in the high-
redshift quasars by almost two orders larger than in low-redshift AGN (0.01–0.1
to 0.001) [39, 40]. Further, we can expect that superspinars efficiently regulate
the accretion rate on large scales, comparable or even larger than in the case of
supermassive black holes where the scales reach the dark matter halo extension
(100 kpc) [41].

5.2 Conversion processes

The energy radiated by the thin accretion disc during conversion of a Kerr su-
perspinar is given by

Erad(ai) = ∆mc(ai) − ∆M(ai) ,
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where ∆M(ai) ≡ Mc(ai) − Mi. Clearly, in the case of corotating discs, ∆M(ai)
is negative for ai < 5/3, since in the final stages of the accretion process the
rotational energy is directly extracted from superspinars with a < ac.

5.2.1 Conversion parameters

Due to accretion from a Keplerian counterrotating disc the Kerr superspinar mass
has to grow continuously, contrary to the case of a corotating disc when the mass
falls in the final phases of the evolution to a near-extreme black-hole state because
of extraction of the superspinar rotational energy. The conversion process is much
more efficient for counterrotating discs – the accreted rest mass necessary for
conversion is by more than one order smaller in comparison with that related to
corotating discs (cf. Figs 3 and 5). This is demonstrated for representative values
of ai in Table 1 for ∆mc/Mi, Mc/Mi, and Erad/Mi. In Table 2, the conversion
time tc is given in all four accretion regimes assuming a common characteristic
accretion flow constant; however, the flow constants depend on the amount of
matter accessible for accretion and, therefore, the accretion regime. The highest
flow can be expected in the case of self-regulated accretion implying the fastest
evolution.

For accretion from counterrotating discs the conversion is much (by orders) faster
in comparison with the corotating discs (see Figs 4 and 6) and there are strong
differences in the conversion time in the four types of accretion in whole the range

Table 1: Comparison of accreted rest mass necessary for conversion, resulting
conversion mass, and total radiated energy related to the conversion for corotating
and counterrotating discs.

ai ∆mc/Mi Mc/Mi Erad/Mi

corot ctrot corot ctrot corot ctrot
1.5 1.2974 0.0764 0.9377 1.0737 1.35963 2.688 × 10−3

3.0 2.8782 0.2665 1.4708 1.2584 2.40737 8.112 × 10−3

Table 2: Comparison of conversion time for corotating and counterrotating discs
in all four regimes.

ai tc
constant flow mass-prop. flow self-reg. flow Bondi flow
corot ctrot corot ctrot corot ctrot corot ctrot

1.5 1.2974 0.0764 1.1969 0.0737 1.2612 0.0026 1.1989 0.0712
3.0 2.8782 0.2665 1.8523 0.2370 1.4665 0.0072 1.5389 0.2117
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of the spin. Extremely short conversion can be realized in the case of the self-
regulated accretion (with high accretion flows) which is by several orders faster in
comparison with the evolution due to corotating discs. It is of crucial importance
that accreted mass necessary for conversion of a superspinar with ai > 2 is more
than one order smaller for the counterrotating accretion as compared to the
corotating one. Therefore, the counterrotating accretion is much more effective
in the conversion process even from this point of view.

5.2.2 Transition to the black hole state

Transition to the black hole state in the counterrotating accretion disc regime is
quite smooth since the properties of counterrotating circular geodesics in the field
of extreme Kerr black holes and Kerr superspinars are smoothly matched for a →
1. The conversion time tc ∼ 107 yr. After the transition, the created black hole can
evolve to states with decreasing spin and can even change the spin orientation
and reach the near-extreme state with inverted spin, if there is accreted mass
enough for the spin inversion. Time necessary for the spin inversion depends
on the accretion flow regime, and in the fastest case of the self-regulated flow it
takes tinv ∼ 108–109 yr. Therefore, such black holes created from a primordial Kerr
superspinar can be near-extreme in the era of high-redshift quasars. However, the
rest mass necessary for the black hole spin inversion is more than one order larger
(> 25) [22] than the one necessary for the superspinar conversion. This implies
that the spin inversion is not much likely in practice.

Transition due to corotating accretion discs is, on the other hand, very dramatic,
because of the strong discontinuity of corotating circular geodesics in black hole
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Figure 8: Corotating Keplerian energy EK(x; a) radial profiles constructed for
the field of near-extreme Kerr black holes and Kerr superspinars; we have chosen
a = 1± δ with δ = 10−3 (left panel) and δ = 10−4 (right panel) in order to clearly
demonstrate the energy gap of marginally stable circular orbits.
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and naked singularity spacetimes with spin a → 1. In the field of near-extreme
Kerr superspinars, the circular orbits are located above and under the radius
r = 1 (along a long tube of the proper radial distance, as described in [42]),
similarly to the circular geodesics in the field of near-extreme black holes where
the orbits located above the horizon are astrophysically relevant. However, in
the field of a Kerr superspinar with a = 1 + δ (δ � 1), the Keplerian energy
profile EK(r) near the radius r = 1 is completely different the profile constructed
for the Kerr black hole field with a = 1 − δ (see Fig. 8). The transition from a
near-extreme superspinar state into the near-extreme black hole state is realized
for an appropriately given δ � 1. After the transition, a substantial part of the
corotating disc, with energy lower than the energy of the marginally stable orbit
of the resulting near-extreme black hole becomes to be unstable and plunges freely
into the black hole, implying thus some dynamical observational consequences,
e.g., a strong decrease of the disc energy output. We can expect that the plunged
unstable part of the disc causes the black hole to be finally in a near-extreme
state, with corotating accretion continued from the stable part of the disc, with
the black hole spin probably being fixed at the canonical value of a ≈ 0.998
reflecting the effect photons captured by the black hole [36].

5.2.3 Near-extreme Kerr superspinars as sources of ultra-high energy particles

Banados, Silk and West recently proposed existence of ultra-high energy processes
due to particle collisions in vicinity of the extreme black hole horizon [43]. They
have found that assuming test-particle motion, the centre-of-mass energy can be
arbitrarily high when two particles starting their motion at rest at infinity collide
near the event horizon of an extreme (or a near-extreme) Kerr black hole if the
angular momentum of either particle is fine-tuned to some critical value - such a
process could thus represent a very efficient particle accelerator enabling testing
of high energy physics in the strong gravitational field of near-extreme black
holes. This phenomenon was later criticized and further discussed in a series of
papers [44–47] and still represents an extremely interesting phenomenon, despite
the fine tuning necessary in the processes near the black hole horizon.

We are able to show that in the field of near-extreme Kerr superspinars the
centre-of-mass energy can reach ultra-high values for collisions of particles on the
equatorial circular orbits at r = 1 (or its very close vicinity) and any generic parti-
cle, e.g., those coming from rest at infinity, with no fine-tuning of the constants of
the motion. Moreover, it can be easily demonstrated that such ultra-high energy
processes can appear at r = 1 and arbitrary latitude θ due to head-on collision of
particles falling from rest at infinity with zero angular momentum [48, 49] that
can collide with those that inverted their motion near the ring singularity due to
the gravitational repulsion of the field of Kerr superspinars [6].
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The centre-of mass (CM) energy of two colliding particles having 4-momenta pα
1

and pα
2 , rest masses m1 and m2, and total momentum

pα
(tot) = pα

1 + pα
2

is given by the relation

E2
CM = −pα

(tot)p(tot)α = m2
1 + m2

2 − 2gαβp
α
1pβ

2 = m2
1 + m2

2 − 2gαβp1αp2β .

The CM energy is a scalar independent of the coordinate system so we can use
the standard Boyer–Lindquist coordinates and Carter equations [23]. Assuming
a Kerr superspinar with spin a = 1 + δ and the collision at r = 1, we find that
in both considered cases (particles on the corotating circular orbit colliding at
the equatorial plane with particles falling from rest at infinity, and the inversely
directed particles with zero angular momentum colliding at any latitude θ), there
is the CM energy given in the first approximation by (m1 = m2 = m)

E2
CM ∼ m2

∆
∼ m2

δ
.

(See [50] for details.)

Clearly, in the field of near-extreme Kerr superspinars, close to the final stages
of the conversion process, when δ can be assumed very small, e.g., δ ∼ 10−10, or
smaller, the ultra-high energy processes can occur very frequently, with no fine-
tuning of the constants of motion of the colliding particles, contrary to the black-
hole case where the fine-tuning is necessary. In such stages of their evolution, Kerr
superspinars can work as an efficient particle accelerator being thus a laboratory
of particle physics of ultra-high energies.

5.3 Subsequent evolution of created black holes

The characteristic time of evolution of a black hole due to self-regulated accretion
is ∼ 108 yr and is comparable to the time necessary for spin-up of a non-rotating
black hole due to the self-regulated accretion. For the other regimes of accretion,
the characteristic times of evolution are little bit longer, but typically of the same
order.

Concerning evolution of black holes and their spin due to accretion, we can find
that – according to Bardeen’s work [22] – the change of the mass caused by accre-
tion from counterrotating disc, considering transition from initial near-extreme
black hole (a ' 1) to final Schwarzschild black hole (a = 0), is

M1→0

Mi
=

√
3

2
≈ 1.225 ,
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and accreted rest mass necessary for the black hole spin-down

∆m1→0

Mi
= 3

√
3

2
arcsin

(
1

9
√

3

)
≈ 0.2359 ,

while considering spinning up from initial Schwarzschild black hole (a = 0) to
final near-extreme black hole (a ' 1) due to accretion from a Keplerian corotating
disc there is

M0→1

Mi

=
√

6 ≈ 2.449 ,

and accreted rest mass necessary for spin-up

∆m0→1

Mi
= 3 arcsin

(
1√
3

)
≈ 1.846 .

For the counterrotating discs the accreted rest mass necessary for a black hole
spin-down (a ' 1 → a = 0) is comparable with the conversion rest mass of a
Kerr superspinar with ai ∼ 2.9, while for the corotating discs the accreted rest
mass necessary for a black hole spin-up (a = 0 → a ' 1) is comparable with the
conversion rest mass of superspinars with ai ∼ 1.8.

Finally, inversion of the spin of a near-extreme black hole due to accretion implies
for the black-hole mass change

Minv

Mi
= 3 ,

and for the accreted rest mass necessary for the inversion

∆minv

Mi
= 3

√
3

2

[
arcsin

(
1

9
√

3

)
+ arcsin

(
1√
3

)]
≈ 2.497 .

We can see that accreted mass necessary for the inversion of the black hole spin
is comparable to the accreted mass necessary for conversion of a superspinar with
ai ∼ 2.8 due to the corotating disc, while for conversion of the same superspinar
by the counterrotating disc the accreted mass is by more than one order smaller.

5.4 Energy radiated during the conversion process

Energy radiated by a corotating disc during the conversion of a Kerr superspinar
with given Mi and ai < 3 is by more than two orders (∼ 500 times) larger in
comparison with energy radiated by a counterrotating disc. The counterrotating
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accretion is thus a relatively “silent” process. When both co- and counterrotating
phases of accretion are combined, the total energy output essentially equals to
the output of the corotating periods. If we assume, for simplicity, all near-extreme
black holes observed in the era of high-redshift quasars to be created by accreting
superspinars (with ai < 2), in half by corotating and counterrotating discs having
fuel enough for generating corotating near-extreme black holes, we have to include
into the energy balance the radiation generated during the spin inversion of the
black holes created by the counterrotating accretion. (Recall that time necessary
to obtain final corotating near-extreme black hole states is ∼ 109 yr in both cases.)
Therefore, we have to find the energy output during the process of the black hole
spin inversion.

For a black hole spin-down from a ' 1 to a = 0 the radiated energy

E1→0
rad

Mi

= 1 + 3

√
3

2
arcsin

(
1

9
√

3

)
−
√

3

2
≈ 0.01112 .

For a black hole spin-up from non-rotating state to a near extreme state the
radiated energy

E0→1
rad

Mi
= 1 + 3 arcsin

(
1√
3

)
−
√

6 ≈ 0.3969 ,

while for the spin inversion

Einv
rad

Mi
= 3

√
3

2

[
arcsin

(
1√
3

)
+ arcsin

(
1

9
√

3

)]
− 2 ≈ 0.4973 .

For counterrotating discs, energy radiated during conversion of a superspinar is
slightly smaller in comparison with energy radiated during a black hole spin-down
assuming comparable initial mass of the superspinar and the black hole. How-
ever, for corotating discs, energy radiated during the conversion process strongly
exceeds energy radiated during a black hole spin-up.

It is interesting to compare energy radiated by conversion of Kerr superspinars
with ai ∼ 2–3 (and Mi) leading to a near-extreme black hole due to the corotating
accretion regime only (assuming its preference) when Erad(ai ∼ 3)/Mi ∼ 2.4 to
the energy generated by the black hole spin up when E0→1

rad /Mi ∼ 0.4, finding
the ratio ε ∼ 6. In the more complex combined conversion process we have to
compare [Erad(ai ∼ 3)/Mi + Einv

rad/Mi]/2 ∼ 1.45 with E0→1
rad /Mi ∼ 0.4 and we find

εcomb ∼ 3.8. Therefore, the superspinar conversion energy output can be by factor
ε ∼ 4 higher when compared with energy output due to accreting black holes, if
we compare them at the era of the high-redshift quasars.
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This could be of high importance in estimating the feed-back effect of the super-
spinar conversion process and we expect its relevant role in the evolution of the
early stages of the evolution of the universe.

5.5 Observational signatures of Kerr superspinars

It follows from our previous discussion that the Kerr superspinars could appear
in (high-redshift) quasars and AGN where supermassive black holes are usually
assumed, or in Galaxy Black Hole Candidates (GBHC) observed in some X-
ray binary systems and having relatively short lifetime [51]. In both classes of
the black hole candidates some objects are reported with the spin estimates ex-
tremely close to the limit value a = 1 and these objects could in principle serve
as superspinar candidates. The spin estimates with a ∼ 1 are implied by the X-
ray observations of AGN as MCG-6-30-15 [52] or the GBHC GRS 1915+105 [53]
and are related to a variety of optical phenomena that deserve attention. Among
them the most important seem to be the spectral continuum [51–56], spectral
line profiles [57–70], and quasiperiodic oscillations explained by the orbital res-
onant models applied to near-extreme black holes [12, 71–77]. All such objects
seem to be possible candidates for the Kerr superspinars and deserve attention
and detailed study of data. While the spectral continuum of corotating thin discs
is identical, or nearly identical, for Kerr black holes and Kerr superspinars with
spin in the interval 5/3 < a < 8

√
6/3 ≈ 6.532 [78], because of the same accre-

tion efficiency (see Fig. 1), the other optical phenomena give clear signatures of
the presence of a Kerr superspinar [16]. Similarly, some characteristic predictions
appear for epicyclic frequencies of oscillations of thin discs in the field of Kerr
superspinars that can give relevant signatures in the structure of high-frequency
quasiperiodic oscillations [12].

6 Conclusions

Due to the accretion process, the spin of a Kerr superspinar can be reduced
and conversion of the superspinar into a near-extreme black hole is possible. We
have demonstrated that for counterrotating thin discs the conversion time can be
significantly (by almost two orders) reduced in comparison with accretion from
corotating thin discs. For counterrotating (retrograde) discs, the characteristic
conversion time tc(r) ∼ 107 yr, and the time necessary for inversion of the spin
of the created extreme black hole goes up to tinv ∼ 109 yr. On the other hand,
the characteristic conversion time of corotating accretion tc(c) ∼ 109 yr, and for
initial spin ai ∼ 2–3 it reaches tc ∼ 1.5 × 109 yr corresponding to high-redshift
quasars and AGN. We can conclude that in this era most of the primordial Kerr
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superspinars could be transformed into near-extreme black holes, but some of
them could survived. However, it is very unlikely to observe primordial super-
spinars at the present era with tc ∼ 1010 yr. That is the reason why we should
expect observations of the primordial Kerr superspinars in the relatively early
universe, corresponding to the era of high-redshift quasars and AGN, rather than
in the recent era, although we cannot exclude possibility that some Kerr su-
perspinars could survive in regions with strongly reduced amount of matter to
accrete. It is important that amount of rest mass ∆mc necessary for conversion of
a Kerr superspinar with ai ∼ 3 in the corotating regime is comparable to the rest
mass ∆mc +∆minv necessary for conversion of superspinar in the counterrotating
regime and subsequent inversion of the spin of the created black hole; moreover,
times necessary for both these processes are comparable. Therefore, near-extreme
black holes can appear in the era of high redshift quasars due to both processes
discussed above.

The accreted rest mass necessary for conversion of a Kerr superspinar with initial
spin ai ∼ 3 is ∆mc ∼ 0.25Mi for accretion counterrotating discs, but it is ∆mc ∼
3Mi for corotating discs, and their difference is by one order for all ai < 3. On
the other hand, the energy radiated by the corotating discs is ∼ 500 times larger
than in the case of counterrotating discs. We can conclude that the conversion
due to the counterrotation regime of accretion is relative silent, fast, and smooth
process, while it is much slower and much more energetic and dramatic process
in the corotating regime of accretion when an instability of a relevant part of the
accretion disc occurs after the transition into a near-extreme black hole.

In the final stages of the conversion process, near-extreme Kerr superspinars
can work as effective particle accelerators, since collisions of particles with ex-
tremely, ultra-high centre-of-mass energy can occur at the surface r = 1, with
no fine-tuning of the constants of motion of the colliding particles. This could
be considered to be an observationally very important effect giving signature of
near-extreme Kerr superspinars, since in the field of near-extreme Kerr black
holes such an effect can occur only for very special, fine-tuning of the motion
constants of the colliding particles.

We can conclude that accretion of surrounding matter by hypothetical Kerr su-
perspinars remaining as remnants of string phenomena occurring in the early
phases of the Universe expansion could convert them relatively fast into near-
extreme black holes. Converted superspinars represent a new hypothetical pos-
sibility for starting point of the evolution of supermassive black holes observed
in high-redshift quasars and active galactic nuclei, along with zero-metalicity
Population III stars (with M in the range 102–103 M�) [79–82] or hypothetical
supermassive stars (with M � 103M�) that can form when gaseous structures
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generate radiation pressure sufficient to inhibit fragmentation and prevent for-
mation of normal stars [83–85]. The string theory, or other higher-dimensional
theories, recently put no restrictions on the superspinar mass, but we know that
after its conversion the resulting black hole must have near-extreme spin. This
could potentially alter the spin and mass evolution scenario of early supermas-
sive black holes discussed in [20, 21]. Simultaneously, we could then expect some
impact on the structure formation of the large scale universe because of radia-
tion efficiency of Kerr superspinars and resulting near-extreme black holes. The
feedback effect can be significantly modified if most of the observed supermassive
black holes are created due to the evolution of primordial Kerr superspinars since
the energy output due to the conversion process overcomes the standard output
related to the black-hole spin-up by factor ∼ 4.

Geometrically thick, toroidal accretion discs orbiting a Kerr superspinar are rel-
evant is situations when the pressure gradients are important for the accretion
discs structure.2 The inner edge of the accretion disc is then closer to the super-
spinar surface as compared with the edge of the Keplerian disc, nevertheless it is
still well above the surface assumed at R = 0.1M . Here we restricted attention
to the accretion phenomena related to the Keplerian discs only, but extension of
the modelling to thick discs of different types is surely relevant. Further, the role
of magnetic fields related to the accretion discs, reflected by magnetohydrody-
namic models, has to slightly alter the presented picture of the Kerr superspinar
evolution. Let us stress that numerical models are necessary for investigation of
the superspinar evolution in all of the mentioned situations. We plan to make the
simulations in future work.
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[3] Gimon, E. G. & Hořava, P.: Over-Rotating Black Holes, Gödel Holog-
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