PAC-Bayesian Estimation and Prediction in Sparse Additive Models - Archive ouverte HAL Access content directly
Journal Articles Electronic Journal of Statistics Year : 2013

PAC-Bayesian Estimation and Prediction in Sparse Additive Models

Abstract

The present paper is about estimation and prediction in high-dimensional additive models under a sparsity assumption ($p\gg n$ paradigm). A PAC-Bayesian strategy is investigated, delivering oracle inequalities in probability. The implementation is performed through recent outcomes in high-dimensional MCMC algorithms, and the performance of our method is assessed on simulated data.
Fichier principal
Vignette du fichier
ga2013.pdf (456.47 Ko) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Loading...

Dates and versions

hal-00722969 , version 1 (06-08-2012)
hal-00722969 , version 2 (21-12-2012)
hal-00722969 , version 3 (01-02-2013)

Identifiers

Cite

Benjamin Guedj, Pierre Alquier. PAC-Bayesian Estimation and Prediction in Sparse Additive Models. Electronic Journal of Statistics , 2013, 7, pp.264--291. ⟨10.1214/13-EJS771⟩. ⟨hal-00722969v3⟩
149 View
145 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More