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ABSTRACT

Gradient Vector Flow has become a popular method to recover me-
dial information in medical imaging, in particular for vessels cen-
terline extraction. This renewed interest has been motivated by its
ability to proceed from gray-scale images, without prior segmenta-
tion. However, another interesting property lies in the diffusion pro-
cess used to solve the corresponding variational problem. We pro-
pose a method to recover scale information in the context of vascular
structures extraction, relying on analytical properties of the Gradi-
ent Vector Flow only, with no multiscale analysis. Through simple
one-dimensional considerations, we demonstrate the ability of our
approach to estimate the radii of the vessels with an error of 10%
only in the presence of noise and less than 3% without noise. Our
approach is evaluated on convolved bar-like templates and is illus-
trated on 2D X-ray angiographies.

Index Terms— gradient vector flow, diffusion, medialness,
skeleton, shape analysis

1. INTRODUCTION

Gradient Vector Flow (GVF) has first been introduced as an exter-
nal force field for active contours and active surfaces in Xu et al.,
1998 [1]. The GVF of an image is the vector field obtained by diffus-
ing image gradients in homogeneous regions while keeping strong
gradients untouched. The diffusion process spreads edge informa-
tion into uniform regions and acts as a long range force (see Fig. 1).
Consequently, it also introduces more robustness against initializa-
tion and speeds up convergence.

Formally, the GVF of an image I over a domain Ω is defined as
the global minimizer V (Xu et al., 2000 [2]) of the following energy
functional E:

E =

∫
Ω

g(x) ‖ ∇V ‖2 (x) + h(x)|V (x)−∇I(x)|2dx , (1)

where g : Ω → R and h : Ω → R are spatially-varying weight-
ing functions and ‖ ∇V ‖ is the vector norm for tensors given by√
∇V .∇V . The first term is a regularization term that controls the

diffusion over the whole image domain. The second term is a data
attachment term which ensures that V is close to the image gra-
dient at strong edges. This is the General Gradient Vector Field
(GGVF) devised by Xu et al., 1999 [3], which comes down to the
original formulation of the GVF (Xu et al., 1998 [1]) if g is con-
stant and h(x) = |∇I(x)|2. The most widely used functions are
g(x) = e−|∇I(x)|2/K2

, K ∈ R and h(x) = 1 − g(x), and will be

used in this paper too. Since both formulations yield similar results,
we will use the term GVF for both in the remaining of the paper.

The first variation of the functionalE yields the following Euler-
Lagrange equation1:

g(x)∆vi(x)− h(x)(vi(x)−∇I(x)) = 0 , (2)

where vi is the i-th component of the vector field and ∆ is the Lapla-
cian operator. The GVF is then the steady state of Eq. 2.

Recently, GVF has become popular in the field of medial infor-
mation extraction. Many ways of using it have been proposed since
it can be viewed as an improved gradient vector field to compute var-
ious features. For instance, Bauer et al., 2009 [4] propose to recover
the centerlines of airways by computing the Hessian matrix from the
GVF. Then, they determine the cross-sectional planes of the tubu-
lar structures and compute a tube-likeliness map from flux measures
in those planes, based on the GVF, again. Flux measures were also
used in Engel et al., 2008 [5] for medial features detection. Previous
works also exhibit GVF-based medialness map derived from obser-
vations. Among them, the tube-likeliness from Bauer et al., 2009 [4]
has already been mentioned. In Yu et al., 2004 [6], the authors pro-
pose to build a skeleton strength map from the GVF norm for gray-
scale image segmentation. Finally, the GVF has also been used to
extract skeletons from binary shapes. In this context, the GVF is
used in Hassouna et al., 2007 [7] in a front propagation setting to
design a speed function allowing faster propagation at the center of
structures.

Although the GVF has already been used to extract medial in-
formation, few works have proposed approaches to recover scale
information. Unlike multiscale filters, which retain the maximum
response over several scales, the GVF diffuses information with-
out keeping track of the scale. Although one benefits from this by
freeing oneself from scale constraints (e.g. Hessian matrices can be
computed on a 3x3 neighborhood only), scale information is still
paramount for skeletons or medialness maps. Knowing the center-
lines, the method in Bauer et al., 2009 [4] goes back to the airways
wall by tracking the GVF back to the edges in the image, which is
quite time-consuming. In Engel et al., 2008 [5], the authors recover
the size of the structures as the radius yielding a maximal circular
(or spherical) flux. It seems in contradiction to the multiscale-free
approach of the GVF.

In this paper, we propose a simple, segmentation-free and
multiscale-free algorithm to extract medial information from im-
ages, based on the GVF. Since our approach heavily relies on

1As stated in Xu et al., 1999 [3], the calculus of variations yields a third
term 〈∇g(x),∇vi〉 in the corresponding Euler-Lagrange equation, which
does not change the result much in practice.
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Fig. 1: Original image and its normalized GGVF.

one-dimensional analysis of the GVF (line by line in different direc-
tions), Sect. 2 gives a thorough review of the analytic solution to the
one-dimensional case. Section 3 details the algorithm, especially
how scale information is recovered. Finally, we discuss parameters
and show results on 2D angiographies in Sect. 4.

2. ANALYTICAL SOLUTION FOR THE
ONE-DIMENSIONAL CASE

Equation 2 is a diffusion-reaction equation whose analytical solu-
tion is not obvious without further assumptions on h and g (as de-
fined in Sect. 1). For a better understanding, we will analyze the
one-dimensional case. We consider edges as ramps which lead to
plateau-like patterns in the original gradient (Fig. 2). The equation is
decomposed and can be solved onto subdomains {Ωk}0≤k≤N where
gk and hk, the restrictions of g and h to Ωk, are constant. In the fol-
lowing developments, fk will denote the restriction of a function f
to Ωk.

Two cases arise. If Ωk is a homogeneous region, ∇Ik = 0 so
gk(x) = 1 and hk(x) = 0. Equation 2 is then the one-dimensional
heat equation ∂2Vk

∂x2 = 0, so the solution is a linear function:

Vk(x) = mkx+ pk , mk, pk ∈ R . (3)

If Ωk is a region where the gradient is non-zero, then ∇Ik is con-
stant (due to the ramp model) and so are gk and hk. Equation 2 has
then the form

∂2Vk

∂x2
−a2(Vk−

∂I

∂x
) = 0 , a2 =

1− gk
gk

, 0 < gk ≤ 1 . (4)

Solutions to this second order linear equation with constant coeffi-
cients are of the form Vk(x) = c

(1)
k eax + c

(2)
k e−ax + b(x), where

c
(1)
k , c

(2)
k ∈ R and b is a particular solution. Since ∇I is constant

over Ωk, it satisfies the equation. Finally, the solutions on such sub-
domains are of the form:

Vk(x) = c
(1)
k eax + c

(2)
k e−ax +∇I(x) . (5)

The parameters mk, pk, c
(1)
k and c(2)

k for each subdomain Ωk are
given by the Dirichlet boundary condition V = 0 on ∂Ω, the C0 and
the C1 properties of the global solution V at boundaries between the
N subdomains. This yields the following linear system (in the same
order):

p1 = 0

mNxN + pN = 0

mk−1xk + pk−1 = c
(1)
k eaxk + c

(2)
k e−axk + v(xk)

mk+1xk+1 + pk+1 = ac
(1)
k eaxk+1 − ac(2)

k e−axk+1 , (6)
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Fig. 2: (a) Original signal and (b) the analytical solution of the GVF
equation for K = 3, K = 15 and K = 30 (where K is the pa-
rameter of function g). The dotted line represents the original nor-
malized gradient, the analytical solution is plotted in plain red, and
the numeric solution is in plain blue. Both solutions overlap almost
completely. The zero-crossings are preserved for all values of K but

the positions of the maxima of the solution are clearly impacted.

where xi denotes the point limiting Ωi−1 and Ωi, and 0 < k < N .
If there are M plateau-like patterns, this yields a linear system of
4M+2 equations. A numerical solution and the corresponding ana-
lytical solution, computed from a two ramps gradient, are illustrated
in Fig. 2. In practice, subdomains Ωk where ∇I 6= 0 tend towards
∅, which means that the GVF can be approximated by a piecewise-
linear function. Although this is a mere approximation, we will use
this property to derive our scale measure.

3. DETECTION OF MEDIAL POINTS AND THEIR
CORRESPONDING SCALE

The GVF energy functional in Eq. 1 contains a diffusion term which
is equivalent to a multiscale analysis, from a scale-space point of
view. The method proposed here is driven by two ideas. First, scale
information should be available directly from the GVF, without any
further multiscale analysis. Second, since all the work has been done
by the GVF, recovering scales should not use overcomplicated anal-
ysis schemes of the solution.

In contrast-enhanced images, vascular structures are considered
as homogeneous regions surrounded by strong gradients. In those
regions, the GVF matches gradients having opposite directions, in
some sense. This interpretation still holds in the one-dimensional
case: thanks to the separability property of the GVF, one can con-
sider working on the projections of the solution V along each dimen-
sion instead of working on the gradient vector field itself. It means
that analyzing the d-th component Vd of V along the d-th dimension
only is relevant. In this outlook, the separability of the GVF and re-
sults from Sect. 2 are exploited both to detect medial points and to
estimate the radius of structures.

3.1. Detection of medial points

Matching gradients having opposite directions comes down to
matching projections along each dimension d having opposite signs
(see Fig. 2). According to Sect. 2, the GVF may be approximated
by a linear function and vanishes between those two gradients. To
ensure that zero-crossings happen in the center of structures, both
corresponding gradients must have exactly the same magnitude.
This is why we choose to diffuse the normalized image gradient.
In practice, the Point Spread Function (PSF) of the acquisition sys-



tem interfere with the linearity of the solution inside homogeneous
regions so that the slope of the solution V is weaker near edges.
Along a given dimension d, medial points are thus detected as max-
ima of dVd

dxd
, which can still be emphasized by taking the normalized

solution Ṽ . Responses are summed over all dimensions to obtain
the final measure for medial points:

M = div(Ṽ ) =
∑
d

dṼd

dxd
. (7)

3.2. Estimation of the radius of the structures

Following the remarks formulated in the previous paragraph con-
cerning the linear approximation, the slope of Vd is inversely pro-
portional to the radius of the structures. Let rd,k be the size of the
structures along dimension d, delimited by two matching gradients
Vd(xk) and Vd(xk+1) at positions xk and xk+1. The slope mk can
be recovered where Vd vanishes and the radius can be estimated as:

rd,k =
Vd(xk)− Vd(xk+1)

2mk
. (8)

Knowing the positions xk is not obvious. This is why previous
works usually resort to an exhaustive search through multiscale anal-
ysis. On the contrary, since we are able to detect structures of inter-
est thanks to zero-crossings, we have all the necessary information to
approximate Vd with a piecewise-linear function. We are only inter-
ested in the positions where two linear functions intersect, thus the
approximation does not have to be accurate (see Fig. 3). A position
xk responsible for linear regions Ωk and Ωk+1 with corresponding
zero-crossings ck and ck+1 is thus recovered as:

xk =
mk+1ck+1 −mkck

mk+1 −mk
. (9)

The actual radius rk can now be computed with simple geometrical
considerations. For example, for 2D images, the radius is:

rk = r1 sin arccos

(
r1√
r2
1 + r2

2

)
, (10)

where r1 and r2 are the radii estimated along each direction.

4. EVALUATION OF THE ESTIMATED SCALES AND
APPLICATION TO VASCULAR STRUCTURES

Equation 2 can be solved with various explicit, implicit or semi-
implicit schemes. We implemented the common explicit scheme
for simplicity (see Boukerroui, 2009 [8] for more efficient explicit
and implicit schemes). In particular, unconditionnally stable explicit
schemes exist (the Alternating Direction Explicit scheme, for exam-
ple). In practice, the straightforward explicit scheme is still widely
used and is very useful for investigation. We recall this scheme (Xu
et al., 1998 [3]):

V n+1
i = (1− h∆t)V n

i +
g∆t

∆x
(V n

i−1 + V n
i+1 − 2V n

i ) + h∇I∆t ,

(11)
where ∆x is the spatial resolution.

Fig. 3: Solution to the GVF (in blue) for a one-dimensional extracted
from Fig. 1 and its corresponding piecewise linear reconstruction (in

red).

4.1. Validation on synthetical vessel templates

As mentioned in Sect. 3.1, the PSF of the acquisition system and
partial volume effects impact the estimation of the vessels radius.
To study their influence, we apply our algorithm to vessel templates
with various radii and PSF. Vessels are modeled by convolved bar-
like cross-sections with radii r0 ranging from 1 to 25 pixels, and the
scale of the convolution σPSF is 0.5, 1 and 2 pixels (we approximate
the PSF by a Gaussian distribution).

The relative error of the estimation with respect to the ground
truth err(r) = |r−r0|

r0
is illustrated in Fig. 4. The algorithm in-

troduced in Sect. 3.2 is represented by blue lines. We compare it
with two other approaches. The first one, represented by red lines, is
the radius evaluated by taking r = min (|xk − ck|, |xk+1 − ck+1|).
The second one, represented by the green lines, correspond to the
distance from ck to the closest local maximum of ‖ V ‖. Finally,
the evaluation was performed on noise-free profiles (K = 5) in the
first column, and on profiles with a 10% random additive Gaussian
noise (K = 15 to compensate for the presence noise) in the second
column.

It is clear that our algorithm performs better for all PSF values
and is globally more robust to noise. When r0 ≤ σPSF with no
noise, the estimation is clearly unreliable but usable since the error is
still less than one pixel. For r0 > σPSF , the error is less than 3% for
noise-free profiles, and remains low (around 10%) in the presence of
an additive Gaussian noise . However, for radii smaller than the PSF,
zero-crossings of the GVF may disappear and thus our algorithm
fails to recover the structure, which corresponds to the very high
errors in Fig. 4.

4.2. Skeleton extraction of vascular structures

Our algorithm was also tested to extract the skeleton of vascular
structures in 2D angiographies. The medialness mapM from Eq.7
and the radii are computed from the 2D GVF of the image. Seed
points are selected as directional maxima of M and those lying in
regions with low local contrast are discarded. Finally, centerlines
are extracted as the ridges of M going through seed points. The
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Fig. 4: Relative error err of the estimated radius for radii ranging
from 1 to 25 pixels and a Gaussian PSF with (a-b) σPSF = 0.5,
(c-d) σPSF = 1, (e-f) σPSF = 2. The first column shows the result
for profiles with no noise, while a 10% random Gaussian noise has
been added to vessel templates in the second column (see the text for

further details).

centerlines and a segmentation reconstructed from both types of in-
formation are illustrated in Fig. 5. Most vessels are correctly recov-
ered, with accurate radii (they are slightly overestimated in the case
of very small vessels, as one should expect from Sect. 4.1).

5. CONCLUSION

We presented a new segmentation-free method to extract scale in-
formation of vascular structures from the GVF of an image, without
any additional multiscale analysis. We demonstrated that, through
fast and effective one-dimensional analysis of the GVF, we are able
to devise a method which is both accurate and robust to noise. The
result can serve as an input for deformable model-based algorithms,
to further refine the segmentation. The current bottleneck of our
approach lies in the computation of the GVF which is highly time-
consuming, as any processes involving diffusion. Efforts will be put
on efficient schemes to solve this variational problem. In the future,
we believe that our approach will prove to be a good alternative to
multiscale analysis.

(a) (b)

(c) (d)

Fig. 5: Two examples of centerlines extracted from the medialness
mapM and their corresponding vessel segmentation, on 2D X-ray

angiographies.
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