Frédéric Rodriguez 
email: frederic.rodriguez@univ-tlse3.fr
  
Technical report: CSVM dictionaries. Extension of CSVM-1 specification: definition, usages, Python toolkit

Keywords: CSVM, Tabular Data, Python, Specification, Data Conversion, Open Format, Open Data, Open Format, Dictionaries, Canonical Data Model

CSVM (CSV with Metadata) is a simple file format for tabular data. The possible application domain is the same as typical spreadsheets files, but CSVM is well suited for long term storage and the inter-conversion of RAW data. CSVM embeds different levels for data, metadata and annotations in human readable format and flat ASCII files. As a proof of concept, Perl and Python toolkits were designed in order to handle CSVM data and objects in workflows. These parsers can process CSVM files independently of data types, so it is possible to use same data format and parser for a lot of scientific purposes. CSVM-1 is the first version of CSVM specification, an extension of CSVM-1 for implementing a translation system between CSVM files is presented in this paper. The necessary data used to make the translation are also coded in another CSVM file. This particular kind of CSVM is called a CSVM dictionary, it is also readable by the current CSVM parser and it is fully supported by the Python toolkit. This report presents a proposal for CSVM dictionaries, a working example in chemistry, and some elements of Python toolkit usable to handle these files.

Status

As CSVM itself, the dictionaries extension shown in this document must be considered as an Open format.

Definition of a CSVM dictionary

The CSVM dictionary 1) must use the same basis than a CVM file defined by CSVM-1 specification; 2) must be processed by the same parser that a common CSVM file and 3) must embed all the information needed to transform a CSVM file in another. We show in this section how we can define a translation set, encode it in a CSVM dictionary and how the translation set is used to transform or normalize data of data CSVM file.

Data structure of a CSVM dictionary

The following CSVM file shown below is a chemical inventory table limited to 6 rows and 5 columns for simplicity. This table codes for: a rank number (numero), a chemical structure (fichier), a molecular weight (masse_exacte), a common molecule name (nom), an amount (i.e. g or mg of product) of chemical in laboratory (vrac) : The #HEADER, #TYPE, #WIDTH define a first system (SYS1) with particular types and column names, and this file is used as a data file. Now we want to transfer the data in another system with different naming conventions (ie. to prepare import to a RDBMS), we call it SYS2 (second system). To do this task we have defined a new CSVM file called the dictionary: We see that obviously this is also a CSVM file. The only difference is that some keywords with the # character are present in the two last columns of data and metadata blocks. These two columns (order: 4,5 from left to right) are used to store data types of translation sets, while data columns (order: 1,2,3) are used to store the translation set data itself.

This CSVM dictionary stores the columns names used in SYS1 (orange column below) and expected in SYS2 (pink) or another name space/set (green). The dictionary stores also the #TYPE and #WITH fields of each name set (blue columns) : So we have here all data needed to convert a CSVM file using SYS1 in another naming space because we have the #HEADER, #TYPE, #WIDTH values of SYS1 and SYS2 in this dictionary. The case of a column (#HEADER value) named TYPE or WIDTH is possible, so have chosen to mark type and width metadata in data block (blue columns) with # character to avoid confusions.

A CSVM dictionary could be defined as a way to store Metadata of n CSVM files in the data block of another CSVM file.

Translation sets

If we read the first row dictionary file, we find a value 'numero' that is the contents of #HEADER first column in data file. The second and third values of the row ('ID' and 'number') are alternate values of 'numero'. If we read the first column of dictionary file, we find 'numero', 'nom', 'fichier_mol', 'masse_exacte', 'vrac'. All are values used in data file and corresponding to SYS1, we call this ensemble a translation set. The previous dictionary defines 3 translation sets :

The SYS1 set : [numero, nom, fichier_mol, masse_exacte, vrac] The SYS2 set : [ID, indentificateur, MOLSTRUCTURE, , vrac] The SYS1_UK set : English translation of SYS1 [number, name, molfile, mol.weight, qttity]

Guidelines for Standards and data transformation

So we can use one translation set defined in a dictionary to change values of #HEADERS of a CSVM file/object. But what about the data of target CSVM file ? First, take in account that the perimeter of CSVM-1 covers only the syntax of a CSVM file, not the value of keywords. The recommendation about values of #TYPE fields (i.e. TEXT, NUMERIC …) must be considered only as a good practice. So, it is possible to include a lot of values for #TYPE and #WIDTH keywords, typically information to make data conversions.

The previous CSVM table shows that only one column #TYPE or #WIDTH is included in the dictionary for the all 3 translation sets. This is what we call a Standard, with this dictionary it is possible to convert all data type of each CSVM processed into the units defined by the standard. Consider a current case in a laboratory, some columns of a CSVM file prepared by a first scientific team (encoded by translation set TEAM1) must have column names changed before data transfer to another team (translation set TEAM2). But the second team uses also different units (i.e. mass concentration unit rather than molar units).

The transformation of data units into a standard is resumed by the following figure: A software component knowing a rule to transform Mol.l -1 in g/L (gram per liter) could make the data transformation, but this operation must be let out of CSVM parser's range. The corresponding coding part of dictionary for this #HEADER is given by the Table 2. 

Guidelines for data transformation

Now if a data conversion (not the Standard) is planned for a particular column of a CSVM table ? In CSVM's context, different approaches are available. In example, if a CSVM dictionary is used 1 , it is possible to add columns (TEAM1_UNITS, TEAM2_UNITS) coding for local units used by TEAM1 and TEAM2 as shown in the following table :   1 If a dictionary is not used, the programmer could make all transformations on the target CSVM using information picked manually in another CSVM and organized in columns or rows (this approach is often used when the transformations/rules defined in dictionary must be applied sequentially). For more complex case, it could be interesting to split information in more than one CSVM file (dictionaries of common files). In the example shown in Table 3 no Standard is defined, but it is also possible to add one. It is also possible to extend this approach to #WIDTH columns. In dictionary file, the columns defined by values #TEAM1_UNITS and #TEAM2_UNITS are not used by the conversion functions defined in toolkits. The reason is simple: the #TEAM1_UNITS and #TEAM2_UNITS are not defined as #HEADER keywords in data files. But it is not a problem for making conversions outside the CSVM parser range, the dictionary could be read as a CSVM object and its contents used as it is a common CSVM file.

A CSVM dictionary could also used to save knowledge about a data space of CSVM files, including supplemental fields.

Lost words in translation sets

The first table (Table 1.) shows that keyword defined by 'masse_exacte' in first translation set (SYS1 set)

is not defined in SYS2 set (the char '-' is used here to mark an empty cell).

No particular processing is done about that, because the CSVM parser doesn't make interpretation about data or metadata values. Holes in tables are very often found in real data and can be taken in account, if a #HEADER value is not defined in the translation set, the corresponding column can be suppressed (or not) in the resulting CSVM file 2 after CSVM dictionary application.

For advanced uses, it is also possible to make a union between two CSVM files in order to restore all missing empty columns (a specific CSVM file can be forged and used as a data mask). Unions, Intersections, Additions of tables are implemented in CSVM Python toolkit, given an example:

print "\n*** Test CSVM files with equivalent, different, missing columns" c1 = csvm_ptr() c1 = csvm_ptr_read_extended_csvm(c1,"test/test1.csvm","\t") c2 = csvm_ptr() c2 = csvm_ptr_read_extended_csvm(c2,"test/test2.csvm","\t") print "=> Compute INTERSECTION" r = csvm_ptr_intersect(c1, c2) if (r != None): r.csvm_ptr_dump(0,0) r.csvm_ptr_clear() else:

print "None data found" print "\n=> compute UNION" r = csvm_ptr_union(c1, c2) r.csvm_ptr_dump(0,0) r.csvm_ptr_clear() c1.csvm_ptr_clear() c2.csvm_ptr_clear() Using CSVM paradigm, table unions or tables intersection are easy to implement, even if the two files have not exactly the same number of columns or columns names (an intermediate step using CSVM dictionaries could be added to the process).

2

A typical use is the generation of a subset of RAW data (one or n CSVM files) prior to a RDBMS import.

Annotation of dictionaries

Dictionaries are CSVM files and can be annotated in the same way that standard CSVM. Remark lines tagged by a # character in data block (or metadata block) are used. The only rule is that a CSVM keyword (#TITLE, #HEADER, #TYPE, #WIDTH, #META) cannot be used (but combinations such as # TITLE, #_HEADER, # HEADER, ##HEADER … are allowed). The level of annotation of a CSVM file can be very high because the corresponding rows are not taken in account by the CSVM parser. The following figure shows annotation of a CSVM file, in the case of a commented parameter's set for doing calculations using AMBER 3 4 package. th column (vertical grey line at right). Some lines (7,19,21,31) 

A working example in Chemistry

A SDF 6 file is a collection of n data blocks. For each block, one can find a molecules (coded using MDL Molfile format) and [0..m] descriptors stored as key/values pairs, in another terms, it is a serialized molecular data table. Given a such molecular collection 7 8 , we want to transform the descriptor space: removing or renaming some of them in order to export the collection to a chemical RDBMS. The corresponding CSVM table has one row for each compound and a column for each descriptor key (number, name, plate, chemist, amount, ref_product, ref_labbook, id_lab, id_team, id_box, rights, chr_row_box, num_col_box). Another column is used to store the 2D chemical structure at SMILES 10 format. The following image shows the end of data block of the CSVM file and metadata block: A first CSVM dictionary (dict1, Figure 7) will be used to filter CSVM columns of the molecular collection (Figure 6). In dict1, the columns 1-2-3 of data block, list the keywords of CSVM files allowed in corresponding translation sets LOCAL, LOCAL2, CN. If the translation occurs from LOCAL to LOCAL2, all columns of the molecular table that are named num_col_box will be renamed to ccol. Some values in dict1.CN are set to __DEL__ string: if translation occurs from LOCAL/LOCAL2 to CN, all columns tagged with __DEL__ will be deleted in the resulting collection: The corresponding SDF file is shown in Figure 9. The molecular formulas are regenerated and some keywords are missing or are renamed (number -> ID, name -> Identificateur, plate -> plaque, amount -> vrac) in the new SDF file. This example shows how to use CSVM as intermediate format in order to make operations (here a simple filtering) on tables. This kind of operation is very often done in a lot of scientific fields and using CSVM let us integrate table in scientific workflows and normalize data. CSVM's paradigm permits a real data management and storage of RAW data. Eventually these RAW data will be integrated in a RDBMS, if this job is done by another team, the CSVM files are enough documented, and the producer's team will be very little demand. If the RAW data will not be integrated in a RDBMS: all that is needed (metadata, annotations) to use these files some years later is embedded inside (event is a CSVM parser is not available, all information is human readable). 

Conclusion and perspectives

One typical tedious task is to develop software in order to convert different data flows. The combined use of text components and CSVM dictionaries has helped us to reduce greatly the number of lines of code. The use of dictionaries rather that UNIX filters has considerably helped all users to design-debug-share filters. All the steps of data flows can be documented: the data itself, the dictionaries, the indexes of collections (data, files), the intermediate files used in interchange flows … allowing re-using information at high level, even for RAW data. The CSVM files are easy to generate, not only for automatic processes but also for humans. The only need is to add a metadata block at the bottom of a spreadsheet file and to save it using a ASCII/CSVM format and a well chosen field delimiter. For these reasons CSVM seems a good candidate for being a canonical data model in a lot of applications for science and industry.

Figure 1 .

 1 Figure 1. -CSVM file for a chemical inventory.

Figure 2 .

 2 Figure 2. -CSVM dictionary for the table shown in Figure 1.

Figure 3 .

 3 Figure 3. -Schematics of transformation of a CSVM file using a CSVM dictionary.

Figure 4 .

 4 Figure 4. -Example of CSVM annotations inside the data block. The image is truncated after the 80th column (vertical grey line at right). Some lines(7, 19, 21, 31) are wrapped by the text editor 5 .

  Figure 4. -Example of CSVM annotations inside the data block. The image is truncated after the 80th column (vertical grey line at right). Some lines(7, 19, 21, 31) are wrapped by the text editor 5 .

Figure 5 .

 5 Figure 5. -Molecular collection (displayed using a SDF viewer 9 ). The molecular formulas for each compound are shown at top part of each record. The descriptors (key/values pairs) are shown in bottom.

6

  Chemical table file [Wikipedia] -http://en.wikipedia.org/wiki/Chemical_table_file 7 L. Hammal, S. Bouzroura, C. André, B. Nedjar-Kolli, P. Hoffmann (2007) Versatile Cyclization of Aminoanilino Lactones: Access to Benzotriazoles and Condensed Benzodiazepin-2-thione. Synthetic Commun., 37:3, 501-511. 8 M .Fodili, M. Amari, B. Nedjar-Kolli, B. Garrigues, C. Lherbet, P. Hoffmann (2009) Synthesis of Imidazoles from Ketimines Using Tosylmethyl Isocyanide (TosMIC) Catalyzed by Bismuth Triflate. Lett. Org. Chem., 6, 354-358. 9 ChemAxon marvinView -http://www.chemaxon.com/products/marvin/marvinview/ 10 Chemical file format [Wikipedia] -http://en.wikipedia.org/wiki/Chemical_file_format

Figure 6 .

 6 Figure 6. -The molecular collection of Figure 4. encoded in a CSVM table, details only: last compounds, some rows [73 .. 80] are cut off at right. Tabs are used as field separator and are shown as red arrows.

Figure 7 .

 7 Figure 7. -A CSVM dictionary (dict1).

Figure 8 .

 8 Figure 8. -Molecular collection after application of dict1.CN filter.

Figure 9 .

 9 Figure 9. -Molecular collection after filtering by dict1.CN set.

  af02][85][c1(c(ccc(c1)[N+](=O)[O-])N)/N=C(/C1=C(O)CC(OC1=O)C)\C] 2 [03][af03][60][n12nc(sc1nc(C)c/c/2=C/1\C(=O)N(N=C1C)c1ccccc1)SCC] 3 [04][af04][50][c1(ccc(cc1)C)C1Nc2c(N=C(c3c(=O)oc(cc3O)C)C1)cccc2] 4 [05][af05][100][C1(=CC(=O)OC1)Nc1ccccc1N] 5 [06][af06][71][C1(=CC(=O)OC1)Nc1ccc(cc1N)C] 6 [07][af07][60][c1(ccc(cc1)OC)C1Nc2c(N=C(c3c(=O)oc(cc3O)C)C1)cccc2] 7 [08][af08][50][C1(=CC(=O)OC1)Nc1ccc(cc1N)[N+](=O)[O-]] 8 [09][af09][60][c12c(cccc2)n(cn1)C1=CC(=O)OC(C1)C] 9 [10][af10][45][c12c(ccc(c2)C)n(cn1)C1=CC(=O)OC(C1)C] 10 [11][af11][43][c12c(cc(cc2)Cl)n(cn1)C1=CC(=O)OC(C1)C] …

Table 1 .

 1 -CSVM dictionary (Figure2.) shown as colored table.

	numero	ID	number	#NUMERIC	#10	
	nom	identificateur name	#TEXT	#100	
	fichier_mol MOLSTRUCTURE	molfile	#TEXT	#50	
	masse_exacte -	mol.weight	#NUMERIC	#50	
	vrac	crac	qtity	#NUMERIC	#10	
	#TITLE	CSVM dictionary for SYS1, SYS2 and SYS1_UK		
	#HEADER	SYS1	SYS2	SYS1_UK	#TYPE	#WIDTH
	#TYPE	TEXT	TEXT	TEXT	#TEXT	#TEXT
	#WIDTH	50	50	50	#50#	#50

Table 2

 2 

	concentration	CONC	#GR/L	#10	
	#TITLE	Example			
	#HEADER	TEAM1	TEAM2	#TYPE	#WIDTH
	#TYPE	TEXT	TEXT	#TEXT	#TEXT
	#WIDTH	50	50	#50	#50

. -Data normalization using a standard as data type in a CSVM dictionary.

Table 3 .

 3 -Adding specific columns for multi-standards.

	concentration MOLAR	CONC	GR/L	#NUMERIC	#10	
	#TITLE	Example					
	#HEADER	TEAM1	TEAM1_UNITS TEAM2	TEAM2_UNITS #TYPE	#WIDTH
	#TYPE	TEXT	TEXT	TEXT	TEXT	#TEXT	#TEXT
	#WIDTH	50	10	50	10	#50	#50

Scintilla and SciTE -http://www.scintilla.org/

Acknowledgments

I am grateful to Dr Michel Baltas and Dr Casimir Blonski (LSPCMIB, UMR 5068 CNRS-Toulouse University) for supporting this work. I would like to especially thank Dr Jean Louis Tichadou ("Université Paul Sabatier", Toulouse University) for helpful discussions and for the support of University Course (2006Course ( -2011) ) around RAW data questions in experimental or environmental sciences. I thank all collaborators in different laboratories which shared data, and help to the development the format's usage, especially Dr Pascal Hoffmann (LSPCMIB, UMR 5068 CNRS-Toulouse University) which has provided the chemical data used as example in section 2 of this manuscript. I would like to thank the CNRS, the "Université Paul Sabatier" for their financial support.

Python toolkit

The CSVM dictionaries are fully supported in the Python toolkit for CSVM, the following code was used for the translation shown in previous section:

Code 1. -Filtering process.

if __name__ == '__main__': from build.file import file_file2str, file_str2file, file_cleanpath print "*** CSVM dictionary test" print print "*** TEST1: using a dictionary in which __DEL__ are included." print "*** strong mode IS NOT used" print "\n=> A new blank CSVM object" c = csvm_ptr() print "\n=> Populates it with a CSVM file ... " c = csvm_ptr_read_extended_csvm(c, file_cleanpath("test/hoffmann.csvm"), "\t") c.csvm_ptr_dump(0,0) print "\n=> Apply a filter using a dictionary" dict_file = file_cleanpath("test/dictionary_test1.csvm") print "\n=> dictionary file is [%s]\n" % (dict_file) c = csvm_dict_file_filter(c, dict_file, 'CN', 0) print "\n=> resulting output" c.csvm_ptr_dump(0,0) print "\n=> save new CSVM file" s = csvm_ptr_make_csvm(c,"\n","\t") file_str2file(file_cleanpath("test/hofmann_test1.csvm"), s) print "\n=> Clear CSVM object" c.csvm_ptr_clear()

The csvm_ptr_read_extended_csvm functions make a CSVM object (c) in memory, using a CSVM file.

The method csvm_dict_file_filter make the filter operation. It uses the name of the dict1 dictionary file ("dictionary_test1.csvm" stored in argument dict_file) and the translation set 'CN'. Then the CSVM object is converted in a file and the memory cleared.

The csvm_dict_file_filter launch a simple function csvm_dict_ptr_filter to do the filtering : 

One function does the filtering (csvm_ptr_colfilter) and the other (csvm_ptr_delcol) does the column removal.

Special cases: strong mode

Sometimes user cannot define if columns must be removed explicitly in a translation set, or if columns have a corresponding value in another translation set.

The Figure 10 illustrates this case for a CSVM dictionary (dict2) derived from previous dict1. The values __DEL__ have disappeared from the table and are replaced by characters '-' currently used to mark empty cells in the CSVM files. In this case another approach could be used, first the calling code similar to Code 1 example, but using strong mode: the last argument of csvm_dict_file_filter function is set to 1 rather than zero.

Code 3. -Advanced filtering.

print "*** TEST2: using a dictionary without __DEL__ or meta commands." print "*** strong mode IS used" print "\n=> A new blank CSVM object" c = csvm_ptr() print "\n=> Populates it with a CSVM file ... " c = csvm_ptr_read_extended_csvm(c, file_cleanpath("test/hoffmann.csvm"), "\t") c.csvm_ptr_dump(0,0) print "\n=> Apply a filter using a dictionary" dict_file = file_cleanpath("test/dictionary_test2.csvm") print "=> dictionary file is [%s]" % (dict_file) c = csvm_dict_file_filter(c, dict_file, 'CN', 1) print "\n=> resulting output" c.csvm_ptr_dump(0,0) print "\n=> save new CSVM file" s = csvm_ptr_make_csvm(c,"\n","\t") file_str2file(file_cleanpath("test/hofmann_test2.csvm"), s) print "\n=> Clear CSVM object" c.csvm_ptr_clear()

The csvm_dict_ptr_filter_blank function is called and could be taken as a basis to make more advanced filtering subroutines.

Code 4. -Evolution of csvm_dict_ptr_filter subroutine.

def csvm_dict_ptr_filter_blank(self, dict, set, blank_list=['', '-'], delcol='__DEL__'):

""" The subroutine filters a CSVM file like csvm_dict_ptr_filter subroutine but using another approach to destroy columns. A csvm_ptr object (self) is given in input and filtered using a set (set) of a CSVM dictionary (dict).

The argument set is a string used as the identifier (column name, element of #HEADER list) of a translate set included in dict (a csvm_ptr object). If a column name of self, is not found in the list defined by set, the corresponding column must be deleted in self. The argument blank_list is used to store the values used in cells for no data (empty string or a special char as '-').

If the argument delcol is set (and its length is > 1), the destruction of corresponding columns (same as csvm_dict_ptr_filter) is applied before destruction of columns with data of blank_list. 

The first part (## apply filter) is the same as code shown in Code 2 example. The iset variable is used to store the index of translation set selected in the dict2, in this case iset = [2] because it is the third element of #HEADER list.

The kwlist Python list (mono-dimensional array) is used to store the column names corresponding to the translation set: kwlist = ['ID ', 'identificateur', '-', 'vrac', 'plaque', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', 'smi', 'mdl', '-', '-'].

This list is filtered using the argument blank_list of the function. With default values the empty cells or cell tagged by '-' are removed from kwlist, and now, kwlist = ['ID ', 'identificateur', 'vrac', 'plaque', 'smi', 'mdl'].

Knowing this information, it is possible to get the column names (in this case indexes are returned) of molecular table that are not found in kwlist. And we have dlist = [3,5,6,7,8,9,10,11,12,13]. The corresponding column names are stored in hlist, in this case hlist = ['-', '-', '-', '-', '-', '-', '-', '-', '-', '-'] and all columns with names included in hlist will be deleted.

Here all columns names of molecular collection are specified in the dictionary (using a value or a '-'). In the general case, a dictionary may not have all possible column names that can be found in data files. To illustrate this remark, we can comment two rows in dict2 dictionary, one that is included in target translation set (plate row) and one that is not included (chemist). These two rows are tagged using the '#' character in first position and will not be read by the CSVM parser (they are considered now like annotations in the data block of the dictionary):

The corresponding values of intermediate variables are: , 'identificateur', '-', 'vrac', '-', '-', '-', '-', '-', '-', '-', '-', '-', 'smi', 'mdl', '-', '-'] kwlist = ['ID', 'identificateur', 'vrac', 'smi', 'mdl'] dlist = [2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13] hlist = ['plate', 'chemist', '-', '-', '-', '-', '-', '-', '-', '-', '-'] And the column 'plate' is not added to the final molecular collection.