GUIDELINESFOR A DYNAMIC ONTOLOGY
I ntegrating Tools of Evolution and Versionning in Ontology

Perrine Pittet, Christophe Cruz, Christophe Nicolle
LE2I, UMR CNRS 5158
University of Bourgogne - Dijon, France
{perrine.pittet, christophe.cruz, christophe.nicolle} @u-bourgogne.fr

Keywords: Evolution; Versioning; Versiongraph; Ology lifecycle; Change operations.

Abstract: Ontologies are built on systems thatceptually evolve over time. In addition, techniqaesl languages for building
ontologies evolve too. This has led to numeroudistuin the field of ontology versioning and onjcevolution. This
paper presents a new way to manage the lifecycknafntology incorporating both versioning toolsl avolution
process. This solution, called VersionGraph, isgnated in the source ontology since its creatioarder to make it
possible to evolve and to be versioned. Change gegment is strongly related to the model in whioh dmtology is
represented. Therefore, we focus on the OWL langiragrder to take into account the impact of thanges on the
logical consistency of the ontology like specifiadDWL DL.

1 INTRODUCTION management process is totally based on it. Oue stiadrt is
According to (Hodgson, 2003), ontology lifecycle is articulated in three parts. According to the litara, we will

divided in seven steps: needs detection, conceptiofi’St define the evolution role, operations andqess. Then
management and planning, evolution, diffusion, ey W€ Il have a look at the eX|st|_ng_squt|ons_for onba
evaluation. The needs detection phase starts wittt@iled ~ '€Presentation and ontology versioning. We will bew to
inventory of the domain and the various purposeke L Nk the evolution process and a versioning systerarder
evolution phase, conception phase needs: knowledd@ Integrate both in existing ontologies.

acquisition, shared conceptualization buildingpfatization
(Semantic WeB formalisms...) and integration of the
existing resources (another ontology, applicationdhe

The phase of management and planning underlines the . .
importance of having a constant monitoring and ebal ~ As stated by (Flouris and al, 2007), ontology etiohu
policy to detect or initiate, prepare or evaludte lifecycle ~&mS at responding to one or several changes idlah®in
iterations. This work intends to guarantee thaitenation of ~ OF the conceptualization by applying them on therse
the lifecycle is activated when an evolution isdedo be ontology. Th|s brief definition looks abstract _almids us to
completed. The management step requires toolsmiptto @K' what kind of changes does the evolution applg@
prepare the ontology to adapt the domain changeslba evolution applies them? What are t_he criteria _tspeet?

to keep tracing of the previous versions of theolmgy. ~ HOW can we manage a good evolution? Evolution oéang
These goals can be reached with a versioning systef{€ defined in the Ilte_rature and especially inyidad Klein,
(Flouris and al, 2007). Diffusion phase deals wite 2004) as a succession of simple or complex opesatibe
deployment of the ontology. The use phase enclattege ~ USEr wants to apply on the intension (schema) er th
activities related to the access of the ontologgalfy, the €Xtension (data) of the ontology. This evolutiomsiat
evaluation phase aims at evaluating the ontologgest 2dapting the ontology to the changed domain. Apglynd
Moreover, like the needs detection phase, it ctilec Propagating the change are often manual tasks antoe
beforehand the knowledge of the domain and canralyo done automatically by synchronization with the doma
on previous studies or feedbacks. Except for trmugion ~ According to (Tovar, and Vidal, 2008) these tasksally
and management phases, all the steps describechean 0ccur during the use phase of the ontology. Onjolog
considered as mature domains. Furthermore, thigiggen ~ Dynamics clearly define the evolution criteria. IgAtand

of the lifecycle shows that evolution, and manageme Sugumaran, 2008) and (Dividino and Sonntag, 2008}ify
remains the most complex phases. Evolution is th&€ maintenance of the ontology as the most impbrta

backbone of the lifecycle iterations. Therefores thange Cfiterion. Evolution has to maintain whatever relien the
ontology. Maintaining the ontology consistent ardtipent,

in a consensus is an inescapable issue of evol(akblith

2 ONTOLOGY EVOLUTION

! Semantic Web: http://semanticweb.org/wiki/Main_&ag

and al, 2008). Applying changes on ontology cam tine 3 ONTOLOGY VERSIONING
conceptualization inconsistent and irrelevant. Bhaty an
evolution should never be validated before the Ueer a
preview of the impact of the changes on the ontolddis
impact can only be estimated if the evolution ofiena are
semantically clearly defined. In order to assurat tthis

This part defines the role of versioning, bringiogr
new vision on this definition. First, (Flouris amd, 2007)
gives in 2007 a very strict definition of the rolef
4 versioning: give a transparent access to diffeeasting
process is fully respected, some works proposepproach yersions of an ontology by creating a versioningtem.
in six phases. This system identifies the versions by their “ldhda

1 Thechange detection phase consists in detecting ge|imits their mutual compatibility. In the pasték years,
what changes occurred in the domain or in the pafinfew Ontology Dynamics proposals extend its role: manage

must be propagated to the conceptualization. LDBpers geyeral chronological and multitemporal versionsaf@i,
in the Ontology Dynamics deal with this phase arappse 2008), at a local or web level (Allocca and al), emh

methods and tools like integrated event handleosdm and collected, distributed, accessed by search enghlethese
Vidal, 2008), ontology learning (Novacek and ab.et ~ gefinitions correspond to a retroactive versionbegause
2. The representation phase aims at representing \grsions of the ontology have to preexist. Howeirerur
the selected changes with ontological operatioNsy(@nd piective, we want to integrate a versioning sysséme the
Klein, 2004) classifies the evolution operations 0 creation of the first version of the ontology, and want it

types: elementary (atomic) operations and composeg, he reactive when a change occurs. Thereforeage, as
(complex) operations. According to (Noy and KIE204), e ontology development, a dynamic and incremental

elementary operations are simple operations thatifsno process, which could take into account a new versip

only ~one entity like addition/suppression 0f gach evolution phase. That is why we propose tayentire
classes/relations, of hierarchy, domain, rangeslinkf o\ oytion process (following the six phases) withe t
class/relation properties like disjoint, transityyi versioning one. (Sassi and al, 2010) and (Djedidil a

etc...whereas composed qperations are a composifion Rufaure, 2008) agree with this proposition by giyithe
several elementary operations. The choice of COB®OS gnio10gy versioning the ability of following the @ution

operations depends on the granularity of the ewsiut ,.0-ass In and (Djedidi and Aufaure, 2008), the
needs. Usual operations correspond to operatioms t ethodology goal is to guide and validate the @pgiin of
ontology that developers are the most expectedéonhen o changes in a systematic and optimized way, taiaing
creating and evolving an ontology. In addition keneentary 1o coherence and evaluating the impact of the ggham
operations, the literature gives some lists of Lisparations 4 ontology quality by the mean of design patterins
(Stojanovic and al, 2002,Stickenschmidt and Kl€&@03). Sassi and al, 2010), the goal is to assist thesukeing the
A distinction can be done between operations on thgy|ytion process to observe the consequences ahiéinge
intension and operations on the extension. Thelaiterks o5 jications on the several versions by allowingnihto
on change operations do not specify specific oeTatior .omnare them. The two methodologies are step hy ste

the instances because they argue that an instaace Capproaches integrating the versioning process tijiréto
become a class (Noy and Klein, 2004). However, wgne eyolution one. Both propositions quite folloiet

maintain that schema operations can't be confoundétl o, 01ution phases cited before] but do not expiicithow
instance operations. Actually, it is impossiblecteate an ham.

instance (instance operation) related to a claggdgfclass is
not created. Inversely a class can be created rteche 4 VERSIONGRAPH APPROACH
operation) without instances.

3. The semantic phase prevents the user from This section presents the versioning approach of ou

inconsistency risks by determining the sense of th?/ersioning system based on the six phases of tbiitén
represented changes. For example, if composed tapesa process

have been selected, this phase will allow seeirngr th
decomposition in elementary operations.

4, Theimplementation of the changes alerts the user
of the impact on data in terms of data gain or.IfNsy and
Klein, 2004) gives these impacts from a list of @aual
operations (the elementary ones and some composed).

5. Thepropagation phase aims at informing all the
dependent parts of the ontology (other
application) of these changes.

6. Finally, in sixth step comes thelidation of the
changes.

4.1 From Evolution Phasesto Versioning

To make sure the evolution phases are fully reggect
we chose to match each of them with a versionimg.st
First, the user chooses the list of operationsplya (cf.

- _change detection phase). The versioning systemdiores
On'[Olog'es‘them (cf. representation phase), turn them senaiytic
understandable (cf. semantic phase), records and
implements them (cf. implementation phase). Theer dhe
propagation of the changes, (cf. propagation phéase)user

validates them (cf. validation phase) and the waisg
system applies them and generates the new versitmeo
ontology corresponding to an evolution iteratiofnafy,
the versioning system can give a transparent a¢odssth
versions with criteria defined by the user (Studatmidt
and Klein, 2003). It can delimit compatibility bgtracing
evolution operations (Stojanovic and al,
Stuckenschmidt and Klein, 2003).

4.2 Versioning Steps Tools

To follow this process, we need to specify the gool
displayed by our versioning system. According tde{K
and Fensel, 2001), a change specification shoutbss an
operational change specification (our list of opierss),
next the conceptual relationship between the fiestsion
and the new one (the selected operations on tlectedl
entities). The first phase of the evolution processhen
completed. The next step is to represent thesegelsan
Several approaches are proposed in the literatore
represent changes. Major part of them uses logsidfeng
logs (Yildiz, 2005) record the different version$ an
ontology by representing each entity at a givenetifor
each class, relation and instance, a new instarfce
“EvolutionConcept” class is created. (Klein and &an
2001) argues that metadata should be added tafidéms
change. In versioning logs, each instance is atewtaith
metadata (ld, cause, transaction time, state \telidar not,
etc.). This solution is interesting if the versiogilog can be
integrated in the ontology. However, for our pugmshere
is no need to represent each entity if it is nodified by the
evolution. Evolution logs (Liang, 2005) do not sate
versions but act like a change history. Not eadityebut
each substitution in the ontology is recorded ideorto be
reused when the user wants to access a versiotingréne
substitution rather corresponds to our objectives aa
substitution contains the selected operations hedntities
affected. In order to cope with our evolution pregewe
propose to create a Version concept like in thesigaing
logs integrated in the ontology that will be creatg each
evolution iteration. This Version concept enclosgéihe
substitutions operated in the intension or 2/ thogerated

following the six evolution phases constitutes fingt part
of our versioning system.

4.3 Version Retrieval

Concerning the transparent access definition, itse f

2002,issue is the identification of the versions. Modt the

versioning systems use “Id” of the ontologies tenitify
them (Allocca and al, 2008). Though, it is not egilouo
identify in which version a change on a certainitgnt
occurred. As we have introduced the metadata amtisthof
substitutions occurred when a Version is creatensd data
can serve as search criteria to identify and nedribe right
version. We have chosen to extend Jena's opel@ceess
on ontology, etc.) in order to take into accourg Hearch
criteria. This extension can be performed by anrride of
the access methods, for example, by adding metadata
operation attributes. This state of art permittedta build
the evolution and versioning process of our prapmsi We
flso managed to design the versioning tools in rotde
represent changes and access the ontology.

o 5 VERSIONGRAPH ARCHITECTURE

In this section, we present the VersionGraph
architecture which implements the choices of oatesof
art.

5.1 Evolution Operations

Contrarily, to the (Sassi and al, 2010) propositite

schema and instance operations are differentiated
respectively by SchemaOperation and Instance-
Operation SchemaOperation type operations

correspond to the creation and deletion of classes
(AddClass) and properties AddProperty) but also to
additions and deletions of restrictions on them. We
distinguish restrictions on the classes and praseror
properties of the data link hierarchylidrarchyLink)
such as class / subclass, property / sub-property.
Furthermore, in the class restrictions, limitatitike classes

on the extension and 3/ the metadata. For the d@man/ properties such as the relationship between pliegeand

phase, we chose to use ontology design patterns? (OLclasses(ClassPropertyLink

(Gangemi, 2005)) as (Djedidi and Aufaure, 2008)pps®es
in addition to an evolution log, in order to guaemn the

, ClassDataPropertyLink),
car-dinality ClassPropertyCardinality) are classified.
In addition, in the restrictions we find domain arahge

consistence of the ontology when applying the ckang restrictions of attributes PgopertyAttributeLink).

Then, the implementation phase can be helped bginally, TypeProperty

introducing event detectors on data. In the Jemdicapion
supporting the ontology, the idea is to insert radthusing
“ActionListener” objects. The propagation phase dan
performed by generating events activating

“ActionListener” objects. Finally, the validatios similar to
the “Commit” operator of a DBMS, can be done byrapde
click by the user. Our incremental versioning psesce

operations are used to define a

specific constraint of a property (transitive, syatrit, etc.).
InstanceOperation type operations correspond to

operations of addition and deletion of individuasd

thestatements about these individuals. We distingbitfveen

the assertions relying individuals to the values
(DataPropertyAssertion) and those specifying the
types for these individual®©bjectPropertyAssertion).

5.2 Versioning Process

enough (Evolva). However, many ontologies are ammbs
using a Java API Jena. Indeed, this library sugport

From these evolution operations and the study ef thontology-based formalisms like RDF, RDFS, OWL ahd t

different versioning solutions of our state of ave derived
a versioning system. At each evolution of the ady] the
system stores in the ontology, the changes impdujetie
operations used and the context. This versionirsgesy is
an independent ontology which intends to be integranto
the existing ontology by a simple addition opematidhen,
the user can start a first evolution of ontologychoosing
whether to change the schema (intension) or
(extension) using the above operations. Each fishanges
chosen by the user during the evolution is kephgisk
concept SchemaVersionGraph for SchemaOperation
operations andnstanceVersionGraph for Instance-
Operation

various DAML + OIL. Jena contains all the methods t
access and edit ontologies. In addition, it alsplements
all the basic operations of evolution and the comiymnased
composed ones. Overridden access methods areoatallect
into account the criteria of versions thanks to rmétributes.
These criteria are integrated into the ontologglitas we
saw in the previous paragraph.

data

4.3 TheWine Ontology Versionning

International wines are described at

<http://www.w3.org/TR/owl-guide/wine.rdf>;

operations on instances by specifying whichafterwards, we want to add the “StrawWine” wine alhi

elements of the ontology are concerned (conceptdoes not exist in the Wine ontology. Straw Wineisitfis

relationships, etc.). Contextual information careldded (as
version, date, author, description, etc.). Thesta dae
traced during the evolution using a concept of ewnt
VersionContext . The set containingschemaVersion-
Graph or InstanceversionGraph and Version-
Context is called VersionGraph . Figure 1 depicts an
overview of the ontology schema. For more clarityonly
shows concepts and their relationships undeniérarchical
degrees.

In a transparent way, each application of changadem
by the user generates a neWersionGraph. A
VersionGraph contains a link with the previous version of
the ontology lfasPrevious-VersionGraph). It's actually
a link to the core ontology (for the firsersionGraph) or
to the previou&/ersionGraph. Because of its nature, our
system of evolution and versioning can be integratdo
applications using ontologies Jena. The accessatipes of
the library Jena can be overridden by the critefiahange
and context. Until now, proposals for versioning aften
accompanied by a specific application that the usast
install to access the version it wants if the us&JRI is not

Vcrs»nGuph
v
Ontology

selected then dried in the sun so that the juiceeiy
concentrated in flavor and sugar. Consequentlyis ita
dessert style wine sometimes heavy or balancedraws
gold color. It can be made from red grapes Cabédfratc
and Cabernet Sauvignon or Chardonnay white grapds a
Sauvignon Blanc. To add this new concept and dessét;
the system creates anothawsionGraph. This new one
is linked with the previous one. The system spesifa
SchemaVersionGraph which contains the operationdet
to describe and add the concept in the ontology.

The Wine ontology is an ontology example in which
international wines are described. For the firgpstthe
VersionGraph ontology is imported into the Wineadogy

by an addition operation (Script 1). Then the systzeates
the first version of the wine ontology with a prima
instance ofVersionGraph . This Versiongraph only has a
link with the source ontology. Next, we want to atthe
“StrawWine” wine which doesn’'t exist in the Wine
ontology.

*® InstanceSchemaV
ersionGraph

TN ;
,f‘ ATA i ’)/ SchemaVersionGr * @ InstanceVersion
- — - - // aph Operation Graph

o p y o e N /

Descripion ” Author ”'

oun [@ 1on] (@ cmgee_] @11 |‘

Vi

lnmnctOpem:

4 a L
AddSchemaOperat
ration

ion

DeleteSchemaOpe

AddlnnmceOpu D eletelnstanceO
mon peration

l MergeClass][AddRestriction H' AddC lass ”. AddProperty I

T

J oClass I oPtopmy

I AddOb;ectPlopu AddD ataProperty

DeletePropertyA
55 ertion

AddPropertyAsse
tion

AddMemberClass DeleteMemberCla l
55

Figure 1. VersionGraph definition in Protege.

Straw Wine’s fruit is selected then dried in thevso the system creates anothésrsionGraph. This new one
that the juice is very concentrated in flavor andas. So it is linked with the previous one. The system spesifa
is a dessert style wine sometimes heavy or balaocettaw SchemaVersionGraph which contains the operatioedetk
gold color. It can be made from red grapes Cabdfratc to describe and add the concept in the ontologsi{G2).
and Cabernet Sauvignon or Chardonnay white grapds a
Sauvignon Blanc. To add this new concept and desdtj

Script 1. Version graph for the Wine ontology

<vg :VersionGraph#VersionGraph0>
p:hasPreviousVersionGraph <http://www.w3.0rg/TR/0 wl-guide/wine.rdf>;

Script 2. Version graph extended with new instances

Versi onGraphl description
<vg:VersionGraph#VersionGraph1>

p:hasPreviousVersionGraph <vg:VersionGraph#VersionG raph0>;

p:hasDate "11/05/2010";

p:hasAuthor "Perrine PITTET";

p:hasSchemaVersionGraph <vg:SchemaVersionGraph#Sc hemaVersionGraphl>;

Associ at edSchemaVer si onG aphl description
<vg:SchemaVersionGraph#SchemaVersionGraph1>

p:hasAddClass <rdfs:class#StrawWine>;
p:hasAddClassHierarchyLink <vg:ClassHierarchyLink# ClassHierarchyLink1>;
p:hasAddClassDataPropertyLink <vg:ClassDataProperty Link#ClassDataPropertyLink1>;
p:hasAddClassDataPropertyCardinality

<vg:ClassDataPropertyCardinality#ClassDataPropertyC ardinalityl>;
p:hasAddClassDataPropertyCardinality

<vg:ClassDataPropertyCardinality#ClassDataPropertyC ardinality2>;

Description of SchemaQperation used
<vg:ClassHierarchyLink#ClassHierarchyLink1>

p:class <rdfs:class#StrawWine>;

p:subClass <rdfs:subClassOf#DessertWine>;
<vg:ClassDataPropertyLink#ClassDataPropertyLink1>

p:class <rdfs:class#StrawWine>;

p:dataProperty <owl:DataProperty#hasColor>;

p:value <rdf:resource#Golden>;
<vg:ClassDataPropertyCardinality#ClassDataPropertyC ardinalityl>

p:class <rdfs:class#StrawWine>

p:dataProperty <owl:DataProperty#hasBody>

p:value <rdf:resource#Full> and <rdf:resource#Mo derate>
<vg:ClassDataPropertyCardinality#ClassDataPropertyC ardinality2>

p:class <rdfs:class#StrawWine>

p:dataProperty <owl:DataProperty#madeFromGrape>

p:value ((<rdf:resource#CabernetSauvignon> and <rd f:resource#Carbernetfranc>)

or (<rdf:resource#Chardonnay> and <rdf:resource#Sau vignonBlanc>))

Script 3. Version graph extended to include desoripg new object properties

VersionG aph2 description
<vg:VersionGraph#VersionGraph2>

p:hasPreviousVersionGraph <vg:VersionGraph#Versio nGraph1>;

p:hasDate "12/05/2010";

p:hasAuthor "Perrine PITTET";

p:hasinstanceVersionGraph <vg:InstanceVersionGrap h#InstanceVersionGraph1>;

Associ at edl nst anceVer si onG aphl description
<vg:InstanceVersionGraph#lnstanceVersionGraph1>

p:hasAddindividual <vg:Addindividual#Addindividu all>

p:hasAddMemberClass <vg:AddMemberClass#AddMember Class1>

p:hasAddObjectPropertyAssertion
<vg:AddObjectPropertyAssertion#AddObjectPropertyAss ertion1>

| nstanceQper ati ondescri ption

<vg:AddIndividual#Addindividual1>
p:individual

<vg:AddMemberClass#AddMemberClass1>
p:individual
p:class

<vg:AddObjectPropertyAssertion#AddObjectPropertyAss

<rdf:resource#VinPaillé>

<owl:ObjectProperty#locatedIn>
<rdf:resource#FrenchRegion>

p:individual
p:objectProperty
p:value

Then, we want to add an individual of Straw Winpety
“Vin Paillé de Corréze”. First, we need to validadtee
previous changes by a “Commit”. Then changes in the

schema are recorded and the new schema version is

propagated to the ontology. A thirdersionGraph is
generated for the addition of the individual. Thise it
contains annstanceVersionGraph (Script 3.

6 CONCLUSION

Ontology evolution and versioning are recent domaih
search. Most of the current ontology versioning
approaches are not based on the evolution proBess.
are the solutions which integrate these mechangnte

the creation of the ontology. Our proposed architec
Versiongraph is a semantic solution towards the
characterization of a dynamic ontology which reache
these objectives. Our ongoing research shows prelim
results on evolution of several ontologies like @liThe
architecture is employed to guide the ontology dean
validation in a systematic and optimized way, rédgc
user dependency and justifying change costs. Oart sh
coming plan is to enhance our evolution and versgpn
process on several projects applied to online press
comments, tourism and town heritage ontologies.
Currently, we work on enlarging the set of consider
OWL ontology changes and analyzing the semantic of
consistency resolution of those changes to defimeem
resolution patterns.

REFERENCES

Atle Gulla, J. and Sugumaran, V. - An Ontology @GieraMethodology:
A Phased Approach.. Karlsruhe, Germany : s.n., 2B8&c. of the
International Workshop on Ontology Dynamics at ISRGDS.

Dividino, R. and Sonntag, D. - Controlled Ontologyolution through
Semiotic-based Ontology Evaluation. Karlsruhe, Gamn: s.n.,
2008. International Workshop on Ontology DynamidS&vC.

Djedidi, R., Aufaure, M. A.- « Ontological Knowlgd Maintenance
Methodology », In I. Lovrek, R. J. Howlett, and C. Jain (Eds.),
Proceedings of the 12th International Conferencevdedge-Based
Intelligent Information and Engineering Systems 8<E008), Part
. LNCS: Vol. 5177, pp. 557-564, Springer. Zagrebroatia,
September 3-5, 2008

<rdf:resource#VinPaillé>

<rdf:resource#VinPaillé>
<rdfs:class#StrawWine>

ertion1>

Flouris, F., Manakanatas, D., Kondylakis, H., Plesakis, D., Antoniou,
G. - Ontology Change: Classification & Survey - TKeowledge
Engineering Review, 1-29, 2007, Cambridge UniveRiess

Gangemi, A.: Ontology Design Patterns for Semawiteb Content. In:
Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A.d®) ISWC
2005. LNCS, vol. 3729, pp. 262-276. Springer, Hbielg (2005)

Grandi, F. - Multi-temporal RDF Ontology Versioninglarlsruhe,
Germany, International Workshop on Ontology Dynanat ISWC
2008.

Hodgson, R.- The Potential of Semantic Technolofgies-government-
presentation of eGov Open Source Conference- Wgtsinn DC,
March 18th, 2003

Jaziri W., Sassi N., Gargouri F. - Approach and to@volve ontology
and maintain its coherence, International Jourh®etadata, 2010.

Liang, Y. - Ontology Versioning and Evolution Foer8antic Web-
Based Applications. 2005.

Novacek, V., Laera, L. and Handschuh, S. - Senoraatic Integration
of Learned Ontologies into a Collaborative Framewor

Noy, N. F., Klein, M. - Ontology Evolution: Not thBame as Schema
Evolution -Stanford Medical Informatics, Stanfordnilkersity,
Stanford, CA, USA Vrije University Amsterdam, Amsiam, The
Netherlands, 2004.

Presutti, V., Gangemi, A., David, S., Aguado De C€a, Suarez-
Figueroa, M., Montiel- Ponsoda, E., Poveda, M.rail of design
patterns for collaborative development of networl@dologies.
Deliverable D2.5.1, NeOn project (2008)

Sassi, N., Brahmia, Z., Jaziri, W., Bouaziz, R.orRr Temporal
Databases to Ontology Versioning: An Approach fantdlbgy
Evolution, In Ontology Theory, Management and Desig
Advanced Tools and Models, Ed IGI-Global Publisté$A, 2010.

Stojanovic, L., et al.User-driven Ontology EvolutiManagement. 13th
Int. Conf. on Knowledge Engineering and Knowledgansigement.
2002.

Stuckenschmidt, H. and Klein, M. - Integrity andaBige in Modular
Ontologies. 18th International Conference on Asidi Intelligence,
2003.

Stuckenschmidt, H. and Klein, M. - Integrity andaBige in Modular
Ontologies, 18th Int. Joint Conference on Artificiatelligence,
2003.

Tovar, E., Vidal, M., E. - REACTIVE: A Rule-basedafmework to
Process Reactivity - Proceedings of the Internatidéorkshop on
Ontology Dynamics at ESWC 2008, Karlsruhe, Germaogs.

Yildiz, B. - Ontology Versioning and Evolution sgaard, 2006

Zablith, F., et al. - Using Background Knowledger f®ntology
Evolution, Int. Work. on Ontology Dynamics, Karlbe, Germany
2008

