
HAL Id: hal-00722926
https://hal.science/hal-00722926v1

Submitted on 6 Aug 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Guidelines for a Dynamic Ontology - Integrating Tools
of Evolution and Versioning in Ontology

Perrine Pittet, Christophe Nicolle, Christophe Cruz

To cite this version:
Perrine Pittet, Christophe Nicolle, Christophe Cruz. Guidelines for a Dynamic Ontology - Integrating
Tools of Evolution and Versioning in Ontology. KMIS 2011 - International Conference on Knowledge
Management and Information Sharing is part of 3rd International Joint Conference on Knowledge Dis-
covery, Knowledge Engineering and Knowledge Management., Oct 2011, Paris, France. �hal-00722926�

https://hal.science/hal-00722926v1
https://hal.archives-ouvertes.fr

GUIDELINES FOR A DYNAMIC ONTOLOGY
Integrating Tools of Evolution and Versionning in Ontology

Perrine Pittet, Christophe Cruz, Christophe Nicolle
LE2I, UMR CNRS 5158

University of Bourgogne - Dijon, France
{perrine.pittet, christophe.cruz, christophe.nicolle}@u-bourgogne.fr

Keywords: Evolution; Versioning; Versiongraph; Ontology lifecycle; Change operations.

Abstract: Ontologies are built on systems that conceptually evolve over time. In addition, techniques and languages for building
ontologies evolve too. This has led to numerous studies in the field of ontology versioning and ontology evolution. This
paper presents a new way to manage the lifecycle of an ontology incorporating both versioning tools and evolution
process. This solution, called VersionGraph, is integrated in the source ontology since its creation in order to make it
possible to evolve and to be versioned. Change management is strongly related to the model in which the ontology is
represented. Therefore, we focus on the OWL language in order to take into account the impact of the changes on the
logical consistency of the ontology like specified in OWL DL.

1 INTRODUCTION

According to (Hodgson, 2003), ontology lifecycle is
divided in seven steps: needs detection, conception,
management and planning, evolution, diffusion, use, and
evaluation. The needs detection phase starts with a detailed
inventory of the domain and the various purposes. Like
evolution phase, conception phase needs: knowledge
acquisition, shared conceptualization building, formalization
(Semantic Web1 formalisms…) and integration of the
existing resources (another ontology, applications…).The
The phase of management and planning underlines the
importance of having a constant monitoring and a global
policy to detect or initiate, prepare or evaluate the lifecycle
iterations. This work intends to guarantee that an iteration of
the lifecycle is activated when an evolution is ready to be
completed. The management step requires tools not only to
prepare the ontology to adapt the domain changes but also
to keep tracing of the previous versions of the ontology.
These goals can be reached with a versioning system
(Flouris and al, 2007). Diffusion phase deals with the
deployment of the ontology. The use phase encloses all the
activities related to the access of the ontology. Finally, the
evaluation phase aims at evaluating the ontology state.
Moreover, like the needs detection phase, it collects
beforehand the knowledge of the domain and can also rely
on previous studies or feedbacks. Except for the evolution
and management phases, all the steps described can be
considered as mature domains. Furthermore, this description
of the lifecycle shows that evolution, and management
remains the most complex phases. Evolution is the
backbone of the lifecycle iterations. Therefore, the change

1 Semantic Web: http://semanticweb.org/wiki/Main_Page

management process is totally based on it. Our state of art is
articulated in three parts. According to the literature, we will
first define the evolution role, operations and process. Then
we’ll have a look at the existing solutions for change
representation and ontology versioning. We will see how to
link the evolution process and a versioning system in order
to integrate both in existing ontologies.

2 ONTOLOGY EVOLUTION

As stated by (Flouris and al, 2007), ontology evolution

aims at responding to one or several changes in the domain
or the conceptualization by applying them on the source
ontology. This brief definition looks abstract and leads us to
ask: what kind of changes does the evolution apply? How
evolution applies them? What are the criteria to respect?
How can we manage a good evolution? Evolution changes
are defined in the literature and especially in (Noy and Klein,
2004) as a succession of simple or complex operations the
user wants to apply on the intension (schema) or the
extension (data) of the ontology. This evolution aims at
adapting the ontology to the changed domain. Applying and
propagating the change are often manual tasks but can be
done automatically by synchronization with the domain.
According to (Tovar, and Vidal, 2008) these tasks usually
occur during the use phase of the ontology. Ontology
Dynamics clearly define the evolution criteria. (Atle and
Sugumaran, 2008) and (Dividino and Sonntag, 2008) qualify
the maintenance of the ontology as the most important
criterion. Evolution has to maintain whatever relies on the
ontology. Maintaining the ontology consistent and pertinent,
in a consensus is an inescapable issue of evolution (Zablith

and al, 2008). Applying changes on ontology can turn the
conceptualization inconsistent and irrelevant. That’s why an
evolution should never be validated before the user has a
preview of the impact of the changes on the ontology. This
impact can only be estimated if the evolution operations are
semantically clearly defined. In order to assure that this
process is fully respected, some works propose an approach
in six phases.
1. The change detection phase consists in detecting
what changes occurred in the domain or in the point of view
must be propagated to the conceptualization. Lots of papers
in the Ontology Dynamics deal with this phase and propose
methods and tools like integrated event handlers (Tovar and
Vidal, 2008), ontology learning (Novacek and al) etc.
2. The representation phase aims at representing
the selected changes with ontological operations. (Noy and
Klein, 2004) classifies the evolution operations in two
types: elementary (atomic) operations and composed
(complex) operations. According to (Noy and Klein, 2004),
elementary operations are simple operations that modify
only one entity like addition/suppression of
classes/relations, of hierarchy, domain, range links, of
class/relation properties like disjoint, transitivity,
etc…whereas composed operations are a composition of
several elementary operations. The choice of composed
operations depends on the granularity of the evolution
needs. Usual operations correspond to operations the
ontology that developers are the most expected to use when
creating and evolving an ontology. In addition to elementary
operations, the literature gives some lists of usual operations
(Stojanovic and al, 2002,Stickenschmidt and Klein, 2003).
A distinction can be done between operations on the
intension and operations on the extension. The cited works
on change operations do not specify specific operations for
the instances because they argue that an instance can
become a class (Noy and Klein, 2004). However, we
maintain that schema operations can’t be confounded with
instance operations. Actually, it is impossible to create an
instance (instance operation) related to a class if this class is
not created. Inversely a class can be created (schema
operation) without instances.
3. The semantic phase prevents the user from
inconsistency risks by determining the sense of the
represented changes. For example, if composed operations
have been selected, this phase will allow seeing their
decomposition in elementary operations.
4. The implementation of the changes alerts the user
of the impact on data in terms of data gain or loss. (Noy and
Klein, 2004) gives these impacts from a list of 22 usual
operations (the elementary ones and some composed).
5. The propagation phase aims at informing all the
dependent parts of the ontology (other ontologies,
application) of these changes.
6. Finally, in sixth step comes the validation of the
changes.

3 ONTOLOGY VERSIONING

This part defines the role of versioning, bringing our

new vision on this definition. First, (Flouris and al, 2007)
gives in 2007 a very strict definition of the role of
versioning: give a transparent access to different existing
versions of an ontology by creating a versioning system.
This system identifies the versions by their “Id” and
delimits their mutual compatibility. In the past three years,
Ontology Dynamics proposals extend its role: manage
several chronological and multitemporal versions (Grandi,
2008), at a local or web level (Allocca and al), when
collected, distributed, accessed by search engines. All these
definitions correspond to a retroactive versioning because
versions of the ontology have to preexist. However, in our
objective, we want to integrate a versioning system since the
creation of the first version of the ontology, and we want it
to be reactive when a change occurs. Therefore, we need, as
the ontology development, a dynamic and incremental
process, which could take into account a new version at
each evolution phase. That is why we propose to merge the
evolution process (following the six phases) with the
versioning one. (Sassi and al, 2010) and (Djedidi and
Aufaure, 2008) agree with this proposition by giving the
ontology versioning the ability of following the evolution
process. In and (Djedidi and Aufaure, 2008), the
methodology goal is to guide and validate the application of
the changes in a systematic and optimized way, maintaining
the coherence and evaluating the impact of the change on
the ontology quality by the mean of design patterns. In
(Sassi and al, 2010), the goal is to assist the users during the
evolution process to observe the consequences of the change
applications on the several versions by allowing them to
compare them. The two methodologies are step by step
approaches integrating the versioning process directly into
the evolution one. Both propositions quite follow the
evolution phases cited before] but do not explicitly show
them.

4 VERSIONGRAPH APPROACH

This section presents the versioning approach of our

versioning system based on the six phases of the evolution
process.

4.1 From Evolution Phases to Versioning

To make sure the evolution phases are fully respected

we chose to match each of them with a versioning step.
First, the user chooses the list of operations to apply: (cf.
change detection phase). The versioning system formalizes
them (cf. representation phase), turn them semantically
understandable (cf. semantic phase), records and
implements them (cf. implementation phase). Then after the
propagation of the changes, (cf. propagation phase), the user

validates them (cf. validation phase) and the versioning
system applies them and generates the new version of the
ontology corresponding to an evolution iteration. Finally,
the versioning system can give a transparent access to both
versions with criteria defined by the user (Stuckenschmidt
and Klein, 2003). It can delimit compatibility by retracing
evolution operations (Stojanovic and al, 2002,
Stuckenschmidt and Klein, 2003).

4.2 Versioning Steps Tools

To follow this process, we need to specify the tools

displayed by our versioning system. According to (Klein
and Fensel, 2001), a change specification should enclose an
operational change specification (our list of operations),
next the conceptual relationship between the first version
and the new one (the selected operations on the selected
entities). The first phase of the evolution process is then
completed. The next step is to represent these changes.
Several approaches are proposed in the literature to
represent changes. Major part of them uses logs. Versioning
logs (Yildiz, 2005) record the different versions of an
ontology by representing each entity at a given time. For
each class, relation and instance, a new instance of
“EvolutionConcept” class is created. (Klein and Fensel,
2001) argues that metadata should be added to identify this
change. In versioning logs, each instance is annotated with
metadata (Id, cause, transaction time, state validated or not,
etc.). This solution is interesting if the versioning log can be
integrated in the ontology. However, for our purposes, there
is no need to represent each entity if it is not modified by the
evolution. Evolution logs (Liang, 2005) do not save the
versions but act like a change history. Not each entity but
each substitution in the ontology is recorded in order to be
reused when the user wants to access a version. Tracing the
substitution rather corresponds to our objectives as a
substitution contains the selected operations and the entities
affected. In order to cope with our evolution process, we
propose to create a Version concept like in the versioning
logs integrated in the ontology that will be created at each
evolution iteration. This Version concept encloses: 1/the
substitutions operated in the intension or 2/ those operated
on the extension and 3/ the metadata. For the semantic
phase, we chose to use ontology design patterns (ODP
(Gangemi, 2005)) as (Djedidi and Aufaure, 2008) proposes
in addition to an evolution log, in order to guarantee the
consistence of the ontology when applying the change.
Then, the implementation phase can be helped by
introducing event detectors on data. In the Jena application
supporting the ontology, the idea is to insert methods using
“ActionListener” objects. The propagation phase can be
performed by generating events activating the
“ActionListener” objects. Finally, the validation is similar to
the “Commit” operator of a DBMS, can be done by a simple
click by the user. Our incremental versioning process

following the six evolution phases constitutes the first part
of our versioning system.

4.3 Version Retrieval

Concerning the transparent access definition, the first

issue is the identification of the versions. Most of the
versioning systems use “Id” of the ontologies to identify
them (Allocca and al, 2008). Though, it is not enough to
identify in which version a change on a certain entity
occurred. As we have introduced the metadata and the list of
substitutions occurred when a Version is created, those data
can serve as search criteria to identify and retrieve the right
version. We have chosen to extend Jena's operators (access
on ontology, etc.) in order to take into account the search
criteria. This extension can be performed by an override of
the access methods, for example, by adding metadata and
operation attributes. This state of art permitted us to build
the evolution and versioning process of our proposition. We
also managed to design the versioning tools in order to
represent changes and access the ontology.

5 VERSIONGRAPH ARCHITECTURE

In this section, we present the VersionGraph

architecture which implements the choices of our state of
art.

5.1 Evolution Operations

Contrarily, to the (Sassi and al, 2010) proposition, the
schema and instance operations are differentiated
respectively by SchemaOperation and Instance-

Operation . SchemaOperation type operations
correspond to the creation and deletion of classes
(AddClass) and properties (AddProperty) but also to
additions and deletions of restrictions on them. We
distinguish restrictions on the classes and properties or
properties of the data link hierarchy (HierarchyLink)
such as class / subclass, property / sub-property.
Furthermore, in the class restrictions, limitations like classes
/ properties such as the relationship between properties and
classes (ClassPropertyLink , ClassDataPropertyLink),

car-dinality (ClassPropertyCardinality) are classified.
In addition, in the restrictions we find domain and range
restrictions of attributes (PropertyAttributeLink).
Finally, TypeProperty operations are used to define a
specific constraint of a property (transitive, symmetric, etc.).

 InstanceOperation type operations correspond to
operations of addition and deletion of individuals and
statements about these individuals. We distinguish between
the assertions relying individuals to the values
(DataPropertyAssertion) and those specifying the
types for these individuals (ObjectPropertyAssertion).

5.2 Versioning Process

From these evolution operations and the study of the
different versioning solutions of our state of art, we derived
a versioning system. At each evolution of the ontology, the
system stores in the ontology, the changes impacted by the
operations used and the context. This versioning system is
an independent ontology which intends to be integrated into
the existing ontology by a simple addition operation. Then,
the user can start a first evolution of ontology in choosing
whether to change the schema (intension) or data
(extension) using the above operations. Each list of changes
chosen by the user during the evolution is kept using a
concept SchemaVersionGraph for SchemaOperation
operations and InstanceVersionGraph for Instance-

Operation operations on instances by specifying which
elements of the ontology are concerned (concepts,
relationships, etc.). Contextual information can be added (as
version, date, author, description, etc.). These data are
traced during the evolution using a concept of context
VersionContext . The set containing SchemaVersion-

Graph or InstanceversionGraph and Version-

Context is called VersionGraph . Figure 1 depicts an
overview of the ontology schema. For more clarity, it only
shows concepts and their relationships under 6th hierarchical
degrees.

In a transparent way, each application of changes made
by the user generates a new VersionGraph. A
VersionGraph contains a link with the previous version of
the ontology (hasPrevious-VersionGraph). It's actually
a link to the core ontology (for the first VersionGraph) or
to the previous VersionGraph. Because of its nature, our
system of evolution and versioning can be integrated into
applications using ontologies Jena. The access operations of
the library Jena can be overridden by the criteria of change
and context. Until now, proposals for versioning are often
accompanied by a specific application that the user must
install to access the version it wants if the use of URI is not

enough (Evolva). However, many ontologies are accessed
using a Java API Jena. Indeed, this library supports
ontology-based formalisms like RDF, RDFS, OWL and the
various DAML + OIL. Jena contains all the methods to
access and edit ontologies. In addition, it also implements
all the basic operations of evolution and the commonly used
composed ones. Overridden access methods are able to take
into account the criteria of versions thanks to new attributes.
These criteria are integrated into the ontology itself as we
saw in the previous paragraph.

4.3 The Wine Ontology Versionning

International wines are described at
<http://www.w3.org/TR/owl-guide/wine.rdf>;

Afterwards, we want to add the “StrawWine” wine which
does not exist in the Wine ontology. Straw Wine’s fruit is
selected then dried in the sun so that the juice is very
concentrated in flavor and sugar. Consequently, it is a
dessert style wine sometimes heavy or balanced or straw
gold color. It can be made from red grapes Cabernet Franc
and Cabernet Sauvignon or Chardonnay white grapes and
Sauvignon Blanc. To add this new concept and describe it,
the system creates another VersionGraph. This new one
is linked with the previous one. The system specifies a
SchemaVersionGraph which contains the operations needed
to describe and add the concept in the ontology.
The Wine ontology is an ontology example in which
international wines are described. For the first step, the
VersionGraph ontology is imported into the Wine ontology
by an addition operation (Script 1). Then the system creates
the first version of the wine ontology with a primary
instance of VersionGraph . This Versiongraph only has a
link with the source ontology. Next, we want to add the
“StrawWine” wine which doesn’t exist in the Wine
ontology.

Figure 1. VersionGraph definition in Protege.

Straw Wine’s fruit is selected then dried in the sun so
that the juice is very concentrated in flavor and sugar. So it
is a dessert style wine sometimes heavy or balanced or straw
gold color. It can be made from red grapes Cabernet Franc
and Cabernet Sauvignon or Chardonnay white grapes and
Sauvignon Blanc. To add this new concept and describe it,

the system creates another VersionGraph. This new one
is linked with the previous one. The system specifies a
SchemaVersionGraph which contains the operations needed
to describe and add the concept in the ontology (Script 2).

Script 1. Version graph for the Wine ontology

<vg :VersionGraph#VersionGraph0>
p:hasPreviousVersionGraph <http://www.w3.org/TR/o wl-guide/wine.rdf>;

Script 2. Version graph extended with new instances.

VersionGraph1 description
<vg:VersionGraph#VersionGraph1>

p:hasPreviousVersionGraph <vg:VersionGraph#VersionG raph0>;
p:hasDate "11/05/2010";
p:hasAuthor "Perrine PITTET";
p:hasSchemaVersionGraph <vg:SchemaVersionGraph#Sc hemaVersionGraph1>;

AssociatedSchemaVersionGraph1 description
<vg:SchemaVersionGraph#SchemaVersionGraph1>

p:hasAddClass <rdfs:class#StrawWine>;
p:hasAddClassHierarchyLink <vg:ClassHierarchyLink# ClassHierarchyLink1>;
p:hasAddClassDataPropertyLink <vg:ClassDataProperty Link#ClassDataPropertyLink1>;
p:hasAddClassDataPropertyCardinality

<vg:ClassDataPropertyCardinality#ClassDataPropertyC ardinality1>;
p:hasAddClassDataPropertyCardinality

<vg:ClassDataPropertyCardinality#ClassDataPropertyC ardinality2>;

Description of SchemaOperation used
<vg:ClassHierarchyLink#ClassHierarchyLink1>

p:class <rdfs:class#StrawWine>;
p:subClass <rdfs:subClassOf#DessertWine>;

<vg:ClassDataPropertyLink#ClassDataPropertyLink1>
p:class <rdfs:class#StrawWine>;
p:dataProperty <owl:DataProperty#hasColor>;
p:value <rdf:resource#Golden>;

<vg:ClassDataPropertyCardinality#ClassDataPropertyC ardinality1>
p:class <rdfs:class#StrawWine>
p:dataProperty <owl:DataProperty#hasBody>
p:value <rdf:resource#Full> and <rdf:resource#Mo derate>

<vg:ClassDataPropertyCardinality#ClassDataPropertyC ardinality2>
p:class <rdfs:class#StrawWine>
p:dataProperty <owl:DataProperty#madeFromGrape>
p:value ((<rdf:resource#CabernetSauvignon> and <rd f:resource#Carbernetfranc>)

or (<rdf:resource#Chardonnay> and <rdf:resource#Sau vignonBlanc>))

Script 3. Version graph extended to include description og new object properties

VersionGraph2 description
<vg:VersionGraph#VersionGraph2>
 p:hasPreviousVersionGraph <vg:VersionGraph#Versio nGraph1>;
 p:hasDate "12/05/2010";
 p:hasAuthor "Perrine PITTET";
 p:hasInstanceVersionGraph <vg:InstanceVersionGrap h#InstanceVersionGraph1>;

AssociatedInstanceVersionGraph1 description
<vg:InstanceVersionGraph#InstanceVersionGraph1>
 p:hasAddIndividual <vg:AddIndividual#AddIndividu al1>
 p:hasAddMemberClass <vg:AddMemberClass#AddMember Class1>
 p:hasAddObjectPropertyAssertion

<vg:AddObjectPropertyAssertion#AddObjectPropertyAss ertion1>

InstanceOperationdescription

<vg:AddIndividual#AddIndividual1>
 p:individual <rdf:resource#VinPaillé>

<vg:AddMemberClass#AddMemberClass1>
 p:individual <rdf:resource#VinPaillé>
 p:class <rdfs:class#StrawWine>

<vg:AddObjectPropertyAssertion#AddObjectPropertyAss ertion1>
 p:individual <rdf:resource#VinPaillé>
 p:objectProperty <owl:ObjectProperty#locatedIn>
 p:value <rdf:resource#FrenchRegion>

Then, we want to add an individual of Straw Wine type:
“Vin Paillé de Corrèze”. First, we need to validate the
previous changes by a “Commit”. Then changes in the
schema are recorded and the new schema version is
propagated to the ontology. A third VersionGraph is
generated for the addition of the individual. This time it
contains an InstanceVersionGraph (Script 3) .

6 CONCLUSION

Ontology evolution and versioning are recent domains of
search. Most of the current ontology versioning
approaches are not based on the evolution process. Rare
are the solutions which integrate these mechanisms since
the creation of the ontology. Our proposed architecture
Versiongraph is a semantic solution towards the
characterization of a dynamic ontology which reaches
these objectives. Our ongoing research shows preliminary
results on evolution of several ontologies like Wine. The
architecture is employed to guide the ontology change
validation in a systematic and optimized way, reducing
user dependency and justifying change costs. Our short
coming plan is to enhance our evolution and versioning
process on several projects applied to online press
comments, tourism and town heritage ontologies.
Currently, we work on enlarging the set of considered
OWL ontology changes and analyzing the semantic of
consistency resolution of those changes to define more
resolution patterns.

REFERENCES

Atle Gulla, J. and Sugumaran, V. - An Ontology Creation Methodology:

A Phased Approach.. Karlsruhe, Germany : s.n., 2008. Proc. of the
International Workshop on Ontology Dynamics at ISWC 2008.

Dividino, R. and Sonntag, D. - Controlled Ontology Evolution through
Semiotic-based Ontology Evaluation. Karlsruhe, Germany : s.n.,
2008. International Workshop on Ontology Dynamicsat ISWC.

Djedidi, R., Aufaure, M. A.- « Ontological Knowledge Maintenance
Methodology », In I. Lovrek, R. J. Howlett, and L. C. Jain (Eds.),
Proceedings of the 12th International Conference Knowledge-Based
Intelligent Information and Engineering Systems (KES 2008), Part
I. LNCS: Vol. 5177, pp. 557-564, Springer. Zagreb, Croatia,
September 3-5, 2008

Flouris, F., Manakanatas, D., Kondylakis, H., Plexousakis, D., Antoniou,
G. - Ontology Change: Classification & Survey - The Knowledge
Engineering Review, 1–29, 2007, Cambridge University Press

Gangemi, A.: Ontology Design Patterns for Semantic Web Content. In:
Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC
2005. LNCS, vol. 3729, pp. 262–276. Springer, Heidelberg (2005)

Grandi, F. - Multi-temporal RDF Ontology Versioning. Karlsruhe,
Germany, International Workshop on Ontology Dynamics at ISWC
2008.

Hodgson, R.- The Potential of Semantic Technologies for e-government-
presentation of eGov Open Source Conference- Washington, DC,
March 18th, 2003

Jaziri W., Sassi N., Gargouri F. - Approach and tool to evolve ontology
and maintain its coherence, International Journal of Metadata, 2010.

Liang, Y. - Ontology Versioning and Evolution For Semantic Web-
Based Applications. 2005.

Novacek, V., Laera, L. and Handschuh, S. - Semi-automatic Integration
of Learned Ontologies into a Collaborative Framework.

Noy, N. F., Klein, M. - Ontology Evolution: Not the Same as Schema
Evolution -Stanford Medical Informatics, Stanford University,
Stanford, CA, USA Vrije University Amsterdam, Amsterdam, The
Netherlands, 2004.

Presutti, V., Gangemi, A., David, S., Aguado De Cea, G., Suarez-
Figueroa, M., Montiel- Ponsoda, E., Poveda, M.: Library of design
patterns for collaborative development of networked ontologies.
Deliverable D2.5.1, NeOn project (2008)

Sassi, N., Brahmia, Z., Jaziri, W., Bouaziz, R., From Temporal
Databases to Ontology Versioning: An Approach for Ontology
Evolution, In Ontology Theory, Management and Design:
Advanced Tools and Models, Ed IGI-Global Publisher, USA, 2010.

Stojanovic, L., et al.User-driven Ontology Evolution Management. 13th
Int. Conf. on Knowledge Engineering and Knowledge Management.
2002.

Stuckenschmidt, H. and Klein, M. - Integrity and Change in Modular
Ontologies. 18th International Conference on Artificial Intelligence,
2003.

Stuckenschmidt, H. and Klein, M. - Integrity and Change in Modular
Ontologies, 18th Int. Joint Conference on Artificial Intelligence,
2003.

Tovar, E., Vidal, M., E. - REACTIVE: A Rule-based Framework to
Process Reactivity - Proceedings of the International Workshop on
Ontology Dynamics at ESWC 2008, Karlsruhe, Germany. 2008.

Yildiz, B. - Ontology Versioning and Evolution, Asgaard, 2006
Zablith, F., et al. - Using Background Knowledge for Ontology

Evolution, Int. Work. on Ontology Dynamics, Karlsruhe, Germany
2008

