
HAL Id: hal-00722920
https://hal.science/hal-00722920v9

Preprint submitted on 17 Jan 2019 (v9), last revised 16 Jan 2023 (v38)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bisection based algorithm for linear program.
Adrien Chan-Hon-Tong

To cite this version:

Adrien Chan-Hon-Tong. Bisection based algorithm for linear program.. 2019. �hal-00722920v9�

https://hal.science/hal-00722920v9
https://hal.archives-ouvertes.fr

Bisection based algorithm for linear program.

Adrien CHAN-HON-TONG
ONERA - université paris sud

January 2019

Abstract

Thank to Chubanov algorithm, there is today a strongly polynomial
time algorithm to solve linear feasibility problem. In this paper, we offer
an algorithm for generic linear program based on bisection space using
Chubanov algorithm as routine. The complexity of the algorithm is not
established but is linked to geometric statements.

1 Introduction

Solving linear program can be done in polynomial time since ellipsoid method
(e.g. [3]) and interior point (e.g. [4]).

But there is no known algorithm to solve generic linear program in strongly
polynomial time. Indeed, [1] proves that one of the most important current
interior point algorithm is not strongly polynomial. Yet, for some family of lin-
ear program, specific algorithm provide strong polynomial complexity including
combinatorial linear program [5], linear program with less than 2 variables per
constraint, linear program with binary solution...

In this paper, I am especially interested by [2] which provides a strongly
polynomial time algorithm for linear feasibility problem.

Indeed, I offer an algorithm using linear feasibility as routine to solve generic
linear program. I do NOT claim that the offered algorithm is strongly polyno-
mial. Yet, I link some geometric statement to key possible feature of the offered
algorithm.

2 Some lemma

2.1 Required routine

First of all, [2] allows to solve in strongly polynomial time the following problem:

∃?x ∈ QN/Ax = 0, x > 0

under the assumption that A ∈MM,N (Q) has a rank of M .

1

A minor but required lemma is that with a simple trick, this algorithm can
be used to solve (under the assumption that some solution exists):

∃?x ∈ QN/Ax > 0

with any A ∈MM,N (Q).
Indeed, it is sufficient to consider the matrix A =

(
A −A −I

)
formed

with A concat with −A concat with −I the identity matrix. Applying the
Chubanov algorithm to this matrix A will lead to x1, x2, x3 such that

(
A −A −I

) x1
x2
x3

 = 0

and

 x1
x2
x3

 > 0 So, x = x1 − x2 and Ax = Ix3 = x3 > 0.

Let note that the rank is obviously M as there is a identity bloc. Let
also note that [2] with this trick solves in strong polynomial time the machine
learning problem of linear separability (related to support vector machine SVM
but without the property of maximizing the minimal distance to this hyper
plane). To my knowledge this has not be that stressed yet... Finally, let not
that ∃?x ∈ QN/Ax > 0 is equivalent of ∃?x ∈ QN/Ax ≥ 1: solution of the
second is solution of the first, and solution of the first can be scaled to become
one of the second.

In the offered algorithm, this is this routine i.e. solving ∃?x ∈ QN/Ax > 0
that why be required.

It will never be called without be sure that a solution exist.

2.2 Pre processing

2.2.1 Required pre processing

The offered algorithm can be used to solve all possible king of linear program:
min ormax
Ax=b,x≥0

cx or min ormax
Ax≥b

cx or ∃?x ∈ QN/Ax ≥ b or ...

But, this has to be done this way:

1. a derived linear program has to be generated from the raw targeted linear
program

2. this new linear program will have the required properties for using the
offered algorithm (whatever the raw input is)

3. then solution of the input linear program has to be extracted from solution
of the derived one (providing certificate for unbounded or empty linear
program)

2

Indeed, I will give systematic way to reach such derived linear program with
required properties. In one sentence, it needs to combine both primal dual
twice again. But, simpler transformation may be sufficient depending of the
input linear program.

Anyway, the requirement is to manage to reach a derived linear program
(whose solution contains solution of the raw one) min

Afinalxfinal≥bfinal

cfinalxfinal

which meets the following assumptions:

• Afinalcfinal > 0

– it means that from any point x belonging to the admissible space,
moving along c increase distance to all constraints

– it implies that there is a non empty admissible space and a trivial
solution (x = λc for large λ)

• there is an optimal solution and xfinal is optimal iif Afinalxfinal ≥ bfinal
and cfinalxfinal = 0

• for any two normalized rows α, β of Afinal, αcfinal 6= βcfinal, it implies
that moving along c modify the set of the most close constraint planes.

2.2.2 Example of implementation

The generation of a derived linear program from a standard max
Ax≤b,x≥0

cx is a

combination of classical trick but this combination is rarely done due to the
specificity of the requirement of this paper.

Let assume original goal is to solve max
Ax≤b,x≥0

cx. It is well known that the

dual problem is min
AT y≥c,y≥0

by. Now, the primal dual is formed by combining

both Ax ≤ b, AT y ≥ c, cx = by. This problem can be folded into a Abig matrix
and a bbig as Abigxbig ≥ bbig (by the way the pre processing can be started here
is the raw problem comes like ∃?x ∈ QN/Ax ≥ b).

Now, this Abigxbig ≥ bbig can have no solution (it corresponds to an original
problem unbounded and/or unsolvable). So, let normalize rows of the matrix,
and, add some variable min

Abigxbig+zg≥bbig,z≥0
z, with z being just a scalar and g

the vector with gi = i.
This last problem verifies almost all requirement except that the optimal

value of z is not known. But, if Abigxbig ≥ bbig would have been a solution, this
optimal value would have been 0.

So, this process is done ones again (this is not classical) leading to

min
Adoublexdouble+zdoubleg≥bdouble,zdouble≥0

zdouble

This derived linear program verifies the requirement. And, from solution of
this linear program one can solve the original one.

3

3 Algorithm

3.1 Key points

Before introducing the algorithm, I present here some key points:

• The algorithm works on the interior of the admissible space like interior
point method.

• But this algorithm is almost purely combinatorial: numerical values do
not directly influence move of the current point.

• Distance between current point and constraint is computed and closest
constraints push the point away (with constraint to not increase the cost
function).

• Then, the idea is to try to update the less possible the set of the closest
constraints. In other words, one can see rows of A, b represent planes in
the space. If the distance between x and the closest plane is d than the
idea is to move in a way that both d does not decrease and cx decreases
(at least one strictly). Eventually, there will be 2 planes at distance d
(because the move can not be infinite). But, the idea will still be to move
without increasing the distance to any of two, then three and so one.

• Such keep-D move can always be trivially computed, but, such move may
not exists (Ax ≥ 1 could have a solution while Ax = 1 no). When no
solution exists, the routine based on Chubanov algorithm is called leading
to a reboot of the set.

• The algorithm terminates because the set of closest constraint planes can
not be twice the same set

• Yet, in preliminary empirical results in 4D, a reboot of the plane set is as-
sociated with the definitive exclusion of at least 1 plane. This statement is
probably wrong (except for 2D, 3D and simple cases) - but this statement
is related to the complexity of this algorithm, and, in particular with an
hypothetical strong polynomial time property.

To keep standard notation, N is the number of variables and M the number
of constraint (i.e. rows of matrix A).

Transposition is omitted in scalar product: if p, q are 2 vectors pq corresponds
to pT q =

∑
n
pnqn.

Constraints, rows of matrix A and planes will be 3 ways to speak about the
same objets.

For simplicity, algorithm is described like if rows of the matrix and cost
vector was normalized. Of course, this is not an acceptable assumption as
normalization is not possible in Q. But algorithm can be modified to remove
this need for normalization.

4

3.2 Pseudo code

The structure of the algorithm is described by the following pseudo code (in the
normalized case).

1. compute d = min
m

Amx− bm (the minimal distance to planes)

2. compute D the set of planes at distance d

3. check trivial termination

• if x is a solution (Ax ≥ b, cx = 0) return x

• if the plane cx = 0 is at distance d return x− dc

4. look1 for a vector v which maintains D, decreases cx, increase d ; 2 simple options are:

• the projection of −c on Ker(AD) e.g. cv < 0, ADv = 0

• the projection of AD on the ker of pairwise difference plus c e.g. cv = 0, ADv = 1

5. if a vector v 6= 0 is found

(a) compute α = Amv for any m ∈ D (common value)

(b) compute2 λ: min
m/∈D

d+ λα+ bm −Amx− λAmv

(c) x← x+ λv and GO TO 1

6. compute3 H a basis of all vectors h such that ∃µ/ADh = µ1

7. compute4 w the projection of −c on H e.g. cw < 0, ADw = −1
8. if w = 0

(a) initialize D = ∅
(b) for all i in D (decreasingly sorted by the value of Aic)

add i to D iff doing so leads to a non zero w

(c) compute ω the value of w if D was D
(d) find a λ ∈]0, d[such that the D set of x+ λω is D
(e) GO TO 1 // see discussion visualize 8.a - 8.d as x← x− dc

9. compute β = Amw for any m ∈ D (common value)

10. compute z and λ such that ADz = 0 and z = λw + x

11. compute ρ: min
m/∈D

max (0, d+ ρβ + bm −Amx− ρAmw)

12. if ρ ∈]0, λ[, x← x+ ρw, GO5 TO 1

13. compute S = {m/Amz = bm} the set of planes saturated by z

14. call Chubanov routine to find θ such that

(
AS

−c

)
θ > 0

15. find δ such that A(z + δθ) > b

16. x← z + δθ and GO TO 1

1notice that both these computations are just projection of a vector on a sub space so it
is just a application of Gram-Schmidt

2here moving along v either decreases the cost of x - which is obviously bounded as cx ≥ 0
- or either increases distance to closest planes which means that c(x− dc) decreases which is
bounded for the same reason. So this move can not be done for ever - necessarily some plane
with meet the ball of center x and radius d - it will be added to D

3this is a generalisation of the bisectors from pair to set - the goal is to keep D
4the situation is very different from step 4 because here moving along w could lead to break

constraint
5Moves from step 4 increases the distance to the border - these are safe moves. Here, the

move is not safe as it could have ended in z - yet an other constraint was here making it
acceptable

5

4 Properties of the algorithm

4.1 Termination

From an inner point, the algorithm generates a set of inner point plus
one optimal point.

First, all moves are designed to never go outside the interior of the admissible
space - except to reach an optimal point. Indeed, step 5 increases satisfaction
of constraint. Step 8 takes care to make a move smaller than the radius of the
ball centred on the point tangent to some constraint. Step 12 can be done only
if the move maintains the point in the interior. Finally, step 16 starts from a
corner and uses θ to increases satisfaction of the constraint forming the corner.

Then, a little lemma is that cx is decreasing during the algorithm (not
necessarily strictly depending on implementation of 4 but at least decreasing -
and strictly decreasing with first proposed implementation of 4).

Then, the set D can not have twice the same value in step 8 or 14. Indeed, if
algorithm is two time in step 8 in point x1 and x2 with a common value for D,
it means that w should not have been 0 but at least x2 − x1. (And x2 = x1 is
impossible because in step 8.d, the algorithm make sure to restart from a point
x with cx < cx1).

In the same idea, if the algorithm reaches two time the step 14 in point
x1 and x2 with a common value for D, then there is a contradiction because
cx2 < cz < cx1. Precisely, it could possible if there is at least two points p, q
with ADp = ADq and cp < cq. But, I take care of removing this possibility by
construction of the derived problem.

This is the reason why the derived problem has to be

min
Adoublexdouble+zdoubleg≥bdouble,zdouble≥0

zdouble

with g the vector with gi = i and NOT

min
Adoublexdouble+zdouble1≥bdouble,zdouble≥0

zdouble

.
So, it can not have more than 2M step 8 and 14.
Finally, the other step 5 and 8 strictly increases D which is bounded by

{1, ...,M}. So, the algorithm can not perform more than M step 5 or 8 without
performing a step 8 or 14. So the algorithm terminates in at most M2M steps.

4.2 Complexity

The central question related to the complexity of this algorithm is the number
of step 8 and 14.

For the step 14, the situation is the following. There is a linear cone {x,Ax ≥
0} and a ball centred on c with a radius d tangent to all plane of the cone. If
one cut the cone with a plane αx = 0, does every plane Amx = 0 from the cone
have one (non 0) point in each half space αx ≥ 0 and αx ≤ 0 ?

6

In the context of the algorithm, it means that as the algorithm will restart
from a point x lower than z, is it possible that all plane from D will be seen
again (in other D set) ? In low dimension, this is not the case because there is
no way to get close to all plane from D without crossing the plane {y, cy = cz}.

For the step 8, the situation is even harder, because step 8 may correspond
to simultaneous multiples corners of step 14. Obviously, it is possible to have
a step 8 with D = {m1, ...,mk}, and then, during the following of the process
k points with D1, ..., Dk with mi ∈ Di. Yet, the idea of the step 8 is not just
to move a little along −c (which will still prevent to see this set again in step
8) but to move a little along −c will keeping a subset of D, and precisely, the
subset formed greedily by adding incrementally the rows with larger product
with c. This way, the hope is to limit oscillation of plane in D: if a plane is
rejected, it can never come back without rejection of one with larger product
with c. In other words, it is not possible to have the successively the sets abcd
acd abd because b should have been keept from abcd. This strongly reduces the
possible combination seen in step 8. Worse case seems to be the discovery of all
planes by increasing order of product with c.

This two points are not most discussed here. Yet, these questions may be
interesting because all the presented step are strongly polynomial i.e. complexity
(for elementary operation in in Q) is a polynomial in M and N (especially thank
to Chubanov algorithm). Thus, if the number of step 8 and 14 was bounded by
a polynomial in M . Then the resulting algorithm could be strongly polynomial
(in Q).

One interesting point is to see that linear feasibility ∃?x ∈ QN/Ax ≥ 1
(which is an interesting topic in machine learning) is not this far from general
linear program ∃?x ∈ QN/Ax ≥ b

References

[1] Xavier Allamigeon, Pascal Benchimol, Stéphane Gaubert, and Michael
Joswig. Log-barrier interior point methods are not strongly polynomial.
SIAM Journal on Applied Algebra and Geometry, 2(1):140–178, 2018.

[2] Sergei Chubanov. A polynomial projection algorithm for linear feasibility
problems. Mathematical Programming, 153(2):687–713, 2015.

[3] Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid
method and its consequences in combinatorial optimization. Combinatorica,
1(2):169–197, 1981.

[4] Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algo-
rithms in convex programming, volume 13. Siam, 1994.

[5] Eva Tardos. A strongly polynomial algorithm to solve combinatorial linear
programs. Operations Research, 34(2):250–256, 1986.

7

