Adrien Chan-Hon-Tong 
  
A new algorithm for linear programming in critical systems

In critical systems (e.g. for core airplane functions), codes should both never fail, in particular they should be robust to numerical instabilities, and, they should reuse certified routines.

Yet, the combination of this two constraints is often an issue. For example, the interior-point algorithms for linear programming have higher complexity than expected when requiring simultaneously numerical robustness and no custom routines.

Instead, this paper presents a new algorithm, which has good time complexity even with a naive implementation.

Introduction 1.Linear programming

Linear programming is a central optimization problem which aims at producing either a solution x or a certificate that the following problem is infeasible or 1 unbounded:

min x∈Q N , Ax≥b c T x (1) 
where A ∈ Z M ×N is a matrix and b ∈ Z M , c ∈ Z N are two vectors with M being the number of constraints/rows of A and N the number of variables/columns of A. Assuming N = O(M ), the state-of-the-art is interior-point algorithms (e.g. [START_REF] Nesterov | Interior-point polynomial algorithms in convex programming[END_REF][START_REF] Renegar | A polynomial-time algorithm, based on newton's method, for linear programming[END_REF][START_REF] Van Den | A deterministic linear program solver in current matrix multiplication time[END_REF]) which solve linear programs with total binary size L in (at most) O( √ M L) Newton steps 1 . Using standard linear algebra routines, one can perform each of those Newton step (mainly a matrix inversion) in O(M ω ) arithmetic operations where ω is the coefficient of the matrix multiplication (known to be equivalent to the one of the matrix inversion [START_REF] Petković | Generalized matrix inversion is not harder than matrix multiplication[END_REF] i.e. 3 with simple algorithm but 2.38 with [START_REF] Ambainis | Fast matrix multiplication: limitations of the coppersmith-winograd method[END_REF]). Recently, [START_REF] Van Den | A deterministic linear program solver in current matrix multiplication time[END_REF] (a deterministic version of [START_REF] Michael B Cohen | Solving linear programs in the current matrix multiplication time[END_REF]) proves that a specific data structure allows to save a √ M factor from those specific matrix inversions. Linear programming is equivalent to strict linear feasibility which aims at solving find

x ∈ X A = {χ ∈ Q N , Aχ > 0} assuming X A ̸ = ∅ (2) 
where A ∈ Z M ×N and 0 is the vector full of 0. The problem is sometimes presented as finding x such that Ax ≥ 1 (where 1 is the vector full of 1) to avoid strict inequalities but all those three formulations are equivalent. The algorithm presented in section 2 will deal with this strict linear feasibility for convenience without restricting the generality as a pre-processing and a postprocessing allow to deal with general linear programming without higher time complexity (This is presented in appendix for completeness but this conversion is not a contribution).

Software in critical systems

Independently from linear programming, this paper focuses on codes performing critical tasks. In such context, the primary target of algorithm implementation is usually the ability to be certified and/or to reuse (as much as possible) standard routines, rather than improving the practical speed of the solver.

Binary vs arithmetic operations

The first issue in this context is numerical stability and/or binary considerations. Indeed, in classical implementations, operations are realized with constant precision e.g. IEEE 754 floating point convention. But, such implementations may have numerical failure: for example if a value is 2 -32767 , the IEEE 754 floating point convention will round it to 0, while, 0 may not be correct. Of course, with strong assumption on the inputs, it is sometimes possible to rely on such a floating point representation safely (e.g. [START_REF] Boldo | Floats and ropes: a case study for formal numerical program verification[END_REF]). But, without any assumption, there is many algorithm where avoiding numerical issue can not be done with such constant representation.

Yet, one solution of this problem is arbitrarily large integer representation: the computation on Q can be arbitrarily precise by representing integers as unbounded sequence of digits and rational as fraction of such integers (other representations may be possible like interval representation [START_REF] Suprajitno | Linear programming with interval arithmetic[END_REF] but they are out of the scope of this paper).

However, under arbitrarily large integer representation, considering that arithmetic operations are single operation (e.g. that matrix inversion can be done in O(M ω ) operations) is only half of the story. Indeed, with such representation, one has to take into account the binary size of intermediate numbers which can grow during the algorithm. For example, Gaussian elimination is a M 3 algorithm when considering arithmetic operations, and, it can be carefully implemented in O(M 3 ). However, if implemented naively, then Gaussian elimination becomes exponential [START_REF] Xin | On the worst-case complexity of integer gaussian elimination[END_REF].

Binary consideration in linear programming

Linear programming does not allow to avoid the previous discussion about binary issues. On one hand, [START_REF] Eric M Feron | Validation of convex optimization algorithms and credible implementation for model predictive control[END_REF][START_REF] Raphael P Cohen | Formal verification and validation of convex optimization algorithms for model predictive control[END_REF] manage to apply formal verification to the ellipsoid algorithm [START_REF] Khachiyan | A polynomial algorithm for linear programming[END_REF] with simple floating point representation using prior on the inputs. This result is important to advances on the application of a linear program solver on a critical task. For example, DO-178 requires that codes in core airplane system should be produced using strict code production process, and, they could ideally be verified using formal tools. But, this result does not hold without strong assumptions on the inputs: in worst cases, numbers encountered in linear program solvers can be large.

On the other hand, most linear programming algorithms can be adapted for arbitrarily large integer representation. But, this comes at the cost of a higher time complexity for [START_REF] Khachiyan | A polynomial algorithm for linear programming[END_REF][START_REF] Nesterov | Interior-point polynomial algorithms in convex programming[END_REF] and/or the requirement for custom linear algebra routine for [START_REF] Renegar | A polynomial-time algorithm, based on newton's method, for linear programming[END_REF] and/or some custom data-structure for [START_REF] Van Den | A deterministic linear program solver in current matrix multiplication time[END_REF].

Contribution: dealing with binary issue with standard routines

The previous problem of dealing with binary considerations is just one of all the requirements for implementation on critical platform. Another one is to rely on standard routines and/or with the simplest possible algorithm. This explains why there is still research on old algorithm like the ellipsoid method [START_REF] Eric M Feron | Validation of convex optimization algorithms and credible implementation for model predictive control[END_REF][START_REF] Raphael P Cohen | Formal verification and validation of convex optimization algorithms for model predictive control[END_REF]: even if it is the worst polynomial time algorithm for linear programming, it has some good features like the fact that it does not require matrix inversion. This also explains why, neither [START_REF] Renegar | A polynomial-time algorithm, based on newton's method, for linear programming[END_REF] nor [START_REF] Van Den | A deterministic linear program solver in current matrix multiplication time[END_REF] are fully satisfying as they require either custom routines or custom data-structure.

In the same way, this paper introduces a new algorithm for linear programming in critical context called self-concordant Perceptron with the following features:

• It can be implemented naively with standard linear algebra routines without damage.

• It performs at most O(M L) steps (i.e. √ M more than [START_REF] Renegar | A polynomial-time algorithm, based on newton's method, for linear programming[END_REF] but much less than the ellipsoid method).

• It deals with strict linear feasibility, but, it is significantly different than [START_REF] Dunagan | A simple polynomial-time rescaling algorithm for solving linear programs[END_REF][START_REF] Peña | A deterministic rescaled perceptron algorithm[END_REF]. Indeed, it deals with strict linear feasibility is a way close to the original Perceptron [START_REF] Rosenblatt | The perceptron: a probabilistic model for information storage and organization in the brain[END_REF].

• It relies on self-concordance theory. But, it relies on the so-called first phase of Newton descent (while [START_REF] Nesterov | Interior-point polynomial algorithms in convex programming[END_REF][START_REF] Renegar | A polynomial-time algorithm, based on newton's method, for linear programming[END_REF] rely on the second phase and on the notion of central-path).

The presented algorithm is not a breakthrough for time complexity theory seeing [START_REF] Renegar | A polynomial-time algorithm, based on newton's method, for linear programming[END_REF][START_REF] Van Den | A deterministic linear program solver in current matrix multiplication time[END_REF]. Also, it is incremental as it relies on the self-concordance theory [START_REF] Nemirovski | Interior point polynomial time methods in convex programming[END_REF]. But, this algorithm should interest safety community and more generally a broader audience as:

• It represents an interesting contribution for critical systems as it performs correctly even under naive implementation.

• It is a non trivial application of the self-concordance theory on a problem taking advantage of strict linear feasibility formulation.

• It is significantly different from [START_REF] Renegar | A polynomial-time algorithm, based on newton's method, for linear programming[END_REF][START_REF] Van Den | A deterministic linear program solver in current matrix multiplication time[END_REF]. For example, strong negative results from [START_REF] Xavier Allamigeon | Log-barrier interior point methods are not strongly polynomial[END_REF] do not directly apply to it.

The algorithm is precisely described in section 2 (with the proof of convergence) after a more detailed presentation of the existing issues with the current state-of-the-art.

1.4 Issues with current state-of-the-art

Ellipsoid method

The ellipsoid method [START_REF] Khachiyan | A polynomial algorithm for linear programming[END_REF][START_REF] Grötschel | The ellipsoid method and its consequences in combinatorial optimization[END_REF] relies on an internal representation x, E initialized as 0, 2 L Diag(1) (where Diag(u) with u a vector is the diagonal square matrix with same size as the vector whose value i, i is u i ) and performs

M 2 L steps 1. find k, A k x -b k < 0 2. x = x -1 M +1 EA T k √ A k EA T k 3. E = M 2 (M +1) 2 (E -2 M +1 A k E T EA T k A k EA T k )
In the original paper, computations are claimed to be safe when numerical error is lower than exp(-10M L). This explains why the complexity of this algorithm is given as O(M 6 L 2 ) [START_REF] Karmarkar | A new polynomial-time algorithm for linear programming[END_REF] while arithmetic complexity is only O(M 4 L) [START_REF] Khachiyan | A polynomial algorithm for linear programming[END_REF].

Classical log barrier

The classical log barrier algorithm [START_REF] Nesterov | Interior-point polynomial algorithms in convex programming[END_REF][START_REF] Erling D Anderson | Implementation of interior-point methods for large scale linear programs[END_REF] 

minimizes the function G(x, µ) = c T x -µ m log(A m x -b m
) by performing Newton descent on x and halving µ:

1. x = x - 1 √ (∇xG) T (∇ 2 x G) -1 (∇xG) (∇ 2 x G) -1 (∇ x G) 2. µ = µ 2 
However, µ = µ 2 is clearly an unacceptable setting from binary point of view as the number of steps is

√ M L in worst cases leading to µ * = 1 2 √ M L µ start .
Currently, it is not clear that there are instances requiring such number of steps, yet [START_REF] Xavier Allamigeon | Log-barrier interior point methods are not strongly polynomial[END_REF] recently proves that with very large L, there exists instances for which more that 2 M steps are required. Anyway, this implies that numbers should be represented with at least O( √ M L) digits leading to some extra factor into complexity.

Path following

The path following algorithm [START_REF] Renegar | A polynomial-time algorithm, based on newton's method, for linear programming[END_REF] has the same arithmetic complexity than [START_REF] Nesterov | Interior-point polynomial algorithms in convex programming[END_REF], but, avoids the issue of the small µ by relying on an updating depending on M on a slightly different function

G(x, µ) = - √ M log(c T x-µ)- m log(A m x-b m ): 1. µ = (1 -1 √ M )µ + 1 √ M (c T x) 2. x = x - 1 √ (∇xG) T (∇ 2 x G) -1 (∇xG) (∇ 2 x G) -1 (∇ x G)
This way, [START_REF] Renegar | A polynomial-time algorithm, based on newton's method, for linear programming[END_REF] proves that linear programming admits a O(M ω √ M L2 ) binary time complexity with arbitrarily large integer representation.

Yet, if one considers the hessian related tom log(A m x -b m ) which will be written H in the following. Then,

H = A T Diag(Ax -b) -2 A or ∀i, j H i,j = m A m,i A m,j (A m x -b m ) 2
and, one could remark that this matrix can have coefficient as small as 2 -O(M L) leading to large numbers when computing the inverse with standard routines.

Currently, the eigen values of this matrix are within [2 -O(L) , 2 O(L) ] making it possible to perform inversion with rounding (as pointed by [START_REF] Renegar | A polynomial-time algorithm, based on newton's method, for linear programming[END_REF]). But, this may require custom matrix inversion routines.

Overview

To finish this overview of the state-of-the-art, the Chubanov algorithm [START_REF] Chubanov | A polynomial projection algorithm for linear feasibility problems[END_REF] contains an halving operation A T k = 1 2 × A T k (like the µ of the classical log barrier) which is a binary issue as the number of steps is M L. The situation is the same for the Rescaling Phase of [START_REF] Peña | A deterministic rescaled perceptron algorithm[END_REF]. Finally, [START_REF] Van Den | A deterministic linear program solver in current matrix multiplication time[END_REF] has the best time complexity 2 nowadays, but it structurally requires a very specific data structure.

Instead, this paper introduces a new algorithm related to interior point algorithms but with some differences which make the algorithm more stable under a naive implementation. This discussion is summarized in table 1.

Algorithm

Complexity Issues for critical implementation Ellipsoid method ( [START_REF] Khachiyan | A polynomial algorithm for linear programming[END_REF]) [START_REF] Renegar | A polynomial-time algorithm, based on newton's method, for linear programming[END_REF] with data structure ( [START_REF] Van Den | A deterministic linear program solver in current matrix multiplication time[END_REF])

O(M 4 L) M L precision Deterministic rescaling ([18]) O(M 3 √ M L) M L halving Chubanov method ([6]) O(M ω M L) M L halving Classical log barrier ([17]) O(M ω √ M L) √ M L halving Path following ([20]) O(M ω √ M L) custom matrix inversion
O(M ω L) custom data-structure this paper O(M ω M L) none of the above
Table 1: Issues which can be encountered for different algorithms from the state-of-the-art when implementing them on a critical plateform: most issues are related to binary complexity but it can be about the requirement for custom matrix inversion routines (while relying of standard routines could be prefered).

The self-concordant Perceptron

The algorithm introduced by this paper is called the self-concordant Perceptron (as it is a smoothed version of the original Perceptron). It is presented in table 2. The algorithm is a Newton descent on

F A (v) = 1 2 v T AA T v - m∈{1,...,M } log(v m ) (3) starting from 1 Υ A 1 with Υ A = max m A m A T m . An additional 1D operation v ← M v T AA T v v
and, a ceiling is performed at each step. To be completely exhaustive, operations like √ v T AA T v are not possible on Q (the major relevance of this algorithm is to tackle binary issues). Fortunately, the function being convex, trivial 2-approximations will be sufficient to ensure convergence:

• v T AA T v = M is replaced by v T AA T v ≤ 4M • Computing λ 2 F A = (∇ v F A ) T (∇ 2 v F A ) -1 (∇ v F A ) is possible, and, thus com- puting a 2 approximation of λ F A is trivial (currently, λ F A is lower than 1 in practice, so just considering the damped update v ← v-1 2 (∇ 2 v F A ) -1 (∇ v F A ) is almost always sufficient).
Index A for F, Υ, Γ will be omitted when not ambiguous.

Pre-requite of the proof

self-concordant theory: The proof of the central theorem of self-concordant theory presented bellow can be found in [START_REF] Nemirovski | Interior point polynomial time methods in convex programming[END_REF]. If Ψ(x) is a self-concordant function (mainly any sum of quadratic, linear, constant and -log term), with a minimum Ψ * , then, the Newton descent starting from x start allows to compute x ϵ such as Ψ(x ϵ ) -

Ψ * ≤ ε in O(Ψ(x start ) -Ψ * + log log( 1 ε
)) damped Newton steps. Each step is:

• λ Ψ (x) ← (∇ x Ψ) T (∇ 2 x Ψ) -1 (∇ x Ψ) • x ← x - 1 1+λΨ(x) (∇ 2 x Ψ) -1 (∇ x Ψ)
Importantly, this descent has 2 so-called phases:

• While λ Ψ (x) ≥ 1 4
, each damped Newton step decreases Ψ of at least . This so-called first phase can not last more than 50 × (Ψ(x start ) -Ψ * ) damped Newton steps.

• As soon as one has computed any x phase with λ Ψ (x phase ) ≤ 1 4 , then, only O(log log( 1 ε )) additional steps are required to get x ϵ such as Ψ(x ϵ ) -Ψ * ≤ ε. This is the so-called second phase with quadratic convergence (i.e. log log(ε) steps lead to a precision ϵ). Importantly,

λ Ψ (x phase ) ≤ 1 4 ⇒ Ψ(x phase ) -Ψ * ≤ 1 4 .

An overview of the key mechanisms of the self-concordant Perceptron

Self concordant Perceptron(A)

F being symbolically 1 2 v T AA T v - m log(v m ) Υ ← max m A m A T m v ← 1 Υ 1 ; Γ ← 1000M √ M Υ while ¬(AA T v > 0) do v ← v - 1 1+λ F (v) (∇ 2 v F ) -1 (∇ v F ) if λ F (v) ≥ 1 4 then v ← M v T AA T v v v ← 1 Γ × int(Γ × v + 1) end if end while return v Table 2: self-concordant Perceptron algorithm.

Ideas behind the Newton descent:

Considering the self-concordant algorithm from table 2, the main mechanism behind the proof is that the Newton descent applied to the function F will always decrease F by at least 1/50 (as the optimization takes place in the socalled first phase see 2.1).

Indeed, the Newton descent allows to go from a function with multiple variables

F (x) to a 1D function ρ(t) = F (x -t(∇ 2 v F ) -1 (∇ v F )). Now, ρ(t) = α t 2 2 + βt - m log(a m t + 1
) by definition of F , and, ρ ′ (t) = -ρ ′′ (t) = -λ 2 as a property of the Newton direction. Then, by applying Taylor extension to ρ, one has

∀t ≥ 0, ∃τ ∈ [0, t], ρ(t) = tρ ′ (0) + t 2 2 ρ ′′ (τ ) = -tλ 2 + t 2 2 (α + m a 2 m (amτ +1) 2 ). As, ρ ′′ (0) = λ 2 implies that |a m | < λ, it comes that ρ(t) ≤ -tλ 2 + t 2 2 (α + m a 2 m (1-λτ ) 2 ) ≤ -tλ 2 + t 2 2 a+ m a 2 m (1-λt) 2 ≤ -tλ 2 + t 2 2 λ 2
(1-λt) 2 . Then, independently from the matrix A, a lower bound of the improvement only based on λ can be found as

ρ(t) ≤ -tλ 2 + t 2 2 λ 2
(1-λt) 2 which is higher than 1/4 (otherwise the optimization enters the so-called second phase see 2.1). This way, an absolute-constant-and-simple decrease for each Newton step is obtained. This is the core of the proof: with such property, it is possible to design a simple strategy to deal with binary properties without requiring specific routines to perform the Newton step.

The other important point is that computing the inverse of AA T +Diag(v) -2 can be simpler than the one of A T Diag(Ax -b) -2 A. Indeed, in the first case, multiplying by Diag(v) 2 allows to restore an integer matrix, while, it is required to multiply by the product of M numerators from Ax -b in the second case.

Those ideas are formally proven bellow.

Structure of the proof:

First, a set of lemmas will allow to find the correct values to apply the selfconcordant theory to function F A . This will lead to the theorem 1. Yet, without rounding, naive Newton descent has an exponential binary complexity like naive Gaussian elimination. But, theorem 2 will provide a bound on the effect of a ceiling on F (v).

By combining the arithmetic property of Newton descent, and the bound on the ceiling, the theorem 3 will state the complexity of the self-concordant Perceptron. Precisely,

• Lemma 4 requires lemma 3 which requires lemma 2.

• Lemmas 1 and 5 are independent from those ones.

• Then, lemma 6 requires lemma 5.

• Then, theorem 1 requires lemmas 1, 4 and 6.

• Theorem 2 is independent.

• Finally, theorem 3 combines theorems 1 and 2 (and lemma 5). 2 2 , and, thus,

Proof

Lemma 1: ∀A ∈ Q M ×N , x ∈ Q N such that Ax ≥ 1, and, v ≥ 0, then, ||v|| 2 2 ||x|| 2 2 ≤ ||A T v||
||A T v|| 2 2 ≤ 4M ⇒ v ≤ 2 √ M ||x|| 2 × 1
Proof. Cauchy inequality applied to x T (A T v) gives:

x T (A T v) ≤ ||x|| 2 ×||A T v|| 2 . But, x T (A T v) = (Ax) T v ≥ 1 T v as v ≥ 0 and Ax ≥ 1. Thus, 1 T v ≤ ||x|| 2 × ||A T v|| 2 .
As each side is positive, one could take the square (and push ||x|| 2 to the left), this gives 

(1 T v) 2 ||x|| 2 2 ≤ ||A T v|| 2 2 . Yet, as v ≥ 0, v T v ≤ (1 T v) 2 . Second part is just injection of ||A T v|| 2 2 ≤ 4M . Lemma 2: Let f (t) = 1 2||x|| 2 2 t 2 -log(t) with any vector x with ||x|| 2 ≥ 1, then, f is lower bounded with a minimum f * = 1-log(||x||2) 2 ≥ -log(||x|| 2 ). Proof. f is a continuous function from ]0, ∞[ to R. f (t) → t→0 ∞ due
* = f (||x|| 2 ).
Importantly, it is assumed in linear feasible that X A ̸ = ∅ . So this assumption will be omitted in all following lemmas/theorems.

Lemma 3: F A is lower bounded and F *

A ≥ -M log(||x|| 2 ) (for any x such that Ax ≥ 1).

Proof. As X A ̸ = ∅, then, ∃x, Ax ≥ 1. But, following lemma 1, it holds that

F A (v) ≥ v T v 2x T x - m log(v m ) = m f (v m ) (with the function f introduced in lemma 2). So, F A (v) ≥ m f * ≥ -M log(||x|| 2 ) following lemma 2. Finally, as for all m, F A (v) ≥ f (v m ) + (M -1)f * and f (t) → ∞ in 0 or ∞, then, it means
F can not admit an infimum on the border of ]0, ∞[ M . So the property of being lower bounded (by M f * ) without infimum at the border implies that F A has a minimum F * A , and so

F * A ≥ M f * . Lemma 4: F A (v) -F * A ≤ min m 1 v 2 m AmA T m +1 ⇒ AA T v > 0
Proof. Let assume that there exists k such as A k A T v ≤ 0, and, let introduce

w = v + t1 k i.e. w m = v m if m ̸ = k and w k = v k + t. F A (w k ) = 1 2 (v + t1 k ) T AA T (v + t1 k ) - m log(v m ) + log(v k ) -log(v k + t) = F A (v) + tA k A T v + 1 2 t 2 A k A T k -log(v k + t) + log(v k ). But, A k A T v ≤ 0, so F A (w k ) ≤ F A (v) + 1 2 t 2 A k A T k -log(v k + t) + log(v k ), and, it is clear that for 0 ≤ t ≪ 1, F A (w k ) < F A (v) (because this is -log(v k + t) at first order).
Precisely, one could define

Φ(t) = F A (v) + 1 2 t 2 A k A T k -log(v k + t) + log(v k ). Then, Φ ′ (t) = A k A T k t-1 t+v k and Φ ′′ (t) = A k A T k + 1 (t+v k ) 2 and Φ ′′′ (t) = -2 (t+v k ) 3 . As, Φ ′′′ (t) ≤ 0 and t ≥ 0, Φ(t) ≤ Φ(0) + tΦ ′ (0) + t 2 2 Φ ′′ (0) i.e. Φ(t) ≤ - t v k + t 2 2 (A k A T k + 1 v 2 k )
In particular, for t =

v k v 2 k ×A k A T k +1 , F A (w) ≤ F A (v) -1 2 1 v 2 k ×A k A T k +1 . But, this is not possible if F A (v) is closer than F *
A by this value.

Lemma 5:

F A ( M v T AA T v × v) ≤ F A (v), and, F A (v) -F * ≤ 1 16 ⇒ v T AA T v ≤ 4M . Proof. Considering the function t → F A (t × v) = 1 2 v T AA T v × t 2 - m log(v m ) - M log(t) trivially proves that F A (v) decreases when v is normalized such as v T AA T v goes closer to M . In particular, if v T AA T v ≥ 4M , then, v ← v 2 allows to decrease F by 3M -M log(2) ≥ 1 16
. So, this is not possible if F (v) -F * is lower than this value.

Lemma 6:

F A (v) -F * A ≤ min( 1 4M x T xΥ 2 + 1 , 1 16 
)

⇒ AA T v > 0 Proof. Lemma 5 proves that v T AA T v ≤ M (because F A (v) -F * A ≤ 1 16
). Then, this is just lemma 4 combined with v ≤ √ 2||x|| 2 1 from lemma 1 (as

A m A T m ≤ Γ 2 by definition).
Theorem 1: Damped Newton descent on F A starting from any v start will terminate eventually returning v such that AA T v > 0 at least when

F A (v)-F * A ≤ min( 1 4M x T xΥ 2 +1 , 1 16 
). And this will not require more than O(F A (v start ) -F * + log log(4M x T xΥ 2 + 1)) Newton steps. In particular, from v = 1 Υ × 1, this will require no more than O(M L) Newton steps in the so-called first phase, and, only O(log(L)) in the so-called second phase are required to terminate.

Proof. The first part of this theorem is just the self-concordant theory applied to

F A with ε = min( 1 4M x T xΥ 2 +1 , 1 16 
). This holds because F A has a minimum as proven in lemma 3 because X A ̸ = ∅ (this last assumption X A ̸ = ∅ is critical otherwise F can goes to -∞). Yet, this ε value leads to a solution of the original linear feasibility problem from lemma 6. The second point is based on the classical results that the maximal norm of a vector defined by a linear system of total binary size L is O(L). Thus, log(x T x) = O(L) as if X A ̸ = ∅, then, there exists x entirely defined by a submatrix of A in X A . Then,

F ( 1 Υ 1) ≤ M 2 -M log(Υ) = O(M L
) (Cauchy for the quadratic term and definition of L for log(Υ) ≤ L), and, -F * ≤ M log(x T x) = O(M L) due to lemma 2. So, the so-called first phase lasts no more than O(M L) steps. Then, the so-called second phase lasts only O(log log(4M x T xΥ 2 + 1)) which is just log(L) steps (definition of L + bound on x + lemma 2).

Remark: At this point, it is proven that Newton descent on F converges. But Newton descent without dealing with binary size of the variable is exponential like naive Gaussian elimination. Yet, the self-concordant Perceptron is a Newton descent with a simple strategy to deal with variable binary size. This last point is proven in next theorems. Theorem 2: Assume that v T AA T v ≤ 4M , then:

∀ϖ ∈ 0, 1 Γ A M , F (v + ϖ) ≤ F (v) + 1 200
In particular, ∀v,

F    int(Γ A ×v1)+1 Γ A ... int(Γ A ×v M )+1 Γ A    ≤ F (v) + 1 200
Proof. First, the log part only decreases when adding ϖ ≥ 0, thus, only the quadratic part should be considered. So

F (v + ϖ) ≤ F (v) + 1 2 ϖ T AA T ϖ + ϖ T AA T v. But, A T ϖ = m ϖ m A T m so ||A T ϖ|| ≤ m ϖ m ||A T m || ≤ ||ϖ|| ∞ M Υ ≤ 1 500 √ M , and ||A T ϖ|| 2 2 = ϖ T AA T ϖ ≤ 1 (1000) 2 M . So, ϖ T AA T v ≤ √ ϖ T AA T ϖ × v T AA T v ≤ 1 (500) 2 M × 4M ≤ 1 250 (from Cauchy). And, 1 2 ϖ T AA T ϖ ≤ 1 2×(1000) 2 M ≤ 50 1000 . Thus, it holds that F (v + ϖ) ≤ F (v) + 1 200 . Then, int(t) + 1 is a special case of t + τ, τ ∈ [0, 1], so the presented rounding scheme correspond to add ϖ ∈ 0, 1 Γ A M .

Theorem 3:

The self-concordant Perceptron described in table 2 always terminates in less than O(M L) steps eventually returning v such that AA T v > 0. During (almost) all the algorithm, all values of v have a common denominator of Γ, and, all numerators are bounded by 2 O(L) . Finally, this is done by computing the inverse of ∇ 2 v F = AA T + Diag(v) -2 . For that, this matrix should be scaled to H = Γ 2 (Diag(v)AA T Diag(v) + I) to recover integer values before inversion. Yet, H has the interesting property that ∀i, j H i,j ≤ 2 O(L) without requiring any kind of rounding.

Proof. The self-concordant Perceptron described in table 2 is a Newton descent upgraded with a scaling and a ceiling. But, the theorem 1 proves that the Newton descent alone converges and decreases F by at least 1 50 each steps. Then, the scaling will not increase F (this is lemma 5), but, will ensure v T AA T v ≤ 4M . Thus, the theorem 2 holds and proves that the ceiling will not increase F by more than 1 200 . So, each step of self-concordant Perceptron decreases F by 1 50 -0-1 200 (effect of a single Newton step -scaling -ceiling) i.e. there is still a constant decrease of F during all the so-called first phase. So it will terminate with only twice number of steps.

So, the self-concordant Perceptron (with mastered binary size) converges with the same number of steps (in big-O) than the Newton descent (which is naively exponential form binary point of view).

This proves the first part. Then, the second part of the theorem is directly implied by the first (and lemma 6) because that H = Γ 2 (Diag(v)AA T Diag(v) + I) is an integer matrix with values bounded by 2 O(L) (it is true for ΓDiag(v) and A, and, not modified by product as, numerators are bounded by 2

√ M x T xΓ which is O(2 L )).
remark: During all the algorithm v T AA T v ≤ 4M . Indeed, during the socalled first phase this is due to the integer scaling of v (this scaling decreases F ) to allow an easy rounding. And, during the second phase this holds naturally (without the need of a scaling) and ensures the convergence of the algorithm. So this property is usefull for two different reasons. Also, the so-called second phase is negligible with only O(log(L)) step explaining why ceiling can be deactivated during this phase.

Conclusion

This paper introduces the self-concordant Perceptron which converges in O(M L) steps, with a common denominator and all numerators of it internal values v requiring only L digits each. In addition, each step is mainly the inversion of H = Γ 2 (Diag(v)AA T Diag(v) + I) which is a not singular integer matrix with each coefficient bounded by 2 O(L) , while, the classical constraint matrix H = A T Diag(Ax -b) -2 A naively requires M L digits per value. Thus, even if this algorithm does not compete against [START_REF] Van Den | A deterministic linear program solver in current matrix multiplication time[END_REF] in general, it can be relevant for critical contexts as it is simpler to implement (using any pre-existing linear algebra routines) with still good times complexity.
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The interest of this second primal dual is that is will always be feasible because the new primal (which is the first primal dual) is feasible and bounded. So, any admissible point of this always-feasible-second-primal-dual will give a solution of the first one.

Then, one can form min χ,τ,A2χ+τ ≥β2,τ ≥0

τ by adding again a constraint and a variable to the second primal dual. Why someone should do that ? Because this last problem is feasible, bounded and the optimal solution is known to be 0. And, again it is possible to recover solution from the original problem while the total binary size and the shape are still equivalent to the initial ones.

Jumping to strict linear inequality set

So, one has computed a new problem min χ,τ,A2χ+τ ≥β2,τ ≥0

τ equivalent to the original instance but which is always feasible, bounded and with optimal value 0. Now, the key idea is to consider the set of strict linear inequality constraints

A 2 χ + τ > β 2 , τ > 0, -2 O(L) × τ > -1 with the 2 O(L) being higher than Det(A 2 ) + 1 written as A 3 χ > β 3 .
This last problem has necessarily a solution because min χ,τ,A2χ+τ ≥β2,τ ≥0

τ is feasible with optimal solution 0, i.e. there exists x * , τ * with τ * = 0. So, just considering x = x * and τ = 2 -(O(L)+1) gives a solution to the set of strict linear inequality constraints. Also, the total binary size and the shape are still equivalent to the initial ones. Indeed, a 2 O(L) coefficient is added, but, the binary size of this coefficient is just O(L) so the total binary size just goes from O(L) to O(L)+O(L) = O(L).

Post-processing any solution of the strict linear inequality constraint A 3 χ > β 3 to recover the ones of min χ,τ,A2χ+τ ≥β2,τ ≥0

τ is tackled after the final transformation.

Enforcing homogeneity

At this point, one wants to solve a problem A 3 χ > β 3 which is directly equivalent to A 3 x -β 3 t > 0, t > 0. Indeed, let consider x, t such that A 3 x -β 3 t > 0, t > 0 a fortiori t ̸ = 0 and t ≥ 0, so A 3

x t -β 3 t t > 0 i.e. A 3 x t > β 3 .
Inversely, if χ is a solution of the first, x = χ, τ = 1 is a solution of the second (and again, the sizes are equivalent).

Purifying solution of strict linear feasibility

The only missing step in the pipeline is how one can retrieve the optimal solution (known to have τ = 0) of min

χ,τ,A2χ+τ ≥β2,τ ≥0 τ from a solution of A 2 χ+τ > β 2 , τ > 0, -2 O(L) × τ > -1. Let consider χ, τ such as A 2 χ + τ > β 2 , τ > 0, -2 O(L) × τ > -1. Let I = {i, A 2 χ + τ = β 2 }, J = {j, χ j = 0}.
If, there is ω, A 2,I ω = 1, ω J = 0, then, one can update χ = χ + tω, τ = τ -t while maintaining A 2,I χ + τ = β 2 , χ J = 0 and also A 2 χ + τ ≥ β 2 until t increases such that a new constraint enters into I or a new component becomes 0 (i.e. a component enters in J).

But, I, J increase as sets, so this process can not last more than 2M steps. At the end, A 2 χ + τ ≥ β 2 , and the system A 2,I χ + τ = β 2 , χ J = 0 define an unique χ, τ i.e. χ, τ are defined by the linear system A 2,I χ = β 2 , χ J = 0.

In particular, τ can be written as a fraction of determinant extracted from A 2 (due to Cramer rules) i.e. either τ = 0 or τ ≥ 1 Det(A2) . But, this last option is impossible, because, τ has decreased during the purification, and thus, it verifies

-2 O(L) × τ > -1 i.e. τ ≤ 1 2 O(L) ≤ 1 
Det(A2) . So, in this particular case (because, it starts from a point very close to the optimum), the greedy purification leads to a solution with at most M matrix inversions i.e. M M ω L binary operations (this is a matrix extracted from A so this is the correct binary complexity).

Importantly, let stress that in A 2 there is no additional term in 2 O(L) which appears only in A 3 . So, the purification only consider a submatrix extracted from A 2 and not from A 3 so there is no issue with a determinant which will become larger due to the additional term 2 O(L) .

Finally the complete process first builds a linear program with good assumption (feasible, bounded, with known optimal value of 0) thanks to 2 primal dual steps, then, it builds a strict linear feasibility instance (knowing that greedy purification of any solution of this last problem will allow to recover a solution of the original linear program). As pointed the number of variables and constraints is not scaled by more than 16 and the total binary size not scaled by more than 4. So, strict linear feasibility (with assumption of a solution) is correctly equivalent to linear programming.

Final overview

A summary of the discussion of the equivalence of linear programming and strict linear feasibility is presented with pseudo-code. Assume algo 1 (A) takes A and returns one x such as Ax > 0 if one exists, then: x ← (χ m ) m∈{1,...,M } , t ← χ M +1 return x, t takes A, b returns one x, t such that t > 0 means that there is no Ax ≥ b, and, t = 0 means that Ax ≥ b. 

1 4 -

 4 log( 5 4 ) ≥ 1 50

algo 2 (

 2 A, b) xt ← algo 1 A -b 0 1 return (xt n) n∈{1,...,N } /xt N +1 takes A,b and returns one x with Ax > b if one exists.

algo 3 ( 2 , t 2 ←

 322 A, b) Γ ← Hadamard bound on A xt = algo 2 (xt n) n∈{1,...,N } /xt N +1 S ← {m, A m x 2 + t 2 = b m } while ∃χ, A S χ = 1 do x 2 ← x 2 + λχ , t 2 ← x 2 -λ with λ maximal such that Ax 2 + t 2 1 ≥ b S ← {m, A m x 2 + t 2 = b m } end while returnx 2 takes A, b and returns one x with Ax ≥ b if one exists.

algo 4 (

 4 A dual , b dual , c dual with duality theory χ ← algo 3

algo 5 (

 5 A, b, c) compute A dual , b dual , c dual with duality theory x, t ← algo 4 (A, b) y, τ ← algo 4 (A dual , b dual ) if t > 0 or τ > 0 then return infeasible (t > 0) or unbounded (τ > 0) else χ ← algo 3 (χ m ) m∈{1,...,M } end if is a standard linear programming solver.

( O(.) notation will be used instead of O(.) to express the fact that log factors are omitted e.g. O(M log(M )) = O(M )).

It also performs O( √ M L) steps, yet, the average complexity of each step is better.

APPENDIX Reduction to linear feasibility

This paper deals with strict linear feasibility instead of linear programming for convenience but both are known to be equivalent. This appendix details the conversion between them. But this is definitely not a contribution of the paper.

Let min

x,Ax≥b c T x be a linear program with total binary size L and M constraints, N = O(M ) variables, but, without any assumption: it can be unbounded and/or infeasible and c can be 0 (when it is just a problem of satisfying constraints).

Primal dual

First, primal dual theorem [START_REF] Hiriart-Urruty | Fundamentals of convex analysis[END_REF] proves that: min χ,Aχ≥b c T χ is bounded and feasible if and only if there exist x, y such as:

and, in this case x is the optimal solution of the input linear program. So, one is able to either solve the input linear program or finding a certificate, by solving and,

Let stress that the total binary size and the shape of A 1 are equivalent to the ones of A.

Ensuring a solution

This new problem A 1 χ ≥ β 1 will provide either a solution to the original one or it is not feasible and this is a certificate. Now, as being sure to deal with a bounded-and-feasible problem can be convenient, one could form: min

τ which is bounded (τ ≥ 0) and always feasible (a trivial initialization is χ = 0 and τ ≫ 1). Indeed, solving this bounded-and-feasible problem will give a solution of

Let stress that the total binary size and the shape of this problem (just an additional variable and constraint) are still equivalent to the ones of A.

Primal dual again

Then, one can form the primal dual written A 2 χ ≥ β 2 of this last problem min χ,τ,A1χ+τ ≥β1,τ ≥0

τ .