
HAL Id: hal-00722920
https://hal.science/hal-00722920v38

Submitted on 16 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A New Algorithm for Linear Programming in Critical
Systems

Adrien Chan-Hon-Tong

To cite this version:
Adrien Chan-Hon-Tong. A New Algorithm for Linear Programming in Critical Systems. SN Computer
Science, 2022, 4, pp.76. �hal-00722920v38�

https://hal.science/hal-00722920v38
https://hal.archives-ouvertes.fr

A new algorithm for linear programming in

critical systems

Adrien CHAN-HON-TONG
ONERA Université Paris Saclay, 91140, France

January 16, 2023

Abstract
In critical systems (e.g. for core airplane functions), codes should both

never fail, in particular they should be robust to numerical instabilities, and,
they should reuse certified routines.

Yet, the combination of this two constraints is often an issue. For example,
the interior-point algorithms for linear programming have higher complexity
than expected when requiring simultaneously numerical robustness and no cus-
tom routines.

Instead, this paper presents a new algorithm, which has good time complex-
ity even with a naive implementation.

Foreword

This paper is an extended version of conference paper [5]. The main difference with [5]
is that the proof is significantly simplified: there is no need to have a distinct part for each
of the two so-called phases of the Newton descent anymore. Also, this paper describes, more
precisely than [5], the interest of the new method to deal with critical systems regarding the
state-of-the-art methods.

Notations

This paper takes advantage of standard matrix notation. In particular, if u, v are 2 vectors
i.e. u, v ∈ RN uT v is the scalar product of the two vectors, because those vectors are seen
like matrices in RN×1, thus, uT is a matrix in R1×N , and thus, the matrix product uT × v
(written uT v) is

∑
n
unvn.

Also, the scalar product of a vector u with itself (i.e. uTu) will be written ||u||22 in this
paper using standard notation for the L2 norm.

1 Introduction

1.1 Linear programming

Linear programming is a central optimization problem which aims at producing
either a solution x or a certificate that the following problem is infeasible or

1

unbounded:
min

x∈QN , Ax≥b
cTx (1)

where A ∈ ZM×N is a matrix and b ∈ ZM , c ∈ ZN are two vectors with M being
the number of constraints/rows of A and N the number of variables/columns
of A. Assuming N = O(M), the state-of-the-art is interior-point algorithms
(e.g.[17, 20, 23]) which solve linear programs with total binary size L in (at

most) Õ(
√
ML) Newton steps1.

Using standard linear algebra routines, one can perform each of those New-
ton step (mainly a matrix inversion) in Õ(Mω) arithmetic operations where ω
is the coefficient of the matrix multiplication (known to be equivalent to the one
of the matrix inversion [19] i.e. 3 with simple algorithm but 2.38 with [2]). Re-
cently, [23] (a deterministic version of [7]) proves that a specific data structure
allows to save a

√
M factor from those specific matrix inversions.

Linear programming is equivalent to strict linear feasibility which aims at
solving

find x ∈ XA = {χ ∈ QN , Aχ > 0} assuming XA ̸= ∅ (2)

where A ∈ ZM×N and 0 is the vector full of 0. The problem is sometimes
presented as finding x such that Ax ≥ 1 (where 1 is the vector full of 1) to
avoid strict inequalities but all those three formulations are equivalent.

The algorithm presented in section 2 will deal with this strict linear feasibility
for convenience without restricting the generality as a pre-processing and a post-
processing allow to deal with general linear programming without higher time
complexity (This is presented in appendix for completeness but this conversion
is not a contribution).

1.2 Software in critical systems

Independently from linear programming, this paper focuses on codes performing
critical tasks. In such context, the primary target of algorithm implementation is
usually the ability to be certified and/or to reuse (as much as possible) standard
routines, rather than improving the practical speed of the solver.

1.2.1 Binary vs arithmetic operations

The first issue in this context is numerical stability and/or binary considerations.
Indeed, in classical implementations, operations are realized with constant pre-
cision e.g. IEEE 754 floating point convention. But, such implementations may
have numerical failure: for example if a value is 2−32767, the IEEE 754 floating
point convention will round it to 0, while, 0 may not be correct. Of course,
with strong assumption on the inputs, it is sometimes possible to rely on such
a floating point representation safely (e.g. [4]). But, without any assumption,

1(Õ(.) notation will be used instead of O(.) to express the fact that log factors are omitted

e.g. O(M log(M)) = Õ(M)).

2

there is many algorithm where avoiding numerical issue can not be done with
such constant representation.

Yet, one solution of this problem is arbitrarily large integer representation:
the computation on Q can be arbitrarily precise by representing integers as
unbounded sequence of digits and rational as fraction of such integers (other
representations may be possible like interval representation [22] but they are
out of the scope of this paper).

However, under arbitrarily large integer representation, considering that
arithmetic operations are single operation (e.g. that matrix inversion can be

done in Õ(Mω) operations) is only half of the story. Indeed, with such repre-
sentation, one has to take into account the binary size of intermediate numbers
which can grow during the algorithm. For example, Gaussian elimination is
a M3 algorithm when considering arithmetic operations, and, it can be care-
fully implemented in O(M3). However, if implemented naively, then Gaussian
elimination becomes exponential [10].

1.2.2 Binary consideration in linear programming

Linear programming does not allow to avoid the previous discussion about bi-
nary issues. On one hand, [11, 8] manage to apply formal verification to the
ellipsoid algorithm [15] with simple floating point representation using prior on
the inputs. This result is important to advances on the application of a linear
program solver on a critical task. For example, DO-178 requires that codes in
core airplane system should be produced using strict code production process,
and, they could ideally be verified using formal tools. But, this result does
not hold without strong assumptions on the inputs: in worst cases, numbers
encountered in linear program solvers can be large.

On the other hand, most linear programming algorithms can be adapted for
arbitrarily large integer representation. But, this comes at the cost of a higher
time complexity for [15, 17] and/or the requirement for custom linear algebra
routine for [20] and/or some custom data-structure for [23].

1.3 Contribution: dealing with binary issue with standard
routines

The previous problem of dealing with binary considerations is just one of all the
requirements for implementation on critical platform. Another one is to rely on
standard routines and/or with the simplest possible algorithm. This explains
why there is still research on old algorithm like the ellipsoid method [11, 8]:
even if it is the worst polynomial time algorithm for linear programming, it has
some good features like the fact that it does not require matrix inversion. This
also explains why, neither [20] nor [23] are fully satisfying as they require either
custom routines or custom data-structure.

In the same way, this paper introduces a new algorithm for linear program-
ming in critical context called self-concordant Perceptron with the following
features:

3

• It can be implemented naively with standard linear algebra routines with-
out damage.

• It performs at most O(ML) steps (i.e.
√
M more than [20] but much less

than the ellipsoid method).

• It deals with strict linear feasibility, but, it is significantly different than
[9, 18]. Indeed, it deals with strict linear feasibility is a way close to the
original Perceptron [21].

• It relies on self-concordance theory. But, it relies on the so-called first
phase of Newton descent (while [17, 20] rely on the second phase and on
the notion of central-path).

The presented algorithm is not a breakthrough for time complexity theory
seeing [20, 23]. Also, it is incremental as it relies on the self-concordance theory
[16]. But, this algorithm should interest safety community and more generally
a broader audience as:

• It represents an interesting contribution for critical systems as it performs
correctly even under naive implementation.

• It is a non trivial application of the self-concordance theory on a problem
taking advantage of strict linear feasibility formulation.

• It is significantly different from [20, 23]. For example, strong negative
results from [1] do not directly apply to it.

The algorithm is precisely described in section 2 (with the proof of conver-
gence) after a more detailed presentation of the existing issues with the current
state-of-the-art.

1.4 Issues with current state-of-the-art

1.4.1 Ellipsoid method

The ellipsoid method [15, 12] relies on an internal representation x,E initialized
as 0, 2LDiag(1) (where Diag(u) with u a vector is the diagonal square matrix
with same size as the vector whose value i, i is ui) and performs M2L steps

1. find k, Akx− bk < 0

2. x = x− 1
M+1

EAT
k√

AkEAT
k

3. E = M2

(M+1)2 (E −
2

M+1
AkE

TEAT
k

AkEAT
k

)

In the original paper, computations are claimed to be safe when numerical error
is lower than exp(−10ML). This explains why the complexity of this algorithm
is given as O(M6L2) [14] while arithmetic complexity is only O(M4L) [15].

4

1.4.2 Classical log barrier

The classical log barrier algorithm [17, 3] minimizes the function G(x, µ) =
cTx− µ

∑
m

log(Amx− bm) by performing Newton descent on x and halving µ:

1. x = x− 1√
(∇xG)T (∇2

xG)−1(∇xG)
(∇2

xG)−1(∇xG)

2. µ = µ
2

However, µ = µ
2 is clearly an unacceptable setting from binary point of

view as the number of steps is
√
ML in worst cases leading to µ∗ = 1

2
√

ML
µstart.

Currently, it is not clear that there are instances requiring such number of steps,
yet [1] recently proves that with very large L, there exists instances for which
more that 2M steps are required. Anyway, this implies that numbers should
be represented with at least O(

√
ML) digits leading to some extra factor into

complexity.

1.4.3 Path following

The path following algorithm [20] has the same arithmetic complexity than [17],
but, avoids the issue of the small µ by relying on an updating depending on M
on a slightly different function G(x, µ) = −

√
M log(cTx−µ)−

∑
m

log(Amx−bm):

1. µ = (1− 1√
M
)µ+ 1√

M
(cTx)

2. x = x− 1√
(∇xG)T (∇2

xG)−1(∇xG)
(∇2

xG)−1(∇xG)

This way, [20] proves that linear programming admits a O(Mω
√
ML2) bi-

nary time complexity with arbitrarily large integer representation.
Yet, if one considers the hessian related to −

∑
m

log(Amx − bm) which will

be written H in the following. Then, H = ATDiag(Ax− b)−2A or

∀i, j Hi,j =
∑
m

Am,iAm,j

(Amx− bm)2

and, one could remark that this matrix can have coefficient as small as 2−O(ML)

leading to large numbers when computing the inverse with standard routines.
Currently, the eigen values of this matrix are within [2−O(L), 2O(L)] making

it possible to perform inversion with rounding (as pointed by [20]). But, this
may require custom matrix inversion routines.

1.5 Overview

To finish this overview of the state-of-the-art, the Chubanov algorithm [6] con-
tains an halving operation AT

k = 1
2 ×AT

k (like the µ of the classical log barrier)
which is a binary issue as the number of steps is ML. The situation is the same
for the Rescaling Phase of [18]. Finally, [23] has the best time complexity2

2It also performs O(
√
ML) steps, yet, the average complexity of each step is better.

5

nowadays, but it structurally requires a very specific data structure.
Instead, this paper introduces a new algorithm related to interior point algo-

rithms but with some differences which make the algorithm more stable under
a naive implementation. This discussion is summarized in table 1.

Algorithm Complexity Issues for critical implementation

Ellipsoid method ([15]) Õ(M4L) ML precision

Deterministic rescaling ([18]) Õ(M3
√
ML) ML halving

Chubanov method ([6]) Õ(MωML) ML halving

Classical log barrier ([17]) Õ(Mω
√
ML)

√
ML halving

Path following ([20]) Õ(Mω
√
ML) custom matrix inversion

[20] with data structure ([23]) Õ(MωL) custom data-structure

this paper Õ(MωML) none of the above

Table 1: Issues which can be encountered for different algorithms from the
state-of-the-art when implementing them on a critical plateform: most issues
are related to binary complexity but it can be about the requirement for custom
matrix inversion routines (while relying of standard routines could be prefered).

2 The self-concordant Perceptron

The algorithm introduced by this paper is called the self-concordant Perceptron
(as it is a smoothed version of the original Perceptron). It is presented in table
2. The algorithm is a Newton descent on

FA(v) =
1

2
vTAAT v −

∑
m∈{1,...,M}

log(vm) (3)

starting from 1
ΥA

1 with ΥA =
√

max
m

AmAT
m. An additional 1D operation

v ←
√

M
vTAAT v

v and, a ceiling is performed at each step.

To be completely exhaustive, operations like
√
vTAAT v are not possible on

Q (the major relevance of this algorithm is to tackle binary issues). Fortunately,
the function being convex, trivial 2-approximations will be sufficient to ensure
convergence:

• vTAAT v = M is replaced by vTAAT v ≤ 4M

• Computing λ2
FA

= (∇vFA)
T (∇2

vFA)
−1(∇vFA) is possible, and, thus com-

puting a 2 approximation of λFA
is trivial (currently, λFA

is lower than 1 in
practice, so just considering the damped update v ← v− 1

2 (∇
2
vFA)

−1(∇vFA)
is almost always sufficient).

Index A for F,Υ,Γ will be omitted when not ambiguous.

6

2.1 Pre-requite of the proof

self-concordant theory: The proof of the central theorem of self-concordant
theory presented bellow can be found in [16].
If Ψ(x) is a self-concordant function (mainly any sum of quadratic, linear, con-
stant and − log term), with a minimum Ψ∗, then, the Newton descent starting

from xstart allows to compute xϵ such as Ψ(xϵ)−Ψ∗ ≤ ε in Õ(Ψ(xstart)−Ψ∗ +
log log(1ε)) damped Newton steps. Each step is:

• λΨ(x)←
√
(∇xΨ)T (∇2

xΨ)−1(∇xΨ)

• x← x− 1
1+λΨ(x) (∇

2
xΨ)−1(∇xΨ)

Importantly, this descent has 2 so-called phases:

• While λΨ(x) ≥ 1
4 , each damped Newton step decreases Ψ of at least

1
4 − log(54) ≥

1
50 . This so-called first phase can not last more than 50 ×

(Ψ(xstart)−Ψ∗) damped Newton steps.

• As soon as one has computed any xphase with λΨ(xphase) ≤ 1
4 , then, only

Õ(log log(1ε)) additional steps are required to get xϵ such as Ψ(xϵ)−Ψ∗ ≤
ε. This is the so-called second phase with quadratic convergence (i.e.
log log(ε) steps lead to a precision ϵ). Importantly, λΨ(xphase) ≤ 1

4 ⇒
Ψ(xphase)−Ψ∗ ≤ 1

4 .

2.2 An overview of the key mechanisms of the self-concordant
Perceptron

Self concordant Perceptron(A)

F being symbolically 1
2v

TAAT v −
∑
m

log(vm)

Υ←
√
max
m

AmAT
m

v ← 1
Υ1 ; Γ← 1000M

√
MΥ

while ¬(AAT v > 0) do
v ← v − 1

1+λF (v) (∇
2
vF)−1(∇vF)

if λF (v) ≥ 1
4 then

v ←
√

M
vTAAT v

v

v ← 1
Γ × int(Γ× v + 1)

end if
end while
return v

Table 2: self-concordant Perceptron algorithm.

7

2.2.1 Ideas behind the Newton descent:

Considering the self-concordant algorithm from table 2, the main mechanism
behind the proof is that the Newton descent applied to the function F will
always decrease F by at least 1/50 (as the optimization takes place in the so-
called first phase see 2.1).

Indeed, the Newton descent allows to go from a function with multiple vari-
ables F (x) to a 1D function ρ(t) = F (x − t(∇2

vF)−1(∇vF)). Now, ρ(t) =

α t2

2 + βt −
∑
m

log(amt + 1) by definition of F , and, ρ′(t) = −ρ′′(t) = −λ2 as a

property of the Newton direction.
Then, by applying Taylor extension to ρ, one has ∀t ≥ 0, ∃τ ∈ [0, t], ρ(t) =

tρ′(0) + t2

2 ρ
′′(τ) = −tλ2 + t2

2 (α +
∑
m

a2
m

(amτ+1)2). As, ρ′′(0) = λ2 implies that

|am| < λ, it comes that ρ(t) ≤ −tλ2 + t2

2 (α+
∑
m

a2
m

(1−λτ)2) ≤ −tλ
2 + t2

2

a+
∑
m

a2
m

(1−λt)2 ≤

−tλ2 + t2

2
λ2

(1−λt)2 .

Then, independently from the matrix A, a lower bound of the improvement

only based on λ can be found as ρ(t) ≤ −tλ2 + t2

2
λ2

(1−λt)2 which is higher than

1/4 (otherwise the optimization enters the so-called second phase see 2.1). This
way, an absolute-constant-and-simple decrease for each Newton step is obtained.
This is the core of the proof: with such property, it is possible to design a simple
strategy to deal with binary properties without requiring specific routines to
perform the Newton step.

The other important point is that computing the inverse of AAT+Diag(v)−2

can be simpler than the one of ATDiag(Ax − b)−2A. Indeed, in the first case,
multiplying by Diag(v)2 allows to restore an integer matrix, while, it is required
to multiply by the product of M numerators from Ax− b in the second case.

Those ideas are formally proven bellow.

2.2.2 Structure of the proof:

First, a set of lemmas will allow to find the correct values to apply the self-
concordant theory to function FA. This will lead to the theorem 1.

Yet, without rounding, naive Newton descent has an exponential binary
complexity like naive Gaussian elimination. But, theorem 2 will provide a bound
on the effect of a ceiling on F (v).

By combining the arithmetic property of Newton descent, and the bound
on the ceiling, the theorem 3 will state the complexity of the self-concordant
Perceptron. Precisely,

• Lemma 4 requires lemma 3 which requires lemma 2.

• Lemmas 1 and 5 are independent from those ones.

• Then, lemma 6 requires lemma 5.

• Then, theorem 1 requires lemmas 1, 4 and 6.

8

• Theorem 2 is independent.

• Finally, theorem 3 combines theorems 1 and 2 (and lemma 5).

2.3 Proof

Lemma 1:
∀A ∈ QM×N , x ∈ QN such that Ax ≥ 1, and, v ≥ 0, then,

||v||22
||x||22

≤ ||AT v||22,
and, thus, ||AT v||22 ≤ 4M ⇒ v ≤ 2

√
M ||x||2 × 1

Proof. Cauchy inequality applied to xT (AT v) gives: xT (AT v) ≤ ||x||2×||AT v||2.
But, xT (AT v) = (Ax)T v ≥ 1T v as v ≥ 0 and Ax ≥ 1. Thus, 1T v ≤

||x||2 × ||AT v||2.
As each side is positive, one could take the square (and push ||x||2 to the

left), this gives (1T v)2

||x||22
≤ ||AT v||22. Yet, as v ≥ 0, vT v ≤ (1T v)2.

Second part is just injection of ||AT v||22 ≤ 4M .

Lemma 2:
Let f(t) = 1

2||x||22
t2 − log(t) with any vector x with ||x||2 ≥ 1, then, f is lower

bounded with a minimum f∗ = 1−log(||x||2)
2 ≥ − log(||x||2).

Proof. f is a continuous function from]0,∞[to R. f(t) →
t→0
∞ due to the − log,

and, f(t) →
t→∞

∞ due to the t2. So, f is lower bounded with a minimum. As f

is smooth, this minimum is solution of f ′(t) = t
||x||22

− 1
t = 0 i.e. t∗ = ||x||2 and

f∗ = f(||x||2).

Importantly, it is assumed in linear feasible that XA ̸= ∅ .
So this assumption will be omitted in all following lemmas/theorems.

Lemma 3:
FA is lower bounded and F ∗

A ≥ −M log(||x||2) (for any x such that Ax ≥ 1).

Proof. As XA ̸= ∅, then, ∃x,Ax ≥ 1. But, following lemma 1, it holds that

FA(v) ≥ vT v
2xT x

−
∑
m

log(vm) =
∑
m

f(vm) (with the function f introduced in

lemma 2). So, FA(v) ≥
∑
m

f∗ ≥ −M log(||x||2) following lemma 2. Finally, as

for all m, FA(v) ≥ f(vm) + (M − 1)f∗ and f(t)→∞ in 0 or ∞, then, it means
F can not admit an infimum on the border of]0,∞[M . So the property of being
lower bounded (by Mf∗) without infimum at the border implies that FA has a
minimum F ∗

A, and so F ∗
A ≥Mf∗.

Lemma 4:
FA(v)− F ∗

A ≤ min
m

1
v2
mAmAT

m+1
⇒ AAT v > 0

9

Proof. Let assume that there exists k such as AkA
T v ≤ 0, and, let introduce

w = v + t1k i.e. wm = vm if m ̸= k and wk = vk + t.
FA(wk) =

1
2 (v + t1k)

TAAT (v + t1k)−
∑
m

log(vm) + log(vk)− log(vk + t) =

FA(v) + tAkA
T v + 1

2 t
2AkA

T
k − log(vk + t) + log(vk). But, AkA

T v ≤ 0, so
FA(wk) ≤ FA(v) +

1
2 t

2AkA
T
k − log(vk + t) + log(vk), and, it is clear that for

0 ≤ t≪ 1, FA(wk) < FA(v) (because this is − log(vk + t) at first order).
Precisely, one could define Φ(t) = FA(v) +

1
2 t

2AkA
T
k − log(vk + t) + log(vk).

Then, Φ′(t) = AkA
T
k t− 1

t+vk
and Φ′′(t) = AkA

T
k +

1
(t+vk)2

and Φ′′′(t) = − 2
(t+vk)3

.

As, Φ′′′(t) ≤ 0 and t ≥ 0, Φ(t) ≤ Φ(0) + tΦ′(0) + t2

2 Φ
′′(0) i.e.

Φ(t) ≤ − t

vk
+

t2

2
(AkA

T
k +

1

v2k
)

In particular, for t = vk
v2
k×AkAT

k +1
, FA(w) ≤ FA(v) − 1

2
1

v2
k×AkAT

k +1
. But, this is

not possible if FA(v) is closer than F ∗
A by this value.

Lemma 5:

FA(
√

M
vTAAT v

× v) ≤ FA(v), and, FA(v)− F ∗ ≤ 1
16 ⇒ vTAAT v ≤ 4M .

Proof. Considering the function t→ FA(t× v) = 1
2v

TAAT v× t2−
∑
m

log(vm)−

M log(t) trivially proves that FA(v) decreases when v is normalized such as
vTAAT v goes closer to M . In particular, if vTAAT v ≥ 4M , then, v ← v

2 allows
to decrease F by 3M −M log(2) ≥ 1

16 . So, this is not possible if F (v) − F ∗ is
lower than this value.

Lemma 6:

FA(v)− F ∗
A ≤ min(

1

4MxTxΥ2 + 1
,
1

16
)⇒ AAT v > 0

Proof. Lemma 5 proves that vTAAT v ≤M (because FA(v)− F ∗
A ≤ 1

16).

Then, this is just lemma 4 combined with v ≤
√
2||x||21 from lemma 1 (as

AmAT
m ≤ Γ2 by definition).

Theorem 1:
Damped Newton descent on FA starting from any vstart will terminate eventu-
ally returning v such thatAAT v > 0 at least when FA(v)−F ∗

A ≤ min(1
4MxT xΥ2+1

, 1
16).

And this will not require more than O(FA(vstart)−F ∗+log log(4MxTxΥ2+1))
Newton steps.
In particular, from v = 1

Υ × 1, this will require no more than Õ(ML) Newton

steps in the so-called first phase, and, only Õ(log(L)) in the so-called second
phase are required to terminate.

10

Proof. The first part of this theorem is just the self-concordant theory applied
to FA with ε = min(1

4MxT xΥ2+1
, 1
16). This holds because FA has a minimum

as proven in lemma 3 because XA ̸= ∅ (this last assumption XA ̸= ∅ is critical
otherwise F can goes to −∞).
Yet, this ε value leads to a solution of the original linear feasibility problem
from lemma 6.
The second point is based on the classical results that the maximal norm of a vec-
tor defined by a linear system of total binary size L is O(L). Thus, log(xTx) =

Õ(L) as if XA ̸= ∅, then, there exists x entirely defined by a submatrix of A
in XA. Then, F (1

Υ1) ≤ M2 −M log(Υ) = O(ML) (Cauchy for the quadratic
term and definition of L for log(Υ) ≤ L), and, −F ∗ ≤ M log(xTx) = O(ML)
due to lemma 2. So, the so-called first phase lasts no more than O(ML) steps.
Then, the so-called second phase lasts only O(log log(4MxTxΥ2 + 1)) which is
just log(L) steps (definition of L + bound on x + lemma 2).

Remark: At this point, it is proven that Newton descent on F converges. But
Newton descent without dealing with binary size of the variable is exponential
like naive Gaussian elimination. Yet, the self-concordant Perceptron is a Newton
descent with a simple strategy to deal with variable binary size. This last point
is proven in next theorems.
Theorem 2:
Assume that vTAAT v ≤ 4M , then:

∀ϖ ∈
[
0,

1

ΓA

]M
, F (v +ϖ) ≤ F (v) +

1

200

In particular, ∀v,

F

int(ΓA×v1)+1

ΓA

...
int(ΓA×vM)+1

ΓA

 ≤ F (v) +
1

200

Proof. First, the log part only decreases when adding ϖ ≥ 0, thus, only the
quadratic part should be considered. So F (v + ϖ) ≤ F (v) + 1

2ϖ
TAATϖ +

ϖTAAT v.
But, ATϖ =

∑
m
ϖmAT

m so ||ATϖ|| ≤
∑
m
ϖm||AT

m|| ≤ ||ϖ||∞MΥ ≤ 1
500

√
M
,

and ||ATϖ||22 = ϖTAATϖ ≤ 1
(1000)2M .

So, ϖTAAT v ≤
√
ϖTAATϖ × vTAAT v ≤

√
1

(500)2M × 4M ≤ 1
250 (from

Cauchy). And, 1
2ϖ

TAATϖ ≤ 1
2×(1000)2M ≤ 50

1000 . Thus, it holds that F (v +

ϖ) ≤ F (v) + 1
200 .

Then, int(t)+1 is a special case of t+τ, τ ∈ [0, 1], so the presented rounding

scheme correspond to add ϖ ∈
[
0, 1

ΓA

]M
.

Theorem 3:

11

The self-concordant Perceptron described in table 2 always terminates in less
than Õ(ML) steps eventually returning v such that AAT v > 0. During (almost)
all the algorithm, all values of v have a common denominator of Γ, and, all
numerators are bounded by 2O(L).
Finally, this is done by computing the inverse of ∇2

vF = AAT + Diag(v)−2.
For that, this matrix should be scaled to H = Γ2(Diag(v)AATDiag(v) + I) to
recover integer values before inversion. Yet, H has the interesting property that
∀i, j Hi,j ≤ 2O(L) without requiring any kind of rounding.

Proof. The self-concordant Perceptron described in table 2 is a Newton descent
upgraded with a scaling and a ceiling. But, the theorem 1 proves that the
Newton descent alone converges and decreases F by at least 1

50 each steps.
Then, the scaling will not increase F (this is lemma 5), but, will ensure

vTAAT v ≤ 4M . Thus, the theorem 2 holds and proves that the ceiling will not
increase F by more than 1

200 .
So, each step of self-concordant Perceptron decreases F by 1

50−0−
1

200 (effect
of a single Newton step - scaling - ceiling) i.e. there is still a constant decrease
of F during all the so-called first phase. So it will terminate with only twice
number of steps.

So, the self-concordant Perceptron (with mastered binary size) converges
with the same number of steps (in big-O) than the Newton descent (which is
naively exponential form binary point of view).

This proves the first part.
Then, the second part of the theorem is directly implied by the first (and

lemma 6) because that H = Γ2(Diag(v)AATDiag(v) + I) is an integer matrix
with values bounded by 2O(L) (it is true for ΓDiag(v) and A, and, not modified

by product as, numerators are bounded by 2
√
MxTxΓ which is Õ(2L)).

remark: During all the algorithm vTAAT v ≤ 4M . Indeed, during the so-
called first phase this is due to the integer scaling of v (this scaling decreases F)
to allow an easy rounding. And, during the second phase this holds naturally
(without the need of a scaling) and ensures the convergence of the algorithm. So
this property is usefull for two different reasons. Also, the so-called second phase
is negligible with only O(log(L)) step explaining why ceiling can be deactivated
during this phase.

2.4 Conclusion

This paper introduces the self-concordant Perceptron which converges inO(ML)
steps, with a common denominator and all numerators of it internal values v
requiring only L digits each. In addition, each step is mainly the inversion
of H = Γ2(Diag(v)AATDiag(v) + I) which is a not singular integer matrix
with each coefficient bounded by 2O(L), while, the classical constraint matrix
H = ATDiag(Ax− b)−2A naively requires ML digits per value.

12

Thus, even if this algorithm does not compete against [23] in general, it
can be relevant for critical contexts as it is simpler to implement (using any
pre-existing linear algebra routines) with still good times complexity.

2.5 Conflict of Interest

The author declares that he has no conflict of interest.

References

[1] Xavier Allamigeon, Pascal Benchimol, Stéphane Gaubert, and Michael
Joswig. Log-barrier interior point methods are not strongly polynomial.
Journal on Applied Algebra and Geometry, 2018.

[2] Andris Ambainis, Yuval Filmus, and François Le Gall. Fast matrix multipli-
cation: limitations of the coppersmith-winograd method. In Proceedings of
the forty-seventh annual ACM symposium on Theory of Computing, pages
585–593, 2015.

[3] Erling D Anderson, Jacek Gondzio, Csaba Mészáros, and Xiaojie Xu. Im-
plementation of interior-point methods for large scale linear programs.
In Interior Point Methods of Mathematical Programming, pages 189–252.
Springer, 1996.

[4] Sylvie Boldo. Floats and ropes: a case study for formal numerical program
verification. In International Colloquium on Automata, Languages, and
Programming, pages 91–102. Springer, 2009.

[5] Adrien Chan-Hon-Tong. Solving linear programming while tackling number
representation issues. In Proceedings of the 11th International Conference
on Operations Research and Enterprise Systems - ICORES,, pages 40–47.
INSTICC, SciTePress, 2022.

[6] Sergei Chubanov. A polynomial projection algorithm for linear feasibility
problems. Mathematical Programming, 153(2):687–713, 2015.

[7] Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in
the current matrix multiplication time. In Proceedings of the 51st annual
ACM SIGACT symposium on theory of computing, 2019.

[8] Raphael P Cohen. Formal verification and validation of convex optimization
algorithms for model predictive control. PhD thesis, Georgia Institute of
Technology, 2018.

[9] John Dunagan and Santosh Vempala. A simple polynomial-time rescal-
ing algorithm for solving linear programs. Mathematical Programming,
114(1):101–114, 2008.

13

[10] Xin Gui Fang and George Havas. On the worst-case complexity of integer
gaussian elimination. In Proceedings of the 1997 international symposium
on Symbolic and algebraic computation, pages 28–31, 1997.

[11] Eric M Feron, Raphael P Cohen, Guillaume Davy, and Pierre-Loic Garoche.
Validation of convex optimization algorithms and credible implementa-
tion for model predictive control. In AIAA Information Systems-AIAA
Infotech@ Aerospace, page 0562. 2017.

[12] Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid
method and its consequences in combinatorial optimization. Combinator-
ica, 1981.

[13] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Fundamentals of
convex analysis. Springer Science & Business Media, 2004.

[14] Narendra Karmarkar. A new polynomial-time algorithm for linear program-
ming. In Proceedings of the sixteenth annual ACM symposium on Theory
of computing, 1984.

[15] Leonid Khachiyan. A polynomial algorithm for linear programming. Dok-
lady Akademii Nauk SSSR, 1979.

[16] Arkadi Nemirovski. Interior point polynomial time methods in convex pro-
gramming. Lecture notes, 42(16):3215–3224, 2004.

[17] Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algo-
rithms in convex programming. Siam, 1994.

[18] Javier Peña and Negar Soheili. A deterministic rescaled perceptron algo-
rithm. Mathematical Programming, 155(1-2):497–510, 2016.

[19] Marko D. Petković and Predrag S. Stanimirović. Generalized matrix inver-
sion is not harder than matrix multiplication. Journal of Computational
and Applied Mathematics, 230(1):270–282, 2009.

[20] James Renegar. A polynomial-time algorithm, based on newton’s method,
for linear programming. Mathematical programming, 40(1):59–93, 1988.

[21] Frank Rosenblatt. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, 65(6):386, 1958.

[22] Herry Suprajitno and I Bin Mohd. Linear programming with interval arith-
metic. Int. J. Contemp. Math. Sciences, 5(7):323–332, 2010.

[23] Jan van den Brand. A deterministic linear program solver in current matrix
multiplication time. In Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 259–278. SIAM, 2020.

14

APPENDIX

Reduction to linear feasibility

This paper deals with strict linear feasibility instead of linear programming for
convenience but both are known to be equivalent. This appendix details the
conversion between them. But this is definitely not a contribution of the paper.

Let min
x,Ax≥b

cTx be a linear program with total binary size L and M con-

straints, N = O(M) variables, but, without any assumption: it can be un-
bounded and/or infeasible and c can be 0 (when it is just a problem of satisfying
constraints).

Primal dual

First, primal dual theorem [13] proves that: min
χ,Aχ≥b

cTχ is bounded and feasible

if and only if there exist x, y such as:

Ax ≥ b, cTx− bT y ≥ 0, bT y − cTx ≥ 0, AT y ≥ cT ,−AT y ≥ −cT ,−y ≥ 0

and, in this case x is the optimal solution of the input linear program.
So, one is able to either solve the input linear program or finding a cer-

tificate, by solving A1χ ≥ β1 with βT
1 = (bT 0 0 cT − cT 0T), and,

A1 =

A 0
cT −bT
−cT bT

0 AT

0 −AT

0 −Diag(1)

Let stress that the total binary size and the shape of A1 are equivalent to

the ones of A.

Ensuring a solution

This new problem A1χ ≥ β1 will provide either a solution to the original one or
it is not feasible and this is a certificate.

Now, as being sure to deal with a bounded-and-feasible problem can be
convenient, one could form: min

χ,τ,A1χ+τ≥β1,τ≥0
τ which is bounded (τ ≥ 0) and

always feasible (a trivial initialization is χ = 0 and τ ≫ 1).
Indeed, solving this bounded-and-feasible problem will give a solution of

A1χ ≥ β1 (if τ∗ = 0) or a certificate (if τ∗ > 0).
Let stress that the total binary size and the shape of this problem (just an

additional variable and constraint) are still equivalent to the ones of A.

Primal dual again

Then, one can form the primal dual written A2χ ≥ β2 of this last problem
min

χ,τ,A1χ+τ≥β1,τ≥0
τ .

15

The interest of this second primal dual is that is will always be feasible
because the new primal (which is the first primal dual) is feasible and bounded.
So, any admissible point of this always-feasible-second-primal-dual will give a
solution of the first one.

Then, one can form min
χ,τ,A2χ+τ≥β2,τ≥0

τ by adding again a constraint and a

variable to the second primal dual.
Why someone should do that ? Because this last problem is feasible, bounded

and the optimal solution is known to be 0. And, again it is possible to recover
solution from the original problem while the total binary size and the shape are
still equivalent to the initial ones.

Jumping to strict linear inequality set

So, one has computed a new problem min
χ,τ,A2χ+τ≥β2,τ≥0

τ equivalent to the orig-

inal instance but which is always feasible, bounded and with optimal value 0.
Now, the key idea is to consider the set of strict linear inequality constraints

A2χ + τ > β2, τ > 0,−2O(L) × τ > −1 with the 2O(L) being higher than
Det(A2) + 1 written as A3χ > β3.

This last problem has necessarily a solution because min
χ,τ,A2χ+τ≥β2,τ≥0

τ is

feasible with optimal solution 0, i.e. there exists x∗, τ∗ with τ∗ = 0. So, just
considering x = x∗ and τ = 2−(O(L)+1) gives a solution to the set of strict linear
inequality constraints.

Also, the total binary size and the shape are still equivalent to the initial
ones. Indeed, a 2O(L) coefficient is added, but, the binary size of this coefficient
is just O(L) so the total binary size just goes from Õ(L) to Õ(L)+O(L) = Õ(L).

Post-processing any solution of the strict linear inequality constraint A3χ >
β3 to recover the ones of min

χ,τ,A2χ+τ≥β2,τ≥0
τ is tackled after the final transfor-

mation.

Enforcing homogeneity

At this point, one wants to solve a problemA3χ > β3 which is directly equivalent
to A3x− β3t > 0, t > 0. Indeed, let consider x, t such that A3x− β3t > 0, t > 0
a fortiori t ̸= 0 and t ≥ 0, so A3

x
t − β3

t
t > 0 i.e. A3

x
t > β3. Inversely, if χ is

a solution of the first, x = χ, τ = 1 is a solution of the second (and again, the
sizes are equivalent).

Purifying solution of strict linear feasibility

The only missing step in the pipeline is how one can retrieve the optimal solution
(known to have τ = 0) of min

χ,τ,A2χ+τ≥β2,τ≥0
τ from a solution of A2χ+τ > β2, τ >

0,−2O(L) × τ > −1.
Let consider χ, τ such as A2χ + τ > β2, τ > 0,−2O(L) × τ > −1. Let

I = {i,A2χ+ τ = β2}, J = {j, χj = 0}.

16

If, there is ω,A2,Iω = 1, ωJ = 0, then, one can update χ = χ+ tω, τ = τ − t
while maintaining A2,Iχ + τ = β2, χJ = 0 and also A2χ + τ ≥ β2 until t
increases such that a new constraint enters into I or a new component becomes
0 (i.e. a component enters in J).

But, I, J increase as sets, so this process can not last more than 2M steps.
At the end, A2χ + τ ≥ β2, and the system A2,Iχ + τ = β2, χJ = 0 define an
unique χ, τ i.e. χ, τ are defined by the linear system A2,Iχ = β2, χJ = 0.

In particular, τ can be written as a fraction of determinant extracted from
A2 (due to Cramer rules) i.e. either τ = 0 or τ ≥ 1

Det(A2)
. But, this last

option is impossible, because, τ has decreased during the purification, and thus,
it verifies −2O(L) × τ > −1 i.e. τ ≤ 1

2O(L) ≤ 1
Det(A2)

.

So, in this particular case (because, it starts from a point very close to the
optimum), the greedy purification leads to a solution with at most M matrix
inversions i.e. MMωL binary operations (this is a matrix extracted from A so
this is the correct binary complexity).

Importantly, let stress that in A2 there is no additional term in 2O(L) which
appears only in A3. So, the purification only consider a submatrix extracted
from A2 and not from A3 so there is no issue with a determinant which will
become larger due to the additional term 2O(L).

Finally the complete process first builds a linear program with good assump-
tion (feasible, bounded, with known optimal value of 0) thanks to 2 primal dual
steps, then, it builds a strict linear feasibility instance (knowing that greedy
purification of any solution of this last problem will allow to recover a solu-
tion of the original linear program). As pointed the number of variables and
constraints is not scaled by more than 16 and the total binary size not scaled
by more than 4. So, strict linear feasibility (with assumption of a solution) is
correctly equivalent to linear programming.

Final overview

A summary of the discussion of the equivalence of linear programming and strict
linear feasibility is presented with pseudo-code. Assume algo1(A) takes A and
returns one x such as Ax > 0 if one exists, then:

algo2(A, b)

xt← algo1

((
A −b
0 1

))
return (xt n)n∈{1,...,N}/xtN+1

takes A, b and returns one x with Ax > b if one exists.

algo3(A, b)

Γ← Hadamard bound on A

xt = algo2

 A 1
0 t
0 −Γ

 ,

 b
0
−1

x2, t2 ← (xt n)n∈{1,...,N}/xtN+1

S ← {m,Amx2 + t2 = bm}

17

while ∃χ,ASχ = 1 do
x2 ← x2 + λχ , t2 ← x2 − λ
with λ maximal such that Ax2 + t21 ≥ b
S ← {m,Amx2 + t2 = bm}

end while
return x2

takes A, b and returns one x with Ax ≥ b if one exists.

algo4(A, b)

Ap ←
(

A 1
0 1

)
, bp ←

(
b
0

)
, cp ← (0 1)

compute Adual, bdual, cdual with duality theory

χ← algo3

Ap 0
0 Adual

cp −cdual
−cp cdual

 ,

bp

bdual
0
0

x← (χm)m∈{1,...,M}, t← χM+1

return x, t

takes A, b returns one x, t such that t > 0 means that there is no Ax ≥ b, and,
t = 0 means that Ax ≥ b.

algo5(A, b, c)

compute Adual, bdual, cdual with duality theory
x, t← algo4(A, b)
y, τ ← algo4(Adual, bdual)
if t > 0 or τ > 0 then

return infeasible (t > 0) or unbounded (τ > 0)
else

χ← algo3

A 0
0 Adual

c −cdual
−c cdual

 ,

b

bdual
0
0

return (χm)m∈{1,...,M}
end if

is a standard linear programming solver.

18

