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Binary complexity in linear programming.

Adrien CHAN-HON-TONG

February 17, 2022

Abstract

Naive Gaussian elimination is known to be exponential when done
with arbitrary large integer representation. This highlights that binary
properties of algorithms are (at least theoretically) important. Yet, state
of the art of linear programming only weakly tackles this issue. Indeed,
this paper stresses some difficulties which can arise when solving linear
programming with classical methods under arbitrary large integer repre-
sentation setting. Then, it introduces a new polynomial times algorithm
for linear programming with better binary properties.

1 Introduction

1.1 Linear programming

Linear programming is a central optimization problem which aims to pro-
duces either a solution x or a certificate that the following problem is
infeasible or unbounded:

min
x∈QN , Ax≥b

cTx (1)

where A ∈ ZM×N is a matrix and b ∈ ZM , c ∈ ZN two vectors with M
being the number of constraints/rows of A and N the number of vari-
ables/columns of A.

Assuming N = O(M), the state of the art is central-path log-barrier
[12] and/or path-following [15] algorithms which solves linear programs

with total binary size L in less than Õ(
√
ML) Newton steps. As each

Newton step is mainly the resolution of an M × M linear system, the
arithmetic time complexity of those algorithms is Õ(Mω

√
ML) (Õ(.) no-

tation will be used instead of O(.) to express the fact that log factors are
omitted) where ω is the coefficient of matrix inversion (known to be equiv-
alent to the one of matrix inversion [14]) i.e. 3 with simple algorithm but
2.38 with [1]. Faster randomized algorithms like [5] are not in the scope
of this paper.

As it is important for the following of this paper, the duality theorem
allows to prove that, from theoretical point of view, linear programming
is equivalent to linear feasibility which aims at solving

find x ∈ XA = {χ ∈ QN , Aχ > 0} assuming XA 6= ∅ (2)

where A ∈ ZM×N and 0 is the vector full of 0. The problem is sometimes
presented as finding x such that Ax ≥ 1 (with 1 is the vector full of 1) to
avoid strict inequalities, yet, those formulations are equivalent.
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This linear feasibility problem comes usually behind a pre processing
because not all matrix A ensure that XA 6= ∅. However, given any linear
programming problem with size M,N = O(M) and total binary size L
(it could also be Ax ≥ 1 without assumption that there is a solution), a
trivial pre processing can compute a matrix A ∈ ZO(M)×O(N) with total
binary size O(L) (no more than 16M constraints and 4L are required) such
that XA 6= ∅, and, such that any x ∈ XA can be trivially post processed
to recover either a solution of the initial problem or a certificate that it
is infeasible/unbounded (pre and post processing being both trivial and
strongly polynomial).

1.2 Binary vs arithmetic operations

Now, considering that arithmetic operations are single operation and/or

that matrix inversion can be done in Õ(Mω) operations is only half of
the story. It is true by considering operation on Z (or Q) as 1 operation.
This assumption matches the practice where operations are realized with
fixed precision (for example with classical floating point representation).
But, this is not correct from theoretical point of view, because a fixed
size precision open the door to numerical instabilities. Typically, if the
solution of a problem is 2−L with L > 32766, then, the floating point
approximation will be 0 with classical IEEE 754 floating point convention.
But, 0 may not be a solution.

Thus, from theoretical point of view, it is required to have arbitrary
large representation i.e. in the simplest form, numbers are integers coded
as unbounded sequence of digits, or fraction of such integers. But, this
structural protection against numerical instability comes at cost that
arithmetic operation and binary one do not match anymore: it depends
on binary sizes of intermediate numbers which can growth during the al-
gorithm. Typically, naive Gaussian elimination is exponential [7] when
using arbitrary large integer representation (while it is a M3 algorithm
when considering arithmetic operations).

Hopefully, there is careful implementations of Gaussian elimination
which do not suffer from those binary issues. Yet, it should be pointed
(because it will be important for the following of this paper) that:

• Multiplying 2 integer matrix with the absolute value of each entry
being bounded by O(2B) can be done in O(MωB) binary operations
because binary size does not increase during matrix multiplication
(absolute value of each entry will be shorten as value in the paper).

• Similarly, multiplying 2 integer matrix with total binary size O(L)
can also be done in O(MωL) binary operations because a fortiori
each value is bounded by O(2L) (even if it may be a lose bound
when L = M2B).

• Also, solving Ax = b with an integer matrix A with total binary size
L and an integer vector b (with total binary size lower than L) can
still be done in O(MωL) binary operations because Cramer rule +
Hadarmar bound ensure that each value in the inverse matrix is no
more than O(2L) and that a common denominator (being Det(A))
lower than O(2L) can be found.

• But, if the assumption is that each value of A, b is bounded by O(2B),
then, the situation is different because Det(A) is not bounded by 2B

but by 2MB , resulting in a binary complexity of O(MωMB) for an
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exact computation (even relying on efficient Cholesky decomposi-
tion: the extra factor M can not be avoided as it appears in the
output).

1.3 Binary issue in linear programming

This paper is about binary issues, as the ones pointed in [7], in context
of linear programming. Indeed, most classical methods have binary issues
(maybe not as critical as in [7]) but potentially affecting their binary
complexities.

1.3.1 Ellipsoid method

The ellipsoid method [10, 8] relies on an internal representation x,E ini-
tialized as 0, 2LDiag(1) (where Diag(u) with u a vector is the diagonal
square matrix with same size as the vector whose value i, i is ui) and
performs M2L steps

1. find k, Akx− bk < 0

2. x = x− 1
M+1

EAT
k√

AkEA
T
k

3. E = M2

(M+1)2
(E − 2

M+1

AkE
TEAT

k

AkEA
T
k

)

In the original paper, computation are claimed to be safe when rounding
error is lower than exp(−10ML). So, basically, a denominator O( 1

2ML ) is
required leading to extra factor between arithmetic and binary complexity
because number should thus be encoded onML digits and not just L. This
explains why complexity of this algorithm is sometimes given as O(M6L2)
while arithmetic complexity is only O(M4L).

1.3.2 Log barrier

The log barrier algorithm [11, 12] minimizes the function G(x, µ) = cTx−
µ
∑
m

log(Amx− bm) by performing Newton descent on x and halving µ:

1. x = x− 1√
(∇xG)T (∇2

xG)−1(∇xG)
(∇2

xG)−1(∇xG)

2. µ = µ
2

This algorithm only requires
√
ML steps with each step being basically

a matrix inversion, leading to the best known arithmetic complexity of
Õ(Mω ×

√
ML).

However, µ = µ
2

is clearly an unacceptable setting from binary point of

view as the number of step is
√
ML: it leads to µ∗ = 1

2
√

ML
µstart. In this

condition, there is no way to represent number with less than O(
√
ML)

digits. Thus, again, there is necessarily extra factor between binary and
arithmetic complexity.

1.3.3 Path following (and Karmarkar algorithm)

Path following algorithm [15] (which is in some way the final version of
Karmarkar algorithm [9]) offers the same arithmetic complexity from log
barrier, but, avoids the issue of the halving µ by relying on an updating
depending on M on a slightly different function G(x, µ) = −

√
M log(cTx−

µ)−
∑
m

log(Amx− bm):
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1. µ = (1− 1√
M

)µ+ 1√
M

(cTx)

2. x = x− 1√
(∇xG)T (∇2

xG)−1(∇xG)
(∇2

xG)−1(∇xG)

this way, µ∗ = 2O(L)µstart which is a good result from binary point of
view.

Yet, a naive implementation of this algorithm may still encountered
issues related to the inversion of the constraint Hessian (which will be
defined just after). Currently the paper [15] claims that

• A rounding strategy on x with a common denominator of 2O(L) is
sufficient.

• This leads to a Hessian ∇2
xG which could be problematic but which

can also be rounded with a common denominator of 2O(L).

• Finally, computing a 2−O(L) approximation of (∇2
xG)−1(∇xG) can

be done in Õ(MωL).

Yet the two last claim should be debated. Let introduce the constraint
Hessian H as the hessian related to −

∑
m

log(Amx−bm) (which is common

both for log barrier and path following). So,

∀i, j Hi,j =
∑
m

Am,iAm,j
(Amx− bm)2

One could remark that H = ATDiag(Ax− b)−2A.
[15] claims that each Amx− bm is in [2−O(L), 2O(L)] and can probably

be rounded with a 2−O(L) common denominator (like to x). But, it is not
clear that 1

A1x−b1
, ..., 1

AMx−bM
will also have a small common denomina-

tor. Indeed, in worse case, it seems that the denominator should be as
large as the product of numerator of A1x− b1, ..., AMx− bM leading to a
bound of 2O(ML) (product of M numbers bounded by 2O(L)).

Currently, ∀i Hi,i =
∑
m

Am,iAm,i

(Amx−bm)2
≥ 2−L. So, one can claim that it

is possible to round the matrix as the diagonal is not too small. However,
even if, the diagonal contains only term higher than 2−L, approximating
a value Hi,j with only L digits may lead to put a 0 somewhere there
would have been 2−ML. And, this may be an issue if 2 rows/columns
are very close i.e. if the matrix is poorly conditioned. Yet, it can be.
Currently, H can even be singular if A has not be pre processed such that
Ker(A) = {x,Ax = 0} = {0} because if 2 variables are exactly the same
(i.e. 2 columns of A are equal), then there is a singularity which does
not raise issue in solving Hw = −(∇xG) but which still stresses that the
matrix H may be poorly conditioned. Thus, claiming that this matrix
can be rounded is not trivial.

Precisely, this paper does not claim that statements from [15] are false,
but, only that they are not trivial, and, thus hard to implement. In-
versely, in a naively implementation, H will have value requiring ML
digits (in worse case), and, computing the exact inverse will thus require
MωM2L binary operations. Indeed, even if the resulting value will finally
be rounded on L digits, rounding before the Newton step is not trivially
equivalent as rounding after the step.

1.3.4 Summary

Finally, Chubanov algorithm [4] contains an halving operation ATk = 1
2
×

ATk (like the µ of the classical log barrier) which is a binary issue as the
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number of step is ML. The situation seems the same for the Rescaling
Phase of [13].

So, the binary complexity of most algorithm of the state of the art
is significantly higher than L× the arithmetic complexity: there is an
irreducible extra factor M2 for ellipsoid method [8], M for [4, 13] and√
M factor for log barrier [12]. And, at the top of these irreducible extra

factors, there is also the issue of what is the exact complexity of solving a
linear system with precision at least 2−O(L) when each values are bounded
by 2B . There is also finally the question of the possibility to round values
Hi,j =

∑
m

Am,iAm,j

(Amx−bm)2
on L digits (∀i, j) without damaging the resolution

of the linear systemH (while the exact common denominator could require
ML digits in worse case).

As pointed in 1.3.3, [15] claims that
∑
m

Am,iAm,j

(Amx−bm)2
can be round on

L digits, and, that MωL binary operation are sufficient to solve approxi-
mately the related system. Yet, this is not trivial. So, instead, this paper
considers naive implementation setting in which rounding is only consid-
ered at the end of each step. In this setting,

∑
m

Am,iAm,j

(Amx−bm)2
should be

encoded in ML digits, and, computing the inverse of a matrix whose val-
ues are bounded by 2B requires MωMB binary operations and not MωB
(as pointed in 1.2).

Thus, under this naive implementation setting, the complexity is in-
creased for all methods based on matrix inversion by M with an addi-
tional M when the matrix is a constraint Hessian H [12, 15]. Yet, one
can feel that this factor highlights the practical hardness linked with ma-
trix inversion, and, related the numerical instability. Anyway, this naive
implementation setting offers a very different view of the state of the art
summarized by tables 1 and 2 where the gap between log barrier and
ellipsoid algorithm is reduced.

Algorithm complexity binary issues
[6] exponential none

[8] Õ(M4L) require ML precision

[13] Õ(M3
√
ML) ML halving

[4] Õ(MωML) ML halving + matrix inversion

[2] Õ(Mω
√
ML)

√
ML halving + log barrier matrix inversion

[15] Õ(Mω
√
ML) log barrier matrix inversion

Simplex algorithms [6] is exponential but it binary complexity is L× arithmetic complexity

because each step is just the inversion of A which has total binary size L. Inversely, for other

algorithms, there are extra factors between binary complexity and arithmetic complexity.

Those factors can be irreducible like when a variable is halved ML times (leading to a

binary size of ML), or, depend on some precise linear algebra questions.

Table 1: Binary issues in different algorithms from the state of the art.

Advancing on this observation, this paper introduces a new algorithm
related to interior point algorithms but with some differences which make
the algorithm more stable from binary point of view. Currently, it requires
Õ(ML) steps (against Õ(

√
ML) for [15]). But, the matrix to inverse has

all values naively bounded by 2L (against 2ML for [15, 12]) and all vari-
ables can be trivially rounded on integer. Independently, this algorithm
seems like a self concordant version of the Perceptron [16] but disconnected
from [13].
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Algorithm arithmetic complexity naive binary complexity

[16] exponential exponential

[6] exponential exponential

[8] Õ(M4L) Õ(M6L2)

[13] Õ(M3
√
ML) Õ(M4

√
ML2)

[4] Õ(MωML) Õ(MωM3L2)

[12] Õ(Mω
√
ML) Õ(MωM2

√
ML2)

[15] Õ(Mω
√

ML) Õ(MωM2
√
ML2)

This Õ(MωML) Õ(MωM2L2)
The naive binary complexity is stated by considering that summing M fractions with

numerator/denominator encoded on L digits produces a ML digits fraction, and,
that solving a linear system with a matrix whose values are bounded by 2B requires

MωMB binary operations.

Table 2: Naive binary complexity for state of the art algorithms.

2 The self concordant algorithm

The self concordant algorithm is presented in table 3. Basically, the algo-
rithm is a Newton descent on

FA(v) =
1

2
vTAAT v −

∑
m∈{1,...,M}

log(vm) (3)

starting from 1
ΥA

1 with ΥA =
√

max
m

AmATm. Yet, an additional 1D

optimization v ←
√

M
vTAAT v

v is required in each step allowing to ensure

vTAAT v = M . This last property will allow to prove that ceiling v with
a common denominator of ΓA = 1000M

√
MΥA allows the convergence of

the algorithm (and will also offer a convenient bound on v).
To be completely exhaustive, operations like

√
vTAAT v are not possi-

ble (especially because the major relevance of this algorithm is to tackle
binary issues). Hopefully, the function being convex, trivial 2 approxima-
tions will be sufficient to ensure convergence

• vTAAT v = M is not possible on Q but vTAAT v ≤ 4M is - and it is
sufficient

• computing λ2
FA

= (∇vFA)T (∇2
vFA)−1(∇vFA) is possible, and, thus

a computing a 2 approximation of λFA is trivial (currently, λFA is
lower than 1 in practice, so just considering the damped update
v ← v − 1

2
(∇2

vFA)−1(∇vFA) is almost always sufficient).

Index A for F,Υ,Γ will be omitted when not ambiguous.

2.1 Pre requite of the proof

Self concordant theory: The proof of the central theorem of self con-
cordant theory presented bellow can be found in [11].
If Ψ(x) is a self concordant function (mainly sum of quadratic, linear,
constant and − log term), with a minimum Ψ∗, then, the Newton descent
starting from xstart allows to compute xε such that Ψ(xε) − Ψ∗ ≤ ε in

Õ(Ψ(xstart)−Ψ∗ + log log( 1
ε
)) damped Newton steps. Each step is:

• λΨ(x)←
√

(∇xΨ)T (∇2
xΨ)−1(∇xΨ)

6



• x← x− 1
1+λΨ(x)

(∇2
xΨ)−1(∇xΨ)

Precisely, this descent has 2 so-called phases:

• While λΨ(x) ≥ 1
4
, each damped Newton step decreases Ψ of at least

1
4
− log( 5

4
) ≥ 1

50
. This so called first phase can not last more than

50× (Ψ(xstart)−Ψ∗) damped Newton steps.

• As soon as one has computed any xphase with λΨ(xphase) ≤ 1
4
, then,

only Õ(log log( 1
ε
)) additional steps are required to get xε such that

Ψ(xε) − Ψ∗ ≤ ε. This is the so called second phase with quadratic
convergence (i.e. log log(ε) steps lead to a precision ε). Importantly,
λΨ(xphase) ≤ 1

4
⇒ Ψ(xphase)−Ψ∗ ≤ 1

4

Hadamard bound and Cramer rule: If there exists x such that Ax ≥
1, then, there exists a subset S of row indices and a subset R of variable
indices such that ASx = 1, xR = 0 is a not singular linear system whose
solution χ verifies Aχ ≥ 1.

In particular, Cramer rules apply to χ. And, Hadamar bound applies
to numerators and denominators from Cramer rules.

So, if there exists x such that Ax ≥ 1, then, there exists one such x
with log(xTx) = Õ(L) where L is the total binary size of A.

Self concordant algorithm(A)

F being symbolically 1
2v
TAAT v −

∑
m

log(vm)

Υ←
√

max
m
AmATm

v ← 1
Υ1 ; Γ← 1000M

√
MΥ

while ¬(AAT v > 0) do
v ← v − 1

1+λF (v) (∇2
vF )−1(∇vF )

if λF (v) ≥ 1
4 then

v ←
√

M
vTAAT v

v

v ← 1
Γ × int(Γ× v + 1)

end if
end while
return v

Table 3: Self concordant Perceptron algorithm.

2.2 Proof

Lemma 1:
∀A ∈ QM×N , x ∈ QN such that Ax ≥ 1, and, v ≥ 0, then,

||v||22
||x||22

≤
||AT v||22, and, thus, ||AT v||22 ≤ 4M ⇒ v ≤ 2

√
M ||x||2 × 1

Proof. Cauchy inequality applied to xT (AT v) gives: xT (AT v) ≤ ||x||2 ×
||AT v||2.

But, xT (AT v) = (Ax)T v ≥ 1T v as v ≥ 0 and Ax ≥ 1. Thus, 1T v ≤
||x||2 × ||AT v||2.

As each side is positive, one could take the square (and push ||x||2 to

the left), this gives (1T v)2

||x||22
≤ ||AT v||22. Yet, as v ≥ 0, vT v ≤ (1T v)2.

Second part is just injection of ||AT v||22 ≤ 4M .
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Lemma 2:
Let f(t) = 1

2||x||22
t2 − log(t) with any vector x with ||x||2 ≥ 1, then, f is

lower bounded with a minimum f∗ = 1−log(||x||2)
2

≥ − log(||x||2).

Proof. f is a continuous function from ]0,∞[ to R. f(t) →
t→0
∞ due to

the − log, and, f(t) →
t→∞

∞ due to the t2. So, f is lower bounded with a

minimum. As f is smooth, this minimum is solution of f ′(t) = t
||x||22

− 1
t

=

0 i.e. t∗ = ||x||2 and f∗ = f(||x||2).

Importantly, it is assumed in linear feasible that XA 6= ∅.
So this assumption will be omitted in all following lemmas/theorems.

Lemma 3:
FA is lower bounded.

Proof. As XA 6= ∅, then, ∃x,Ax ≥ 1. But, following lemma 1, it holds

that FA(v) ≥ vT v
2xT x

−
∑
m

log(vm) =
∑
m

f(vm) (with the function f intro-

duced in lemma 2). So, FA(v) ≥
∑
m

f∗ ≥ −M log(||x||2) following lemma

2. Finally, as for all m, FA(v) ≥ f(vm) +(M −1)f∗ and f(t)→∞ in 0 or
∞, then, it means F can not admit an infimum on the border of ]0,∞[M .
So the property of being lower bounded (by Mf∗) without infimum at the
border implies that FA has a minimum F ∗A, and so F ∗A ≥Mf∗.

Lemma 4:
FA(v)− F ∗A ≤ min

m

1
v2
mAmAT

m+1
⇒ AAT v > 0

Proof. Let assume that there exists k such that AkA
T v ≤ 0, and, let

introduce w = v + t1k i.e. wm = vm if m 6= k and wk = vk + t.
FA(wk) = 1

2
(v+t1k)TAAT (v+t1k)−

∑
m

log(vm)+log(vk)−log(vk+t) =

FA(v) + tAkA
T v + 1

2
t2AkA

T
k − log(vk + t) + log(vk). But, AkA

T v ≤ 0,
so FA(wk) ≤ FA(v) + 1

2
t2AkA

T
k − log(vk + t) + log(vk), and, it is clear

that for 0 ≤ t� 1, FA(wk) < FA(v) (because this is − log(vk + t) at first
order).

Precisely, one could define Φ(t) = FA(v) + 1
2
t2AkA

T
k − log(vk + t) +

log(vk). Then, Φ′(t) = AkA
T
k t − 1

t+vk
and Φ′′(t) = AkA

T
k + 1

(t+vk)2
and

Φ′′′(t) = − 2
(t+vk)3

. As, Φ′′′(t) ≤ 0 and t ≥ 0, Φ(t) ≤ Φ(0) + tΦ′(0) +

t2

2
Φ′′(0) i.e.

Φ(t) ≤ − t

vk
+
t2

2
(AkA

T
k +

1

v2
k

)

In particular, for t = vk
v2
k
×AkA

T
k

+1
, FA(w) ≤ FA(v) − 1

2
1

v2
k
×AkA

T
k

+1
. But,

this is not possible if FA(v) is closer than F ∗A by this value.

Lemma 5:

FA(
√

M
vTAAT v

× v) ≤ FA(v), and, FA(v)− F ∗ ≤ 1
16
⇒ vTAAT v ≤ 4M .

Proof. Considering the function t → FA(t × v) = 1
2
vTAAT v × t2 −∑

m

log(vm)−M log(t) trivially proves that FA(v) decreases when v is nor-

malized such that vTAAT v goes closer to M . In particular, if vTAAT v ≥
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4M , then, v ← v
2

allows to decrease F by 3M −M log(2) ≥ 1
16

. So, this
is not possible if F (v)− F ∗ is lower than this value.

Lemma 6:
Assume Ax ≥ 1 and vTAAT v ≤ 4M , then

FA(v)− F ∗A ≤ min(
1

4MxTxΥ2 + 1
,

1

16
)⇒ AAT v > 0

Proof. Lemma 5 proves that FA(v)− F ∗A ≤ 1
16
⇒ vTAAT v ≤ 4M . Com-

bined with lemma 1, it leads to v ≤ 2
√

2||x||21.
Thus, this bound can be injected in lemma 4 (plus AmA

T
m ≤ Γ2 by

definition) leading to the conclusion.

Theorem 1:
Damped Newton descent on FA starting from any vstart will terminate
eventually returning v such that AAT v > 0 at least when FA(v)− F ∗A ≤

1
4MxT xΥ2+1

. And this will not require more than O(FA(vstart) − F ∗ +

log log(4MxTxΥ2 + 1)) Newton steps.

In particular, from v = 1
Υ
× 1, this will require no more than Õ(ML)

Newton steps in the so called first phase, and, only Õ(log(L)) in the so
called second phase are required to terminate.

Proof. The first part of this theorem is just the self concordant theory
with applies to F which has a minimum (lemma 3 as XA 6= ∅) with
ε = 1

4MxT xΥ2+1
.

Yet, this value leads to a solution of the original linear feasibility problem
from lemma 6.
For the second point, it is required to use the Cramer rules+Hadamard
bound theorem which allows to bound log(xTx) by Õ(L). Then, F ( 1

Υ
1) ≤

M2 −M log(Υ) = O(ML) (Cauchy for the quadratic term and definition
of L for log(Υ) ≤ L), and, −F ∗ ≤ M log(xTx) = O(ML) due to lemma
2. So, the so called first phase lasts no more than O(ML) steps.
Then, the so called second phase lasts only O(log log(4MxTxΥ2 + 1))
which is just log(L) steps (definition of L + bound on x + lemma 2).

Theorem 2:
Assume that vTAAT v ≤ 4M , then:

∀$ ∈
[
0,

1

ΓA

]M
, F (v +$) ≤ F (v) +

1

200

In particular, ∀v,

F


int(ΓA×v1)+1

ΓA

...
int(ΓA×vM )+1

ΓA

 ≤ F (v) +
1

200

Proof. First, the log part only decreases when adding $ ≥ 0, thus,
only the quadratic part should be considered. So F (v + $) ≤ F (v) +
1
2
$TAAT$ +$TAAT v.

But, AT$ =
∑
m

$mA
T
m so ||AT$|| ≤

∑
m

$m||ATm|| ≤ ||$||∞MΥ ≤
1

500
√
M

, and ||AT$||2 = $TAAT$ ≤ 1
(1000)2M

.
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So, $TAAT v ≤
√
$TAAT$ × vTAAT v ≤

√
1

(500)2M
× 4M ≤ 1

250

(from Cauchy). And, 1
2
$TAAT$ =≤ 1

2×(1000)2M
≤ 50

1000
. Thus, it holds

that F (v +$) ≤ F (v) + 1
200

.
Then, int(t) + 1 is a special case of t + τ, τ ∈ [0, 1], so the offered

rounding scheme correspond to add $ ∈
[
0, 1

ΓA

]M
.

Theorem 3:
The self concordant described in table 3 always terminates in less then
Õ(ML) steps eventually returning v such that AAT v > 0. During all
the algorithm, all values of v have a common denominator of Γ, and, all
numerators are bounded by 2O(L).
Finally, ∇2

vF = AAT + Diag(v)−2. This matrix should be scaled to
H = Γ2(Diag(v)AATDiag(v)+I) to recover integer values before inversion
leading to Hi,j ≤ 2L.

Proof. First, the second part of the theorem is directly implied by the
first because that H = Γ2(Diag(v)AATDiag(v) + I) is an integer matrix
with values bounded by 2O(L) (it is true for ΓDiag(v) and A, and, not
modified by product).

Then, first part of theorem 3 is basically theorem 1+2. But it should
be proven carefully. One, it is important to stress that second phase only
last log(L) steps. So, even if a variable is scaled twice during log(L), then,
in fine the variable is only multiplied by L. So binary properties (binary
size, bound) will be remain unaffected during second phase because this
phase only last log(L).

This is why the offered algorithm does the ceiling only during first
phase i.e. when λ > 1

4
. Let stress vTAAT v ≥ 4M would never happen

during second phase, because, at this point F (v)−F ∗ ≤ 1
4
. Thus, even if

the scaling of v was not in the if, this will be useless during second phase.
Now, during the first phase, each Newton step decreases F by at least

1
50

( 1
100

as only 2 approximation of the damped factor will be possible).
Yet, the scaling will not increase F , but, will ensure vTAAT v ≤ 4M , and
thus, the theorem 2 holds. So, the ceiling phase will not increase F by
more than 1

200
. So, the decrease provided by the Newton step is at least

twice the increase of the ceiling.
Thus, only 4 modified Newton (2 for the 2 approximation of 1

1+λ
, 2

for compensating the ceiling error) steps are required to get (at least) the
same effect of 1 raw Newton step. Yet, thank to the ceiling, there is a
common denominator Γ for all v values. And, due to lemma 6, numerator
are thus bounded by 2

√
MxTxΓ which is Õ(2L).

Then, as 4 modified Newton offers (at least) the same effect than 1 raw
Newton step, theorem 1 proves that termination requires no more than
Õ(ML) steps.

2.3 Conclusion

So, the self concordant Perceptron converges in O(ML) steps, with a
common denominator and all numerators of it internal state v requiring
only L digits each. And, each step is (mainly) the inversion of H =
Γ2(Diag(v)AATDiag(v) + I) which is an integer matrix with each coeffi-
cient bounded by 2O(L), while, the constraint matrix H = ATDiag(Ax−
b)−2A naively requires ML digits per value. Indeed, H should naively be
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scaled as
∏
m

numerator(Amx − bm)2 × ATDiag(Ax − b)−2A to recover an

integer matrix.
To conclude, the contribution of this paper is a new algorithm whose

naive binary implementation will have better performance than all naive
binary implementations of all state of the art algorithms (in particular
naive self concordant Perceptron outperforms naive path following [15]
by a factor

√
M thank to a much lighter matrix to inverse). Inversely,

expert implementation of path following (whose theoretical existence is
claimed by [15]) may outperforms expert implementation of self concor-
dant Perceptron by a factor

√
M . Yet, the offered algorithm can thus be

relevant for critical applications where both binary issue is unacceptable,
and, expert implementation hard to prove using common tool for formal
verification.

References

[1] Andris Ambainis, Yuval Filmus, and François Le Gall. Fast matrix
multiplication: limitations of the coppersmith-winograd method. In
Proceedings of the forty-seventh annual ACM symposium on Theory
of Computing, pages 585–593, 2015.

[2] Erling D Anderson, Jacek Gondzio, Csaba Mészáros, and Xiaojie
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