
Does this simple coordinate descent solve linear
programming in O(M 3L) operations ?

Adrien CHAN-HON-TONG

December 19, 2021

Abstract

This document presents an algorithm for linear programming whose complex-
ity seems to be O(M3L) with a main loop which is just a simple coordinate de-
scent. This results, which should be validated, is interesting for linear program.

1 Introduction

1.1 Background
Linear programming which consists to solve min

x / Ax≥b
cTx for A ∈ ZM×N a matrix,

b, c ∈ ZM × ZN two vectors is a central optimization problem.
Today, state of the art algorithms is based on interior point and has almost not

changed since path-following algorithm [6] which solves linear programs with O(M)

variables and constraints, and L total binary size in less than Õ(
√
ML) Newton steps.

Each Newton step is mainly the resolution of a M ×M linear system which can be
done Õ(Mω

√
ML) where ω is the coefficient of matrix multiplication (3 with simple

algorithm but 2.38 with [1]). There exists faster randomized algorithm like [2] which
are not in the scope of this paper.

This paper presents an algorithm which is given1 to have a complexity of Õ(M3L+
Mω+1). Currently, 3 ≥ ω + 0.5 with efficient matrix multiplication algorithms, so the
offered complexity is not better than the state of the art. But, if one has to rely on
matrix multiplication with ω > 2.5 (for example for having simpler formal verification
on less complex algorithm), then, the offered algorithm is better than the state of the
art.

1.2 Contribution
As linear programming is equivalent to linear feasibility: given A ∈ ZM×N such
that XA = {χ,Aχ > 0} 6= ∅, linear feasibility consists to find x ∈ XA (see hal-
02399129v14 and/or hal-02491694v11). The offered algorithm will deal with this

1Due to the novelty of this result, a deeper validation should be performed !

1

shape. This way, this algorithm is similar to [3, 5]: slightly better than [5] and de-
terministic contrary to [3].

Precisely:

• The algorithm solve a linear feasibility instance (finding x ∈ XA) by solving (at
most) M linear weak feasibility instance. Weak feasibility consists to solve x
such that Ax ≥ 0 (with x 6= 0) with Ker(A) = {0} and the same hypothesis
than in linear feasibility.

• This last problem is solved by finding x, Ax ≥ −ε1. Indeed, if A ∈ ZM×M ,
b ∈ ZM , one could consider min

x,t,Ax+t≥b,t≥0
t. Then, Cramer rules implies that

t∗ = Det(AR)
Det(AS) . So either t∗ = 0 or t∗ ≥ 1

Det(AS) . Thus, if one find χ, τ such that

Aχ+ τ ≥ b, 0 ≤ τ ≤ 2−O(L), then, one could be sure that t∗ ≤ τ i.e. t∗ = 0.

2 Algorithm

2.1 Framework
Let A ∈ ZM×N such that XA = {χ,Aχ > 0} 6= ∅ and Ker(A) = {0} and total
binary size L. Thus, there exists χ,Aχ ≥ 1 and log(χTχ) = Õ(L) (due to Cramer
rule on χ + Hadamard bound on the determinant from the Cramer rule).

Let A the matrix with Am =
√

1
AmAT

m
Am. Let, Γ = max

m
AmATm then, it holds

that A × (
√

Γχ) ≥ 1. So there also exists x such that Ax ≥ 1 and log(xTx) =

Õ(L+ log(1
ε)). Then, let FA(v) = 1

2ΥvTAAT v −
∑
m

log(vm)

Seeing that ∀v ≥ 0, 1T v ≤ (Ax)T v = xTAT v ≤
√
xTx× vTAAT v, it holds that

F is bounded with F ∗ ≥ M log(xTx) = Õ(M(L + log(1
ε))). see hal-02399129v14

and/or hal-02491694v11 for a more complete proof.
Independently, one could consider an initial point vstart = 1√

Υ
1 which leads to

F (vstart) ≤M log(Υ) +M
Thus, if one is able to decrease F by a constant value (O(1)) using a block of

operations under some conditions, then, those conditions can not be meet Õ(M(L +
log(Υ))) times successively.

hal-02399129v14 and/or hal-02491694v11 offer to rely on Newton descent to per-
form this minimization, leading to a Õ(MωML) algorithm. However, this paper offers
a clever way.

2.2 Coordinate descent
Let fk(vk) = vk → F (v) a 1 variable self concordant function from]0,∞[to R.

Thus, results from self concordant theory holds (see for example [4]). In particular,

if f
′2
k (vk)
f ′′
k (vk) ≥

1
4 , then, fk

(
vk − 1

1+
f′2
k

(vk)

f′′
k

(vk)

f ′
k(vk)
f ′′
k (vk)

)
≤ fk(vk)− 1

50 .

Yet, f ′k(vk) = ΥAkA
T v − 1

vk
and f ′′k (vk) = ΥAkA

T
k + 1

v2k
= Υ + 1

v2k
.

2

Now, if AkAT v ≤ − 1√
Υ

, then the 2 terms of f ′k(vk) are negative, and, thus

f ′k(vk) = −(Υ|AkAT v|+ 1
vk

) ≤ −(
√

Υ + 1
vk

).

In particular, f
′2
k (vk)
f ′′
k (vk) ≥

(
√

Υ+ 1
vk

)2

Υ+ 1

v2
k

≥ 1.

So, as long as, there is k ∈ {1, ...,M} such that AmAT v ≤ − − 1√
Υ

, then,
it is possible with a simple 1D step on k to decrease F by a constant value. But
F (vstart) − F ∗ ≤ Õ(ML + M log(Υ)). So, this process can not last more than
ML+M log(Υ) steps !

Theorem 1:
If A ∈ ZM×N is a matrix with total binary size L and such that XA 6= ∅, then, it
is possible to find x such that Ax ≥ − 1√

Υ
in Õ(M(L+ log(Υ))) steps.

2.3 Purification
Now, using Υ = 2Õ(L), one can extract from x a vector such that Ax ≥ 0 with M
matrix inversion (i.e. Õ(Mω+1). Importantly, this term does not depend on L ! Thus,
using simple matrix multiplication i.e. ω = 3 is not an issue from complexity point of
view.

Now, by using simple pre processing to ensure that Ker(A) = {0}, one can thus
produce χ such that Aχ ≥ 0, Aχ 6= 0.

Finally, it is then possible to restart the process with A{m,Amχ=0} and this process
converges as {m,Amχ = 0} 6= {1, ...,M}.

Thus, one is able to solve linear program by tackling linear feasibility and more
precisely, with Õ(M) weak linear feasibility problems - each of them can be solved in
Õ(ML) 1D coordinate descent as presented in Theorem 1.

2.4 Implementation detail
Importantly, if done naively, each step of the coordinate descent cost M2 (the product
of a matrix vector). This may result in a Õ(M4L) algorithm not really competitive
with state of the art.

Now, using the correct data structure, one is able to perform the 1D coordinate de-
scent with onlyM operations, resulting in a Õ(M3L) total complexity. The underlying
idea to speed up this coordinate descent is to precompute AiATj and AT1k for all k.

This way, both, AT v and AAT v can be represented by M value, and, when per-
forming vk ← vk + δ, one could update those 2M values with

• AiAT (v+ δ1k) = AiA
T v+ δAiA

T
k i.e. AiAT (vk + δ)+ = δAiA

T
k with AiATk

being precomputed

• AT (v + δ1k) = AT v + δAT1k with AT1k being precomputed

This way, updating both v, AT v, and, AAT v can be done in Õ(M).

3

References
[1] Andris Ambainis, Yuval Filmus, and François Le Gall. Fast matrix multiplica-

tion: limitations of the coppersmith-winograd method. In Proceedings of the forty-
seventh annual ACM symposium on Theory of Computing, pages 585–593, 2015.

[2] Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the cur-
rent matrix multiplication time. In Proceedings of the 51st annual ACM SIGACT
symposium on theory of computing, 2019.

[3] John Dunagan and Santosh Vempala. A simple polynomial-time rescaling algo-
rithm for solving linear programs. Mathematical Programming, 114(1):101–114,
2008.

[4] Arkadi Nemirovski. Interior point polynomial time methods in convex program-
ming. Lecture notes, 42(16):3215–3224, 2004.

[5] Javier Peña and Negar Soheili. A deterministic rescaled perceptron algorithm.
Mathematical Programming, 155(1-2):497–510, 2016.

[6] James Renegar. A polynomial-time algorithm, based on newton’s method, for
linear programming. Mathematical programming, 40(1):59–93, 1988.

4

