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Main result on self concordant Perceptron.

Adrien CHAN-HON-TONG

July 7, 2021

Abstract

This paper is a summary of paper hal-02491694 focusing on the main theorem.

1 Claim
The paper hal-02491694 focuses on the problem of:

Finding x such that Ax > 0 for a given matrix A ∈ ZM×N with the prior that one
solution to this set of strict inequality exists.

which is linked with general linear programming (see the complete paper for details).
definition: Let introduce the self concordant function:

F (v) =
vTAAT v

2
− 1T log(v) =

M∑
i,j=1

vivj ×AiATj −
M∑
m=1

log(vm) (1)

theorem: A ∈ QM×N a normalized linear feasibility instance with Ax ≥ 1

• F ( 1
M 1) ≤ 1 +M log(M)

• F has a minimum (let write it F ∗) with −F ∗ ≤M log(xTx)

• for all v, F (v)− F ∗ ≤ 1
2MxT x+2

⇒ AAT v > 0

trivial corollary: As F is self concordant [2], damped Newton descent, starting
from any vstart, builds v such that F (v)−F ∗ ≤ 1

2MxT x+2
in less than Õ(F (vstart)−

F ∗ + log log(2MxTx)) steps (if F has a minimum).
Yet, the main theorem gives exactly the required information: F has a minimum,

and, thus, damped Newton descent, starting from 1
M 1, builds a solution of the linear

feasibility in less than Õ(M log(xTx) + log log(2MxTx)) = Õ(M log(xTx)) steps.
Yet, log(xTx) = Õ(L) where L is the binary size of the input matrix (see complete

paper). This finally gives a Õ(ML) number of steps, with each step being the resolu-
tion of a M ×M linear system (which can be done in Mω arithmetic operation with
ω = 3 with simple algorithm or with ω ≈ 2.38 with [1]).
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comparison with state of the art: Arithmetic time complexity (operations on Q
are counted as 1) of this algorithm is Õ(MωML) which is higher than Õ(Mω

√
ML)

for central path log barrier [2] or path following [3].
Yet, this algorithm has some interesting binary complexity features detailed in hal-

02491694: [2] has the drawback that some variable becomes very high (Õ(2
√
ML))

while both self concordant Perceptron and [3] avoid this issue. But, [3] requires a care-
ful rounding process based on several implicit constant while self concordant Percep-
tron has a simple explicit one (but with the drawback of having an higher complexity).

2 Proof of the claim

2.1 Existence of a minimum
Let recall Cauchy inequality: ∀u, v two vectors uT v ≤

√
uTu× vT v.

AsA is normalized, then for allm,AmATm = 1. So from Cauchy, ∀i, j,AiATj ≤ 1.
So, F ( 1

M 1) = 1
M2

∑
i,j

AiA
T
j +M log(M) ≤ 1 +M log(M).

Then, again from Cauchy (AT v)Tx ≤
√
vTAAT v × xTx. But (AT v)Tx =

vT (Ax). And, by definition Ax ≥ 1. Injecting this last inequality is interesting when
v ≥ 0: ∀v ≥ 0, vT1 ≤ vT (Ax) = (AT v)Tx ≤

√
vTAAT v × xTx.

Also when v ≥ 0, then, both vT (Ax) = (AT v)Tx and
√
vTAAT v × xTx are

positive. So, one can take the square: ∀v ≥ 0, (vT 1)2

xT x
≤ vTAAT v. And, independently

(vT1)2 > vT v because v ≥ 0. So ∀v ≥ 0, v
T v
xT x
≤ vTAAT v.

Let introduce f(t) = t2

2xT x
− log(t), from previous inequality it stands that F (v) ≥∑

m
f(vm).

Now, f is a single variable function which goes to infinity when t goes to 0 (t2 → 0
but − log(t)→∞) or to infinity (t2 growths faster than log(t)). So, f has a minimum
and so F too. Let call them f∗ and F ∗.

As f and F are smooth, the minimums are characterized by a null derivative or gra-
dient. f ′(t) = t

xT x
− 1

t , so, f ′(
√
xTx) = 0, so f∗ = f(

√
xTx) = 1

2 −
1
2 log(x

Tx) ≥
− log(xTx). Thus, the minimum of F verifies F ∗ ≥Mf∗ ≥ −M log(xTx).

So the two first assertions of the main theorem are proven.

2.2 Normalization, linearization and lemmas

Independently, let remark that θ(t) = F (tv) = vTAAT v
2 t2 − 1T log(v) −M log(t) is

minimal when vTAAT v = M . So for any w, one could build a v = µw such that

vTAAT v = M and F (v) ≤ F (w). In other words, it stands that F
(√

M
vTAAT v

v
)
≤

F (v).
So, let consider v ≥ 0 such that vTAAT v = M . As, vTAAT v ≥ (1v)2

xT x
, no vm

could be higher than
√
MxTx i.e. 0 ≤ v ≤

√
MxTx1.

Let also remark that F (v+w) = vTAAT v
2 + wTAATw

2 +wTAAT v− 1T log(v)−
1T log(1 + w

v ) = F (v) + wTAATw
2 + wTAAT v − 1T log(1 + w

v )
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Finally, let consider the following lemmas from basic analysis:

1. φ(t) = 1
2αt

2 − log(1 + t) ≤ 1
2 (α+ 1)t2 − t = ψ(t) for t ≥ 0

2. ψ( 1
α+1 ) ≤ −

1
2α+2

3. φ( 1
α+1 ) ≤ −

1
2α+2 i.e. ∀α ≥ 0, 1

2
α

(α+1)2 − log(1 + 1
α+1 ) ≤ −

1
2α+2

Lemma1: ψ′(t) − φ′(t) = (α + 1)t − 1 − αt + 1
1+t = t − 1 + 1

1+t = t2

1+t >
0, so ψ(t) − φ(t) always increases. But, ψ(0) = φ(0) = 0 so ψ(t) ≥ φ(t) for
t ≥ 0. Lemma2: ψ( 1

α+1 ) = 1
2 (α + 1) 1

(α+1)2 −
1

α+1 = − 1
2α+2 . lemma3 is just

lemma1+lemma2.

2.3 Convergence
Now, either AAT v > 0 (problem solved) or there exists k such that AkAT v ≤ 0.

Let consider this case AkAT v ≤ 0 and vTAAT v = M , and, let introduce w =
v + vk

v2k+1
1k.

Then F (w) = F (v + vk
v2k+1

1k) = F (v) +
AkA

T
k

2 ( vk
v2k+1

)2 + AkA
T v × vk

v2k+1
−

log(1 + 1
v2k+1

). But, AkAT v ≤ 0 (by assumption) and AkA
T
k = 1, so F (w) ≤

F (v) + 1
2 (

vk
v2k+1

)2 − log(1 + 1
v2k+1

).

And, from lemmas just above (consider α = v2k), F (w) ≤ F (v)− 1
2v2k+2

.

But, vk ≤
√
MxTx, so, F (w) ≤ F (v)− 1

2MxT x+2
which is impossible if F (v)−

F ∗ < 1
2MxT x+2

. So, ∀v > 0 such that vTAAT v = M , F (v) − F ∗ ≤ 1
2MxT x+2

⇒
AAT v > 0.

Finally, the requirement that vTAAT v =M could be remove because normalizing

decreases F : ∀v > 0, F (v)− F ∗ ≤ 1
2MxT x+2

⇒ F (
√

M
vTAAT v

v)− F ∗ ≤ 1
2MxT x+2

⇒
√

M
vTAAT v

×AAT v > 0⇒ AAT v > 0.
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