
HAL Id: hal-00722920
https://hal.science/hal-00722920v31

Preprint submitted on 12 Oct 2020 (v31), last revised 16 Jan 2023 (v38)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving linear feasibility in linear number of steps with
self-concordant Perceptron.

Adrien Chan-Hon-Tong

To cite this version:
Adrien Chan-Hon-Tong. Solving linear feasibility in linear number of steps with self-concordant Per-
ceptron.. 2020. �hal-00722920v31�

https://hal.science/hal-00722920v31
https://hal.archives-ouvertes.fr

Solving linear feasibility in linear number of steps

with self-concordant Perceptron.

Adrien CHAN-HON-TONG

October 12, 2020

Abstract

This paper offers an algorithms which solves any linear feasibility in-
stance with a number of step which is at most linear in the binary size
of the instance. This algorithm combines Perceptron and self concordant
functions (log barrier) features. In particular, algorithm step are damped
Newton step mainly consisting in solving a set of linear equations.

Using common conversion, this algorithm could be used to solve linear
programming, but, this leads to a slightly higher time complexity than
state of the art. Inversely, times complexity for linear separability is state
of the art, and, binary complexity is also mastered thank to a specific
rounding process.

Claim

This paper claims the following statements

• Definition 1: Linear feasibility or linear separability is the task of com-
puting x ∈ QN such that Ax > 0 any given matrix A ∈ ZM×N but
assuming such x exists.

For complexity analysis, let M be the number of constrains, and N be
the number of variables from the original problem. Let B be the maximal
binary size of any entry of A, and, L the total binary size (L ≤MNB but
mainly L ≈MNB).

• Remark: This linear separability task is not real-life friendly because
it is hard to have the assumption that a solution exists without having
solving the problem. Yet, this problem is significant for complexity point
of view (in particular it is still equivalent to linear programming).

Let also stress that there is no approximation in this task: the output
should be x such that Ax > 0 or equivalently Ax ≥ 1. So this algorithm
is not comparable with common solvers (e.g. [4, 1, 5, 10, 11]) for which
Ax ≥ 1 may not be true for some rows even when an exact solution exists
(it may be for a tiny set of rows but anyway it is not exact solution).

1

• Lemma 1 (common knowledge): there exists a trivial normalization
process which convert A ∈ ZM×N into A ∈ Z4M×N+2 such that rows of
A can be normalized on Q (i.e. ∀m,

√
AmATm ∈ Z), and, such that binary

sizes of A and A are almost the same, and, such that ∃χ ∈ RN / Aχ >
0⇔ ∃ω ∈ RN+2 / Aω > 0 (link between χ and ω being trivial).

• Lemma 2 (common knowledge): If ∃χ ∈ RN / Aχ > 0 then ΩA =

min
ω / ∀m,Amω≥1

ωTω is well defined, and, Ω = Õ(NB).

Interestingly, when one could apply lemma 2 after lemma 1, and, as nor-
malizing A does not change ΩA, this allows to state that it does not
restrict generality to consider that A is normalized on Q when solving a
linear separability instance Ax > 0 (binary size should be understand as
binary size on Z before normalization).

• definition 2: ∀v ∈ QM , A ∈ QM×N , FA(v) = vTAAT v
2 −

M∑
m=1

log(vm)

• Theorem 1: let A be a normalized instance of linear feasibility (so ΩA is
well defined), then,

– FA(1
M 1) = Õ(M)

– FA(v) is lower bounded

– let write F ∗A for the minimum, then F ∗A = Õ(M log(ΩA))

– and for all v, FA(v)− F ∗A ≤ 1
2MΩA+2 ⇒ AAT v > 0

So minimizing sufficiently FA allows to find x = AT v such that Ax > 0
i.e. allows to solve the linear separability instance.

• Corollary 1 (application of common knowledge): As FA is self
concordant (in context of linear separability), damped Newton descent
from 1

M 1 allows to compute v such that FA(v) − F ∗A ≤ 1
2MΩA+2 in less

than Õ(M log(ΩA)).

So, solving linear separability instance A (by computing x such that Ax >

0) can be done with at most Õ(MNB) = Õ(L) damped Newton step -
each step mainly consisting in solving a M ×M linear system.

• Corollary 2: When representing variable as fraction of two infinite-size
integer, using a specific rounding process allows to use an common de-
nominator, plus, bounding the binary size of all numerators after each
steps of the algorithm. The bound being Õ(M log(ΩA)), it results that
the algorithm is polynomial times, with strongly polynomial steps having
binary complexity Õ(LMγ) with Mγ the number of integer multiplication
required to solve a M ×M linear system. So, the global algorithm has
time complexity Õ(L) which is state of the art for linear separability and

binary time complexity Õ(L2Mγ).

2

• Corollary 3 (common knowledge): using common conversion process
from linear separability to linear programming, it holds that this algorithm
can be used to solve general linear programming (without any assumption
on input contrary to linear separability).

These conversion leads to an algorithm solving linear programming in
Õ(ML) damped Newton steps.

This complexity is slightly higher than state of the art which is Õ(
√
NL)

for central path log barrier [8, 7] and even less for [3, 2, 6] (but higher

than just Õ(L)).

Yet, this algorithm is better for solving linear separability than to shape
the instance into a linear programming one and to apply state of the art.
Indeed, central path log barrier solves linear programming in Õ(

√
NL)

steps but it does not solve linear feasibility faster than Õ(
√
NL), while

our algorithm is specific for this last task with a Õ(L) time complexity.

Common knowledge is presented in appendix for completeness, but, is com-
posed of trivial and/or classical results. Conversions (appendix A) and bound
on ΩA (appendix C) are based on Cramer rules and Hadamard bound. Self
concordant theory (appendix D) is briefly recalled but could be found for ex-
ample in [7]. Only contribution is theorem 1 which is the encoding of a linear
separability into a self concordant function which share feature with Perceptron
[9] (presented in appendix B for completeness).

Let stress that this is not classical log barrier optimization because if the
goal was to minimize vTAAT v under constraint v ≥ 0, then, the result would
have just trivially been 0. Here the goal is a common minimization of vTAAT v
while keeping v > 0 which forces AAT v not to be negative. Let stress that as a
result v > 0 at the end of the algorithm, but, this is just a side effect - the goal
is just to produce x = AT v such that Ax > 0.

So this is not log barrier applied to convex optimization but self concordant
Perceptron (i.e. encoding of the Perceptron into a self concordant function).

Normally, all notations of the paper are standards. The index A of FA and
ΩA would be omitted when no ambiguity is possible.

Proof

As it does not restrict generality (see lemma 1 and 2), let assume that A ∈
QM×N is a normalized linear separability instance i.e. rows are normalized and
exists x such that Ax ≥ 1, and so, Ω = min

ω / ∀m,Amω≥1
ωTω is well defined. Then,

F (v) =
vTAAT v

2
−

M∑
m=1

log(vm)

3

Existence of a minimum

First, as A is normalized AiA
T
j ≤ 1 due to Cauchy, so it trivially holds that

F (1
M 1) = 1

M2

∑
i,j

AiA
T
j +

∑
m=1

log(M) ≤M log(M) + 1 = Õ(M).

then, vTAω = (AT v)Tω ≤
√
vTAAT v × ωTω. But, by definition Aω ≥ 1,

so ∀v ≥ 0, vT1 ≤ vTAω ≤
√
vTAAT v × Ω. So, ∀v ≥ 0, (vT 1)2

Ω ≤ vTAAT v, and,

(vT1)2 > vT v (v ≥ 0). So ∀v ≥ 0, vT v
Ω ≤ vTAAT v. This is the same idea than

in Perceptron, if v is large then ||x|| = ||AT v|| can not be too low.

Let introduce f(t) = t2

2Ω − log(t), from previous inequality it stands that
F (v) ≥

∑
m
f(vm).

Now, f is a single variable function which goes to infinity when t goes to 0
(t2 → 0 but − log(t) → ∞) or to infinity (t2 growths faster than log(t)). So, f
has a minimum and so F too (more precisely, as f goes to ∞ on 0 or ∞, one
could define a compact on which F (v) ≤ F (vstart), but on this compact it has
a minimum which is also the minimum of the function as the value if higher
outside the compact). Let call them f∗ and F ∗.

Importantly, if there is no x such that Ax ≥ 1 then, there exists y such that
Ay = 0 and y > 0, and, F is not bounded (can go to −∞). But, the existence
of x (assumption of linear separability) forces the existence of F ∗ (thank to

Cauchy because vT v
Ω ≤ vTAAT v for positive v).

As f , F are smooth the minimums are characterized by a null derivative or
gradient. f ′(t) = t

Ω −
1
t , so, f ′(

√
Ω) = 0, so f∗ = f(

√
Ω) = 1

2 −
1
2 log(Ω) ≥

− log(Ω). Thus, the minimum of F verifies F ∗ ≥Mf∗ ≥ −M log(Ω).

So F is bounded and F (vstart)− F ∗ ≤ Õ(M log(Ω)) for vstart = 1
M 1.

Normalization, linearization and lemmas

Independently, let remark that θ(t) = F (tv) = vTAAT v
2 t2−1T log(v)−M log(t)

is minimal when vTAAT v = M . So for any w, one could build a v = µw
such that vTAAT v = M and F (v) ≤ F (w). In other words, it stands that

F
(√

M
vTAAT v

v
)
≤ F (v).

So, let consider v ≥ 0 such that vTAAT v = M . As, vTAAT v ≥ (1v)2

Ω , no

vm could be higher than
√
MΩ i.e. 0 ≤ v ≤

√
MΩ1.

Let also remark that F (v+w) = vTAAT v
2 + wTAATw

2 +wTAAT v−1T log(v)−
1T log(1 + w

v) = F (v) + wTAATw
2 + wTAAT v − 1T log(1 + w

v)
Finally, let consider the following lemmas from basic analysis:

1. ϕ(t) = 1
2αt

2 − log(1 + t) ≤ 1
2 (α+ 1)t2 − t = ψ(t) for t ≥ 0

2. ψ(1
α+1) ≤ − 1

2α+2

3. ϕ(1
α+1) ≤ − 1

2α+2 i.e. ∀α ≥ 0, 1
2

α
(α+1)2 − log(1 + 1

α+1) ≤ − 1
2α+2

4

First, ψ′(t) − φ′(t) = (α + 1)t − 1 − αt + 1
1+t = t − 1 + 1

1+t = t2

1+t > 0, so
ψ(t) − φ(t) always increase. But, ψ(0) = φ(0) = 0 so ψ(t) ≥ φ(t) for t ≥ 0.
Second, ψ(1

α+1) = 1
2 (α+ 1) 1

(α+1)2 −
1

α+1 = − 1
2α+2 . Three is just 1+2.

Convergence

Now, if AkA
T v ≤ 0 and vTAAT v = M , let introduce w = v+ vk

v2k+1
1k: this idea

is again Perceptron based, one could increase v and decrease ||AT v|| (precisely F

here) in the same times. Then F (w) = F (v+ vk
v2k+1

1k) = F (v) +
AkA

T
k

2 (vk
v2k+1

)2 +

AkA
T v × vk

v2k+1
− log(1 + 1

v2k+1
). But, AkA

T v ≤ 0 and AkA
T
k = 1, so F (w) ≤

F (v) + 1
2 (vk
v2k+1

)2 − log(1 + 1
v2k+1

).

And, from lemmas just above, F (w) ≤ F (v) − 1
2v2k+2

. But, vk ≤
√
MΩ, so,

F (w) ≤ F (v)− 1
2MΩ+2 which is impossible if F (v)− F ∗ < 1

2MΩ+2 . So, ∀v > 0

such that vTAAT v = M , F (v)− F ∗ ≤ 1
2MΩ+2 ⇒ AAT v > 0.

Finally, ∀v > 0, F (v)− F ∗ ≤ 1
2MΩ+2 ⇒ F (

√
M

vTAAT v
v)− F ∗ ≤ 1

2MΩ+2

⇒
√

M
vTAAT v

AAT v > 0 ⇒ AAT v > 0. This finishes the proof of the main

theorem.

Proof of corollaries

Self concordance

Despite that all this paper relies on self concordance theory, there is nothing to
prove to apply results from [7] recalled in appendix D to F (AAT is positive
because vTAAT v = ||AT v||22 ≥ 0 and F has a minimum see theorem 1).

So results recalled in in appendix D directly leads to state that damped New-
ton descent starting from any vstart builds v such that F (v)−F ∗ ≤ 1

2MxT x+2
(i.e.

a solution of the linear feasibility) in less than Õ(F (vstart)−F ∗+log log(2MxTx))
steps.

But as proven in theorem 1, F (vstart)−F ∗ = M log(Ω) for vstart = 1
M 1. So,

damped Newton descent builds a solution of the linear feasibility problem in less
than Õ(M log(Ω) + log log(MΩ)) steps. Precisely, almost all the optimization
is done in the so called phase 1 which may last M log(Ω) because the phase 2
only requires log log(MΩ) steps i.e. it is negligible.

Using Cramer rules and Hadarmard bound (see appendix C), one can then
proof that Ω ≤ N22NB log(N) with 2B being a bound on each entry of A ∈ ZM×N
before normalization - i.e. maximal binary size of all entries. This finally gives
a Õ(NMB) number of steps, which becomes Õ(L) by reintroducing the total
binary size. So, the complexity is established:

The offered algorithm solves linear feasibility in Õ(L) damped Newton steps
(L being the total binary size of the input matrix A).

5

Binary complexity

For practical floating point implementation, the previous claim that complexity
is Õ(L) Newton steps is sufficient. Yet, floating point implementation is impos-
sible with too large numbers (and may lead to numerical issue even with not
too large numbers).

So, from theoretical point of view, it is required to have also a bound on
the binary complexity of each step when representing rational number as frac-
tion of two infinite size integers - let recall that naive Gaussian elimination is
exponential when not taking care about intermediary values.

For establishing binary complexity of each step, one should use approxima-
tion instead of square root and round the number after each damped Newton
step without breaking the convergence. This is possible as presented bellow.

Computing λ is impossible on Q, but, as F is convex, it holds that F (v −
θ(∇2

vF)−1(∇vF)) ≤ 1
2 (F (v) + F (v − 1

1+λ(v) (∇2
vF)−1(∇vF))) if 1

2
1

1+λ(v) ≤ θ ≤
1

1+λ(v) . So approximating λ by a factor 2 approximation is sufficient and possible

on Q (only twice number of steps are required compared to infeasible exact
computation version). Then, with the same idea, normalizing vTAAT v = M is
not possible exactly, but, M

2 ≤ vTAAT v ≤ 2M is possible and still guarantees

that v ≤ Õ(MΩ).
Importantly, finding µ such that µ ≤ √ρ ≤ µ+1 is in log(ρ) (with bisection)

which is too much here. But, finding µ such that µ ≤ √ρ ≤ 2µ is in log(log(ρ))
because bisection can be done on power. So, computing approximation of λ
or normalization should be done using this fast bisection, and this way, binary
complexity of this operation will be Õ(B) and not O(B2) (currently there are
dedicated algorithms to compute square root, but, here, there are not even
required - this may allows to find an 2 approximation of the optimal value
instead of a fixed 1

λ+1 for the same cost).
Finally, flooring variable could be dramatic due to the log but ceiling is ac-

ceptable. So at each step, one should ceil v: vround = int(Q∗v+1)/Q (after New-
ton and normalization). So, one has F (vround) ≤ F (v) + 2|v − vround|1TAAT v
(logs are not affected by ceiling) so F (vround) ≤ F (v) + 2

Q1TAAT v but as v

is bounded by O(MΩ) and A is normalized this leads to F (vround) ≤ F (v) +

O(M
2Ω
Q). By setting Q such that this remainder is - at most - half the minimal

decreasing during a damped Newton descent (1
4 − log(5

4) in phase 1), one could
guarantee that the only twice the number of damped Newton steps are required
to reach a solution while keeping a mastered infinite integer representation (with

a common denominator Q having a binary size limited by Õ(log(MΩ)) and nu-

merators with binary size also bounded by Õ(log(MΩ)) as v ≤ O(MΩ).

So, binary size of all numbers can be round to Õ(NB) at the end of each

damped Newton step. Within a step, binary size will not exceed Õ(NMB)
(because there is O(M) multiplications). This leads to an algorithm without
any numerical issue, and, steps being the resolution of a M ×M linear system
with entries with size Õ(NMB).

So, finally, for floating point implementation (i.e. with possible numeri-

6

cal instabilities and not arbitrary large numbers), the algorithm converges after

solving less than Õ(MΩ) linear systems of size M ×M .
And, using exact infinite integer representation, the algorithm con-

verges after solving less than Õ(L) linear systems of size M ×M with fraction

coded by two integers with maximal binary value being Õ(L) using the offered

rounding strategy. This leads to a Õ(NωL2) binary complexity (assuming fast

multiplication of number of binary size B is done in Õ(B) binary operations and

solving a M ×M linear system requires Õ(Nω) multiplications) for A ∈ ZM×N
with maximal entry bounded (in absolute value) by 2B and total binary size
L ≈ NMB.

References

[1] Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for support vector
machines. ACM transactions on intelligent systems and technology (TIST),
2011.

[2] Sergei Chubanov. A polynomial projection algorithm for linear feasibility
problems. Mathematical Programming, 2015.

[3] Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in
the current matrix multiplication time. In Proceedings of the 51st annual
ACM SIGACT symposium on theory of computing, 2019.

[4] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-
Jen Lin. Liblinear: A library for large linear classification. Journal of
machine learning research, 2008.

[5] Thorsten Joachims. Svmlight: Support vector machine. SVM-Light Support
Vector Machine http://svmlight. joachims. org/, University of Dortmund,
1999.

[6] Yin Tat Lee and Aaron Sidford. Path finding methods for linear program-
ming: Solving linear programs in o (vrank) iterations and faster algorithms
for maximum flow. In 2014 IEEE 55th Annual Symposium on Foundations
of Computer Science. IEEE, 2014.

[7] Arkadi Nemirovski. Interior point polynomial time methods in convex pro-
gramming. Lecture notes, 2004.

[8] Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algo-
rithms in convex programming. Siam, 1994.

[9] Frank Rosenblatt. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, 1958.

[10] Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter.
Pegasos: Primal estimated sub-gradient solver for svm. Mathematical pro-
gramming, 2011.

7

[11] Shai Shalev-Shwartz and Nathan Srebro. Svm optimization: inverse de-
pendence on training set size. In Proceedings of the 25th international
conference on Machine learning, 2008.

Appendix A: Equivalence on linear programming

This paper provides an algorithm algo0 such that for any A such that ∃x / Ax ≥
1, the algorithm returns v such that AAT v > 0 in Õ(L) Newton (v is positive
but this does not matter).

• Trivially, if AAT v > 0 then A(AT v) > 0. So algo1(A) = ATalgo0(A)
returns χ such that Aχ > 0 (when exists) with the same complexity.

• Let consider any A, b such that ∃x / Ax > b, finding such x is equivalent to
find a pair x, t such that Ax−t×b > 0, t > 0 because x

t is a solution. Let A
the matrix with A plus 1 as additional column and (0 1) as additional row.
Thus, algo2(A, b) can be implemented by computing (x t) = algo1(A)
and returning x

t (complexity still unchanged)

• Let any A and b such that ∃x/Ax ≥ b, finding such x is equivalent to
find a pair x, t such that Ax + t1× > b, 0 < t < 1

max
S⊂A

Det(S) . Indeed,

from such pair, one could project x on {z / Az ≥ b} while minimizing t,
this leads to x̂, t̂ with t̂ ≤ t < 1

max
S⊂A

Det(S) but x̂, t̂ is a vertex of A. So

Cramer rule applies, and so there exists S such that t̂ =
Det(Spartiel)

Det(S) but

seeing constraint on t̂ it forces t̂ = 0 i.e. Ax̂ ≥ b. So, algo3(A, b) can be
implemented by

– computing (x t) = algo2(A, β) with A being A plus 1 as additional
column, and (0 1), (0 − 1) as additional rows and β = b plus 0 and
− 1

max
S⊂A

Det(S)

– projecting (x t) on {(z τ) / Az + τ1 ≥ b} while minimizing t

– returning x

Importantly, if highest number in A, b is bounded by 2B , then, maximal
determinant is lower than 2MB+M log(M) (Hadamard bound), so, the com-
plexity of algo3 is just increased by a factorM compared to the complexity
of algo2.

• Let any A, b - without assumption - solving Ax ≥ b (or producing a
certificate) is equivalent to solve min

z /Az+t1≥b,t≥0
t (there is a solution if

the minimum is 0). Yet, this last linear program is structurally feasible
(x = 0 and a sufficiently large t) and bounded because t ≥ 0. Thus,
primal dual theory gives a system Aprimal−dual(x y) ≥ bprimal−dual
whose solution contains solution of the linear program min

z /Az+t1≥b,t≥0
t

8

and thus of x such that Ax ≥ b or a certificate that no solution ex-
ists. So a possible implementation of algo4(A, b) is to compute (x y) =
algo3(Aprimal−dual, bprimal−dual) returning only x or the certificate.

Importantly, the number of variables-constraints is scaled two folds but
from theoretical point of view, it does not change the complexity. Let
stress again that from algo4 there is no assumption on the input: for any
A, b algo4(A, b) either returns x such that Ax ≥ b, or, a certificate that
no such x exists.

• Finally, for any A, b, c without any assumption solving min
x /Ax≥b

cTx can be

done with 2 algo4 calls and one algo3 call:

– one to know if the problem is feasible i.e. algo4(A, b)

– one on the dual to known if it is bounded algo4(Adual, bdual)

– and one call to algo3 on the primal dual to get the optimal solution
(if one passes the two first step than the problem is feasible and
bounded so the primal dual has a solution).

Again, from theoretical point of view, the complexity does not change: it
only does 3 calls on instances only scaled 2 times. At the end, it returns
the optimal solution or a certificate that the problem is not feasible or not
bounded. Let stress that the opposite way is trivial algo5(AAT ,1,0) is a
correct implementation of algo1(A) for any A.

This recall the common knowledge that the ability to solve linear separation
v / AAT v > 0 (assuming a solution exists) allows to solve linear programming
in general just adding a factor M .

Yet, an important point is that an algorithm solving linear programming in
Õ(
√
NL) (e.g. central path log barrier) will solve linear feasibility in Õ(

√
NL) if

just applied to the linear feasibility instance shaped into a linear programming
one. Inversely, this paper offers and algorithm which directly tackles linear
separability with complexity Õ(L) i.e. better than central path log barrier
for linear separability but worse for linear programming. The question of the
extension of the Perceptron log barrier.

The same holds for normalization: let A such that ∃x / Ax ≥ 1, then let
consider A which has 4 times more constraint and 2 additional variables (so
complexity does not change) built as follow: for all constraint An, A gets the 4
constraints 2An :: ±1 :: ±2AnA

T
n .

The point is that each such new constraints has a norm 4AnA
T
n + 1 +

4(AnA
T
n)2 = (2AnA

T
n + 1)2. So, each new constraint can be normalized on

Q as the root of the norm is an integer (while binary size is only scaled twice).
Importantly, (x 0 0) is a solution for A, and inversely, any solution χ for A is
a solution for A when removing the last two coordinates (if not zeros, it always
make one from the 4 constraints worse).

Let stress that normalizing is mainly for understanding - the offered algo-
rithm works with the raw matrix but proof is a bit harder.

9

Appendix B: Perceptron

The goal of the Perceptron algorithm [9] is to find x such that Ax > 0 (assuming
such x exists). As, this does not restrict generality (see Appendix A), one could
assume that A has normalized rows and could consider ΩA = min

ω / Aω≥1
ωTω.

Let write ωA for the solution of this SVM problem.
The key idea of Perceptron is to look for x as x = AT v with positive v, and,

to remark that either Ax > 0 or it is possible both to increase v and decrease
xTx. But then, a Cauchy inequality linking vT v (which increases) and xTx
(which decreases) would forces this process to converge.

Precisely, one could consider the algorithm xt+1 = xt + ATit with Aitxt ≤ 0
(possible if the algorithm has not reached Ax > 0) with x0 = 0.

Let recall the Cauchy inequality: ∀u, v, uT v ≤
√
uTu× vT v. Then, (ωTAxt)

2 ≤
xTt xtΩA.

But xTt+1xt+1 = xTt xt + 2Aitxt +ATitAit ≤ x
T
t xt + 1 because 2Aitxt ≤ 0 and

ATitAit = 1.

So, xTt+1xt+1 ≤ t.
While ωTAxt+1 = ωTAxt + ωTAA

T
it
≥ ωTAxt + 1 because AωA ≥ 1.

So, ωTAxt ≥ t.
So (ωTAxt)

2 ≤ xTt xtΩA becomes:

t2 ≤ (ωTAxt)
2 ≤ xTt xtΩA ≤ ΩA × t

But, t2 can not be lower than ΩA × t for t ≥ ΩA, so the algorithm converges in
less than ΩA steps and returns some x = AT v with v ≥ 0.

Now, ΩA can be large: classical tricks combining Cramer rules and Hadar-
mard bound allow to state that if the maximal value of all entries of A ∈
ZM×N (before normalization) is 2B , then, ΩA ≤ N22BN log(N) (see appendix
C for completeness), so this algorithm is exponential because it may require

Õ(N22BN log(N)) steps. Inversely, the self concordant Perceptron is just an up-
dated version of this Perceptron such that the number of steps goes from ΩA to
M log(ΩA) = Õ(NMB) = Õ(L).

Let stress that Perceptron steps are much faster than Newton ones: Per-
ceptron step is just checking if Axt > 0 and if not xt+1 = xt + ATit , so binary

step complexity is just Õ(NMB) while damped Newton steps require to solve
a M ×M linear system. More generally, as step may have different complexity,
it is important to distinguish binary complexity (total number of binary oper-
ations - unbiased) and complexity (number of steps - a step being a strongly
polynomial times sub algorithm - like solving a linear system - biased).

Appendix C: SVM

Assuming ∃x ∈ QN /Ax ≥ 1 with A ∈ QM×N a normalized matrix, then, there
exists a solution to the SVM problem ΩA = min

ω / Aω≥1
ωTω, and, Perceptron will

converge in Õ(ΩA) steps while the self concordant Perceptron in Õ(M log(ΩA))

10

Now, this value ΩA should be characterized. Currently, it is not trivial to
show directly that this ΩA is small. But the classical trick is to consider the fol-
lowing theoretical problem (that nobody is going to solve) min

χ /Aχ≥1
Υ((χ Aχ−1)

where Υ(p) > Υ(q) if and only if υ(p) > υ(q) or υ(p) = υ(q) and ||p||1 > ||q||1
and where υ(p) is the lexicographic rank of not-zero index vector p i.e. υ(p) >
υ(q) if and only if ∃i /(∀j < i, pj = 0⇔ qi = 0)∧ pi 6= 0∧ qi = 0. The solution
of this problem is unique (because if there is 2, one could explore the linear
combination of the two either to saturated some Ajχ ≥ 1 or to make 0 some
χi). And, this solution is naturally a vertex because it maximizes the size of a
set of equality.

Thus, the solution of this theoretical problem is also the only solution of a
set of equality AIχ = 1, χJ = 0 with some set I, J . Thus, this system is full
rank, and one could extract a square not singular matrix A from it, and, χ is
the only solution of Ax = B with A being a sub matrix of A (plus some Dirac
vector) and B being 0-1 vectors. So Cramer rules hold, thus, each component
of χ is a fraction of sub determinants of A. But, Hadamard bound (again) gives
that if maximal entry of this matrix is 2B , then χTχ ≤ 22NB log(N).

So, there exists χ such that Aχ ≥ 1 and such that log(ΩA) ≤ log(χTχ) =

Õ(NB).

Appendix D: Self concordant theory

This appendix only reports few results from [7] which could be considered for
completeness.

A smooth single variable function φ is self concordant if and only if |φ′′′(t)| ≤
2(φ′′(t))

3
2 . And, a smooth multi variable function Φ is self concordant if each

ray t→ Φ(at+ b) is self concordant (i.e. for all vectors a, b).
Mainly, self concordant functions are quadratic, linear, constant and − log

ones. For example, the function x → xTQx + qTx − log(αx − β) is a self
concordant function for any vector q, α, bias β and any matrix Q as soon as Q
is positive (not necessarily strictly positive, 0 is possible).

Now, if G is a smooth self concordant function, let introduce λ and the
damped Newton descent:

λG(x) =
√

(∇xG)T (∇2
xG)−1(∇xG)

x = x− 1

1 + λG(x)
(∇2

xG)−1(∇xG)

The important property of Newton descent on self concordant functions is that:
if G has a minimum G∗, then, damped Newton descent starting from any xstart
allows to build x such that G(x) − G∗ ≤ ε in less than Õ(G(xstart) − G∗ +
log log(1

ε)) damped Newton steps.
Precisely, [7] describes this optimization in two phases:

11

• while λ(x) ≥ 1
4 , each damped Newton step decreases G of at least 1

4 −
log(5

4), this is the so called phase 1.

• as soon as λ(x) ≤ 1
4 , then, the two next statements hold

G(x)−G∗ ≤ λG(x)2

2(1− λG(x))
; λ(x− 1

1 + λG(x)
(∇2

xG)−1(∇xG)) ≤ 2λ(x)2

this is the so called phase 2 (with G(x) − G∗ and/or λG(x) having a
quadratic convergence).

Classically, damped Newton descent is considered in the phase 2 while it is
considered in phase 1 in this paper (phase 2 being negligible as performed in

Õ(log log(MΩA)).

12

