
HAL Id: hal-00722920
https://hal.science/hal-00722920v30

Preprint submitted on 5 Aug 2020 (v30), last revised 16 Jan 2023 (v38)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The simplest polynomial times algorithm for linear
programming.

Adrien Chan-Hon-Tong

To cite this version:
Adrien Chan-Hon-Tong. The simplest polynomial times algorithm for linear programming.. 2020.
�hal-00722920v30�

https://hal.science/hal-00722920v30
https://hal.archives-ouvertes.fr

The simplest polynomial times algorithm for

linear programming.

Adrien CHAN-HON-TONG

August 5, 2020

Abstract

This paper introduces a simple and straightforward algorithm for lin-
ear programming. Only self concordant theory and basic linear algebra are
required to prove the convergence and the polynomial times complexity.

1 Introduction

Linear programming is the very studied task of optimizing a linear criterion
under linear equality and inequality constraints: the canonical form of linear
program is thus

max
x / Ax=b,x≥0

cTx (1)

with A a matrix, b, c two vectors. This problems has been first tackled by
exponential algorithms like simplex [2]. The first polynomial time algorithm
solving this problem is the ellipsoid method [4, 3]. Today, the state of the art
of polynomial time algorithm for linear programming is central-path log-barrier
algorithm [6, 5] (despite the recent Chubanov method [1] could be a challenger).

Yet, classical method are not trivial to explain. Ellipsoid method requires
not trivial algebra (like the computation of the minimal enclosing ellipsoid of an
ellipsoid cut by a plane). And, classical log barrier algorithm are not straight-
forward because it consists to apply Newton descent of a function which changes
during runtimes, and, it requires post processing to purify the resulting solution.
Inversely, the offered algorithm apply Newton descent of a static function whose
minimum is easily characterized.

For this reason (and because this algorithm is theoretically not that slower
than current state of the art, and, because it deals structurally with linear
separation problems which is common in machine learning), this algorithm could
be useful for education.

So, let state the required common knowledge to build the proof and the main
claims of this paper:

1

Required common knowledge:

1. If an algorithm is able to decide if ∃x / Ax > 0 for any given matrix
A in polynomial times (in the binary size of A), then, it can be adapted
to solve any linear program instances eq.(1) in polynomial times (in the
binary size of the matrix A and vectors b, c) (see appendix A).

2. The set of single variable function φ verifying |φ′′′(t)| ≤ 2(φ′′(t))
3
2 is the

set of self concordant single variable function, a multi variable function
Φ(v) is self concordant if ∀v, w, φv,w(t) = Φ(v + tw) is self concordant.

3. If Φ is self concordant with a minimum, damped Newton descent allows to
produces ω such that Φ(ω)−Φ∗ ≤ ε in O(Φ(ω0)−Φ∗ + log log(1

ε)) steps.

Theorem 1:

Let A ∈ QN×M a matrix with normalized rows1 (i.e. AnA
T
n = 1) such that

exists x ∈ QM verifying Ax ≥ 1, then the function

F (v) =
vTAAT v

2
− 1T log(v) =

N∑
i,j=1

vivj ×AiATj −
N∑
n=1

log(vn) (2)

has a minimum F ∗, and, ∀v ∈ QN such that vTAAT v = N :

F (v)− F ∗ ≤ 1

2
√
NxTx+ 2

⇒ AAT v > 0 (3)

Theorem 2:

As F is self concordant, and, F (1
N 1)−F ∗ ≤ N log(NxTx)+N , applying damped

Newton descent from v0 = 1
N 1 allows to build a solution of AAT v > 0 in less

than Õ(N log(xTx)) = Õ(N2L) steps where L is the binary size of the largest
value in A (when rescaling the matrix in Z).

As computation can be done with controlled precision, this algorithm has
a polynomial times of Õ(N2L) steps, each step being mainly the inversion of
a N ×N matrix having value with binary size NL log(NM) when scaled on Z
(number of initial variables M only has the minimal impact of increasing AiA

T
j

i.e. it adds a log(M) factor in the complexity - yet N ≥M in typical instances).

2 Proof

2.1 Minimum of F

Let recall that Cauchy states that ∀u, v, uT v ≤
√
uTu× vT v.

1The algorithm works with not normalized matrix but normalizing is possible - see appendix
C

2

So, vTAx = (AT v)Tx ≤
√
vTAAT v × xTx. But, by definition Ax ≥ 1, so

∀v ≥ 0, vT1 ≤ vTAx ≤
√
vTAAT v × xTx. So, ∀v ≥ 0, (vT 1)2

xT x
≤ vTAAT v, and,

(vT1)2 > vT v (v ≥ 0). So ∀v ≥ 0, vT v
xT x
≤ vTAAT v.

Let introduce f(t) = t2

2xT x
− log(t), from previous inequality it stands that

F (v) ≥
∑
n
f(vn).

Now, f is a single variable function which goes to infinity when t goes to 0
or to infinity, so, f has a minimum and so F too.

As F is smooth the minimum is characterized by a null gradient so the
minimum of F verifies

∇∗vF = 0⇔ AAT v∗ =
1

v∗

So, the minimum is a solution to the problem, but, bellow, it is proven than
any low values is ones.

2.2 Normalization, linearization and lemmas

Independently, let remark that θ(t) = F (tv) = vTAAT v
2 t2 − 1T log(v)−N log(t)

is minimal when vTAAT v = N , so any iterative algorithm could normalize v
between each step2 so that vTAAT v = N without increasing F .

So, let consider v ≥ 0 such that vTAAT v = N . As, vTAAT v ≥ (1v)2

xT x
, no vn

could be higher than
√
NxTx i.e. 0 ≤ v ≤

√
NxTx1.

Let also remark that F (v+w) = vTAAT v
2 + wTAATw

2 +wTAAT v−1T log(v)−
1T log(1 + w

v) = F (v) + wTAATw
2 + wTAAT v − 1T log(1 + w

v)
Finally, let consider the following lemmas from basic analysis:

1. ϕ(t) = 1
2αt

2 − log(1 + t) ≤ 1
2 (α+ 1)t2 − t = ψ(t)

2. ψ(1
α+1) ≤ − 1

2α+2

3. ϕ(1
α+1) ≤ − 1

2α+2 i.e. ∀ρ ≥ 0, 1
2

ρ
ρ+1 − log(1 + 1

ρ+1) ≤ − 1
2ρ+2

First, ψ′(t) − φ′(t) = (α + 1)t − 1 − αt + 1
1+t = t − 1 + 1

1+t = t2

1+t > 0, so
ψ(t) − φ(t) always increase. But, ψ(0) = φ(0) = 0 so ψ(t) ≥ φ(t). Second,
ψ(1

α+1) = 1
2 (α+ 1) 1

(α+1)2 −
1

α+1 = − 1
2α+2 . Three is just 1+2.

2.3 Low values of F

Now, if AkA
T v ≤ 0 and vTAAT v = N , let introduce w = v + vk

vk+11k. Then

F (w) = F (v+ vk
vk+11k) = F (v) +

AkA
T
k

2 (vk
vk+1)2 +AkA

T v× vk
vk+1 − log(1 + 1

vk+1)

But, AkA
T v ≤ 0 and AkA

T
k = 1, so F (w) ≤ F (v) + 1

2
vk
vk+1 − log(1 + 1

vk+1).

2The algorithm hopefully works without this normalization as square root computation is
not possible on Q - see arithmetic considerations

3

And, from lemma 3 F (w) ≤ F (v) − 1
2vk+2 . But, vk ≤

√
NxTx, so, F (w) ≤

F (v)− 1

2
√
NxT x+2

which is impossible if F (v)− F ∗ < 1

2
√
NxT x+2

So, the theorem 1 is proven: ∀v > 0 such that vTAAT v = N , F (v)−
F ∗ ≤ 1

2
√
NxT x+2

⇒ AAT v > 0.

2.4 Complexity

Self concordant function are linear, positive quadratic and -log function. So, F
is self concordant.

So, Damped Newton descent [5]

v = v − 1

1 +
√

(∇vF)T (∇2
vF)−1(∇vF)

(∇2
vF)−1(∇vF) (4)

plus renormalization of v, starting from v0 allows to reach v > 0 with vTAAT v =
N such that F (v) ≤ F ∗+ 1

2
√
NxT x+2

in O(F (v0)−F ∗+ log log(1
NxT x

)) Newton

steps.
But, as A is normalized F (v0) ≤ N log(N) + 1.
Finally, let assume that ∀i, j, Ai,j ≤ 2L (when projecting A in Z), then,

there is x such that Ax ≥ 1 with xTx ≤ N22NLN2N due to Hadarmard bound
+ Cramer rules. Indeed, x can be seen as the solution of a linear system built
from A so Cramer rules for linear system allows to characterize each xm with
sub determinant of A, but, Hadarmard bound states that no sub determinant
could be higher than 2NLNN (this is common knowledge, see appendix B for

precision). So log(xTx) = Õ(NL).
Currently, here the duration of the convergence in the quadratic part is

completely negligible, only count F (v0) + |F ∗| = Õ(N log(xTx)) = Õ(N2L) (F

can not be lower than N −N log(NxTx) as vTAAT v = N and v ≤
√
NxTx).

So, the first part of theorem 2 is proven: damped Newton descent
allows to produces v such that AAT v > 0 in less than Õ(N2L) steps.

3 Arithmetic considerations

This section deals with the fact that operations done by a computer can only be
in Z and eventually in Q using using infinite precision representation of numbers
(e.g. fraction with infinite length numerator and denominator).

So, this raise 2 issues : first the cost of an elementary operation depends on
the integer sizes, and any not rational operations can not be done exactly.

First, the only not rational operations are normalization and computation
of the damped step. The solution is in both case to approximate with a fixed
ratio the correct value. This way, as computing 1

1+
√

(∇vF)T (∇2
vF)−1(∇vF)

is

impossible one will just compute q ≤ 1

1+
√

(∇vF)T (∇2
vF)−1(∇vF)

≤ 2q. Com-

puting such q is possible even using bisection in Õ(log log(L)) because one

4

look for q such that q ≤ 1

1+
√

(∇vF)T (∇2
vF)−1(∇vF)

≤ 2q and not such that

q ≤ 1

1+
√

(∇vF)T (∇2
vF)−1(∇vF)

≤ q+1. So the bisection can be done on the power

- not on the value. This requires initial bounds which are 1
1+(∇vF)T (∇2

vF)−1(∇vF)

and 1.
This way, the approximate damped Newton step may lead to only half de-

creasing, but, hopefully not less because the function is convex. So, two ap-
proximate damped Newton steps are at least as good as one exact damped step
(during first phase - second phase is negligible with this algorithm).

For the normalization, computing
√
vTAAT v is impossible so exact normal-

ization can not be done. But making
√
vTAAT v not higher than 2N or not

lower than N
2 is possible with bisection on power in Õ(log log(L)).

Importantly, consideration on variable bound still hold if vTAAT v ∈ [N2 , N]
(adding a factor two on the maximal size, and, thus on the required proximity
to optimal value - but it does not change anything from theoretical point of
view).

Second point, during a step, it is possible allowing to avoid any numerical
issue using infinite representation. But using infinite precision in all algorithm
leads the binary size of the number to explode. So, the idea is to use infinite
representation in a step, and, infinite representation with bounded denominator
in all algorithm by ceiling v between each step - importantly, ceiling and not
flooring should be used to avoid any issue with the log. Precisely, after each
step, vn = fraction(Q× vn + 1, Q) (for example in python).

The good point is that v ≤
√
NxTx, so the ceiling operation can not increase

F by more than N2
√
NxT x
Q . As Newton step guarantee a decrease of at least

1
4 − log(5

4) ≈ 1
50 (during first phase but there is not second phase here), it is

sufficient to select Q such that N2
√
NxT x
Q ≤ 1

100 (currently less because all the

numerical consideration should be taken simultaneously, so it is 1
1600 in fact).

So, it just that using Q = 2log(1600N
3
2 xT x)+1 is acceptable. So binary size of Q

is just Õ(NL).

So, using this ceiling strategy binary size of denominator is Õ(NL) and as

v ≤
√
NxTx binary size of the numerator is at most two times higher i.e. still

Õ(NL).
All those arithmetic considerations3 prove the second part of the theorem 2:

the number of binary operation of each step is lower than Õ(Nκ ×NL) (under

assumption that multiplication of numbers is done efficiently in Õ(L)) where
Nκ is the complexity of the computation of (∇2

vF)−1(∇vF) - let say 3 for naive
implementation or 2.8 with Strassen or so on.

3These considerations are true from theoretical point of view - from a practical point of
view, this algorithm is absolutely not able to solve even small with N = 500 instances using
such exact arithmetic scheme with python fraction while solving instance with N = 106 has
been achieved using numpy float - taking the risk of failing on ill conditioned instances - exact
version will never fail.

5

4 Conclusion

The offered algorithm may not be competitive with classical log barrier as it
tackle ∃?x / Ax > 0 problems, and, not min

Ax≥b
cTx problems + complexity of

state of the art log barrier is Õ(
√
NL) step against Õ(N2L) here4.

Yet, the offered algorithm is very simple to explain, and directly tackle linear
separation. So, it could be used for education and machine learning.

Also - this will be the topic of futur works - Newton descent can be hy-

bridized for example F (v + w) = F (v) + wTAATw
2 + wTAAT v − 1T log(1 +

w
v) ≤ F (v) + N

2 w
Tw + wTAAT v − 1T log(1 + w

v) as A is normalized. But,
N
2 w

Tw + wTAAT v − 1T log(1 + w
v) can be optimized exactly in O(N) opera-

tions because it is N independent simple single variable optimization. So, some
Newton step could be avoided when the bound is tight... In the same way, using
an exponential-simplex-like algorithm (in parallel) on min

v≥1
vTAAT v could lead

to some synergies...

References

[1] Sergei Chubanov. A polynomial projection algorithm for linear feasibility
problems. Mathematical Programming, 153(2):687–713, 2015.

[2] George B et. al. Dantzig. The generalized simplex method for minimizing a
linear form under linear inequality restraints. In Pacific Journal of Mathe-
maticsAmerican Journal of Operations Research, 1955.

[3] Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid
method and its consequences in combinatorial optimization. Combinatorica,
1(2):169–197, 1981.

[4] Leonid Khachiyan. A polynomial algorithm for linear programming. Doklady
Akademii Nauk SSSR, 1979.

[5] Arkadi Nemirovski. Interior point polynomial time methods in convex pro-
gramming. Lecture notes, 2004.

[6] Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algo-
rithms in convex programming, volume 13. Siam, 1994.

Appendix A: Equivalence on linear programming

This paper provides an algorithm algo0 such that for any A such that ∃x / Ax ≥
1, the algorithm returns v such that AAT v > 0 in Õ(N2L) operations.

4Currently, it is not clear that L is similar, but, the L selected in this paper allows to use
Hadamard bound...

6

• Let consider any A such that ∃x / Ax ≥ 1, producing χ such that Aχ > 0
can be done easily by applying algo0 and returning AT v instead of just
v. So, one could build algo1 which returns χ with the same complexity.

• Let consider any A, b such that ∃x / Ax > b, finding such x is equivalent to
find a pair x, t such that Ax−t×b > 0, t > 0 because x

t is a solution. Let A
the matrix with A plus 1 as additional column and (0 1) as additional row.
Thus, algo2(A, b) can be implemented by computing (x t) = algo1(A)
and returning x

t (complexity still unchanged)

• Let any A and b such that ∃x/Ax ≥ b, finding such x is equivalent to
find a pair x, t such that Ax + t1× > b, 0 < t < 1

max
S⊂A

Det(S) . Indeed,

from such pair, one could project x on {z / Az ≥ b} while minimizing t,
this leads to x̂, t̂ with t̂ ≤ t < 1

max
S⊂A

Det(S) but x̂, t̂ is a vertex of A. So

Cramer rule applies, and so there exists S such that t̂ =
Det(Spartiel)

Det(S) but

seeing constraint on t̂ it forces t̂ = 0 i.e. Ax̂ ≥ b. So, algo3(A, b) can be
implemented by

– computing (x t) = algo2(A, β) with A being A plus 1 as additional
column, and (0 1), (0 − 1) as additional rows and β = b plus 0 and
− 1

max
S⊂A

Det(S)

– projecting (x t) on {(z τ) / Az + τ1 ≥ b} while minimizing t

– returning x

Importantly, if highest number in A, b is bounded by 2L, then, maximal
determinant is lower than 2NL+N log(N) (Hadamard bound), so, the com-
plexity of algo3 is increased by a factor N compared to the complexity of
algo2.

• Let any A, b - without assumption - solving Ax ≥ b is equivalent to
solve min

z /Az+t1≥b,t≥0
t (there is a solution if the minimum is 0). Yet, this

last linear program is structurally feasible (x = 0 and a sufficiently large
t) and bounded because t ≥ 0. Thus, primal dual theory gives a system
Aprimal−dual(x y) ≥ bprimal−dual whose solution contains solution of the
linear program min

z /Az+t1≥b,t≥0
t and thus of x such that Ax ≥ b or a certifi-

cate that no solution exists. So a possible implementation of algo4(A, b)
is to compute (x y) = algo3(Aprimal−dual, bprimal−dual) returning only x
or the certificate.

Importantly, the number of variables-constraints is scaled two folds but
from theoretical point of view, it does not change the complexity...

Let stress that from algo4 there is no assumption on the input: for any
A, b algo4(A, b) either returns x such that Ax ≥ b, or, a certificate that
no such x exists.

7

• Finally, for any A, b, c without any assumption solving eq.(1) can be done
with algo5(A, b, c): algo5 does 2 algo4 calls and one algo3 call

– one to know if the problem is feasible i.e. algo4(A, b)

– one on the dual to known if it is bounded algo4(Adual, bdual)

– and one call to algo3 on the primal dual to get the optimal solution
(if one passes the two first step than the problem is feasible and
bounded so the primal dual has a solution).

Again, from theoretical point of view, the complexity does not change: it
only does 3 calls on instances only scaled 2 times. At the end, it returns
the optimal solution or a certificate that the problem is not feasible or not
bounded

So, this recall the common knowledge that the ability to solve linear sep-
aration v / AAT v > 0 (assuming a solution exists) allows to solve linear pro-
gramming in general just adding a factor N when going from solving Ax ≥ b
using Ax > b algorithm (the opposite is trivial algo5(AAT ,1,0) is a correct
implementation of algo0(A) for any A).

Appendix B: Perceptron and support vector ma-
chine

If ∃v > 0 / AAT v > 0, then, A(AT v) > 0 so ∃x / Ax > 0 and by scaling
∃x / Ax ≥ 1.

Inversely, if ∃x / Ax ≥ 1 with rows of A being normalized, one could consider
the algorithm xt+1 = xt+a

T
t with atxt ≤ 0 (which stops if Ax > 0) with v0 = 1.

Then, (xTxt)
2 ≤ xTxxTt xt (Cauchy)

But xTt+1xt+1 ≤ xTt xt + 1 because atxt ≤ 0 and ata
T
t = 1

While xTxt+1 ≥ t because Ax ≥ 1
So (xTxt)

2 ≤ xTxxTt xt becomes t2 ≤ xTxt i.e. t ≤ xTx.
So, this serie can not last more than xTx step, and, thus the algorithm

converges and returns some x.
Now, at the end, the solution is a positive linear combination of rows of A.

So, by remembering the steps of the algorithm, one could recover v > 0 such
that AAT v > 0.

So, Perceptron converges in less than 1TAAT1×xTx steps with x such that
Ax ≥ 1 while Newton descent on F terminate in less than N log(1TAAT1×xTx)
(coarsely). But, how much xTx could be large ?

The minimal value of such x is

min
x /Ax≥1

xTx

i.e. the solution of the support vector machine problem linked to A. Currently,
from any x such that Ax ≥ 1, one could build a larger x but this paper proof is
true with the minimal x.

8

Now, it is not trivial to show directly that this xTx is small. But the classical
trick is to consider the following theoretical problem (that nobody is going to
solve) min

χ /Aχ≥1
Υ((χ Aχ − 1) where Υ(p) > Υ(q) if and only if υ(p) > υ(q)

or υ(p) = υ(q) and ||p||1 > ||q||1 and where υ(p) is the lexicographic rank of
not-zero index vector p i.e. υ(p) > υ(q) if and only if ∃i /(∀j < i, pj = 0 ⇔
qi = 0) ∧ pi 6= 0 ∧ qi = 0.

The solution of this problem is unique (because if there is 2, one could explore
the linear combination of the two either to saturated some Ajχ ≥ 1 or to make
0 some χi). And, this solution is naturally a vertex because it maximizes the
size of a set of equality. Thus, the solution of this theoretical problem is also
the only solution of a set of equality AJχ = 1, χJ = 0. Thus, this system
is full rank, so one could extract a square not singular matrix A from it, and,
Aχ = B with A being a sub matrix of A (plus some Dirac vector) and B being
0-1 vectors. Then Cramer rules hold, and, ensure that each component of χ is
bounded by a sub determinant of A.

So, there exists χ such that Aχ ≥ 1 and such that χTχ ≤ NN2N22NL i.e.
log(χTχ) = Õ(NL) (a fortiori xTx ≤ χTχ = Õ(NL)).

Appendix C: Normalizing linear separation

Let A such that ∃x / Ax ≥ 1, then let consider A which has 4 times more
constraint and 2 additional variables (so complexity does not change) built as
follow: for all constraint An, A gets the 4 constraints 2An :: ±1 :: ±2AnA

T
n .

The point is that each such new constraints has a norm 4AnA
T
n + 1 +

4(AnA
T
n)2 = (2AnA

T
n + 1)2. So, each new constraint can be normalized on

Q as the root of the norm is an integer (while binary size is only scaled twice).
Importantly, (x 0 0) is a solution for A, and inversely, any solution χ for

A is a solution for A when removing the last two coordinates (if not zeros, it
always make one from the 4 constraints worse).

However, normalizing is mainly for understanding - the algorithm works
with the raw matrix but proof is a bit harder. Also, despite normalizing is not
required, it makes sure that all constraints are considered independently from
the norm, so it may have an influence on the geometry underlying the problem.

9

