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Teaming interior and combinatorial algorithms

for linear programming.

Adrien CHAN-HON-TONG

July 17, 2020

Abstract

This paper introduces several algorithms for linear programming which
verifies 3 properties: they have complementary times complexity features
(one being polynomial times), they can exchange their current points,
and, they work with related goal. It seems to be the first portfolio of
algorithm verifying such properties.

1 Introduction

Linear programming is the very studied task of optimizing a linear criterion
under linear equality and inequality constraints: the canonical form of linear
program is thus

max
x / Ax=b,x≥0

cTx (1)

with A a matrix, b, c two vectors. This problems has been first tackled by
exponential algorithms like simplex [3]. The first polynomial time algorithm
solving this problem is the ellipsoid method [5, 4]. Today, the state of the art
of polynomial time algorithm for linear programming is central-path log-barrier
algorithm [7, 6] (despite the recent Chubanov method [2] could be a challenger).

motivation:

Those different algorithms have different time complexity features: for example,
simplex is strongly polynomial times for some families of instances (e.g. markov
chain [8]) despite being exponential times in general, while log barrier is poly-
nomial times in general but not known strongly polynomial even for relevant
families (it is known not to be strongly polynomial times in general [1]). Thus
teaming them could be relevant.

However, simplex, ellipsoid and log barrier algorithms can not straightfor-
wardly help each other. Let imagine that one solves simultaneously a common
linear program with an ellipsoid, a simplex and a log barrier algorithm. Yet, the
internal state of ellipsoid is not just a point xelli but mainly the ellipsoid which
bound the feasible space. So, it is impossible to swap xelli with (for example)
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xsimplex as the related ellipsoid is not known (and may hardely be smaller). Sim-
ilarly, classical log barrier method consists in minimizing some function G(x, ρ)
with x while increasing ρ (because, on one hand, the x-minimum of G(x, ρ) is a
solution of the linear program only for high ρ, but, on the other hand, ρ should
not be too high to maintain x in the quadratic convergence area of the Newton
descent). So, this dependency in ρ makes it hard to know if it is relevant to
swap xinterior with xelli or xsimplex at a given running times.

Now, one could wonder if it is possible to adapt and embed some of these
algorithms into a space where they could help each other. This paper offers such
framework and 3 algorithms with complementary times complexity features,
possibility to exchange their current states, and, similar goals.

Claim:

Precisely, this paper introduces 3 algorithms, each of them takes AAT ∈ ZN×N
as input, and, each of them finds v > 0 such that AAT v > 0. Let recall that
it is a common knowledge that given an algorithm that finds v > 0 such that
AAT v ≥ 0 (when it exists), one could build an algorithm for generic linear
programming (see appendix A).

Importantly, they have a common internal state v ∈ QN (with simple nor-
malization rules allowing to compare two current points to check if swapping
is relevant). And, all their goal are linked to minimize vTAAT v (more or less
explicitly, with different constraints), making swapping potentially relevant.

Those 3 algorithms are:

1. Log barrier minimization of vTAAT v: this algorithm is an interior-point
algorithm, it consists to use Newton descent on min

v

1
2v
TAAT v−1T log(v).

It produces v > 0 such that AAT v > 0 in a polynomial number of steps
(precisely, if x = arg min

z / Az≥1
zT z, then, Õ(N log(xTx × 1TAAT1) Newton

step are required i.e. Õ(N2L) with N the number of rows of A and 2L

bounding the numbers of A).

2. Constrained minimization of vTAAT v: this algorithm is a combinatorial:
current state can be matched with a subset {1, ..., N}). It consists in
solving min

v≥1
vTAAT v. Let R = {I ⊂ {1, ..., N} / min

v≥1,vI=1
vTAAT v =

min
vI=1

vTAAT v}}, the algorithm does not require more than Õ(N |R|) steps

(despite |R| could be as high as 2N , this algorithm is strongly polynomial
on families with bounded |R|).

3. Implicit minimization of vTAAT v: this algorithm is very different because
it uses recursion and seeks to solve max

v≥0,1T v=1
min
n

AnA
T v. Yet, by con-

struction, it maintains v > 0 and decreases vTAAT v at each iteration. Let
S = {I ⊂ {1, ..., N} / ∃v > 0/I = arg min

n
AnA

T v}, then, this algorithm

does not perform more than |S| recursive calls, thus complexity is linked

2



to factorial(|S|) = |S| × (|S| − 1) × (|S| − 2) × ... × 1 (for example, it is
strongly polynomial if |S| is O(1)).

2 Log barrier minimization of vTAATv

This section proves that if exists x / Ax > 0, then approximating the minimum
of

F (v) =
1

2
vTAAT v − 1T log(v) (2)

allows to build a solution of

find v > 0 such that AAT v > 0 (which exists when x exists) (3)

2.1 Property of the minimum

Let A a matrix with N rows (AAT ∈ ZN×N ), and, the prior that exists x with
Ax ≥ 1.

For all v ≥ 0, 1T v ≤ (Ax)T v = xT (AT v) ≤
√
xTx× vTAAT v (last inequal-

ity is Cauchy). Thus, vTAAT v ≥ 1
xx (1T v)2 ≥ 1

xxv
T v (as v ≥ 0).

Now, let consider the functions F (v) = 1
2 × v

TAAT v −
∑
n

log(vn) (range

is always {1, ..., N} when omitted) and f(t) = 1
2xT x

t2 − log(t). Using previous
inequality, it stands that F (v) ≥

∑
n
f(vn).

Now, f(t) →
t→0 or ∞

∞ because − log(t) is dominated by t2 in ∞ and the

opposite in 0. Thus, f is lower bounded i.e. has a minimum f∗. As f is smooth,
this minimum is a zero of the derivative: f ′(t) = 1

xT x
t− 1

t i.e. t∗ =
√
xTx and

|f∗| ≤ 1
2 −

1
2 log(xTx). So, |f∗| ≤ log(xTx) (assuming it is higher than 1). Let

also stress that f ′′(t) = 1
xT x

+ 1
t2 > 0 i.e. f is convex.

Now as f has a minimum, F has one too with |F ∗| ≤ N log(xTx), and, as F
is also smooth, this minimum is a zero of the gradient: ∇v∗F = AAT v∗− 1

v∗ = 0.
So, the minimum of F verifies AAT v∗ = 1

v∗ > 0 i.e. this is a solution of eq.(3).

Minimizing F eq.(2) allows to solve AAT v > 0, v > 0 i.e. eq.(3).

2.2 Property of approximate minimums

Now, how close one should be to have a solution of eq.(3) ? Let before state 4
trivial lemmas:

1. φ(t) = 1
2αt

2 − log(1 + t) ≤ 1
2 (α+ 1)t2 − t = ψ(t)

2. ψ( 1
α+1 ) ≤ − 1

2α+2 (thus φ( 1
α+1 ) ≤ − 1

2α+2 from lemma 1)

3. ϕ(t) = t
2 − log(t) is positive for t ≥ 2

4. f(t) ≤ Ω⇒ t ≤ xTx+ 2Ω + 2
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First, ψ′(t) − φ′(t) = (α + 1)t − 1 − αt + 1
1+t = t − 1 + 1

1+t = t2

1+t > 0, so
ψ(t) − φ(t) always increase. But, ψ(0) = φ(0) = 0 so ψ(t) ≥ φ(t). Second,
ψ( 1

α+1 ) = 1
2 (α+ 1) 1

(α+1)2 −
1

α+1 = − 1
2α+2 . Three, ϕ′(t) = 1

2 −
1
t so ϕ increases

for t > 2 but ϕ(2) = 1 − log(2) as log(2) < 1, ϕ(2) > 0 and thus ϕ(t) > 0
for t > 2. Four, f is convex so f(t + xTx + 2) ≥ f(xTx + 2) + tf ′(xTx + 2),

but, f(xTx + 2) ≥ 1
2 (xTx + 2) − log(xTx + 2) ≥ 0 (because xT x+2

xT x
> 1 and

lemma 3). And, f ′(xTx + 2) ≥ 1 − 1
xT x+2

≥ 1
2 . So f(t + xTx + 2) ≥ t

2 . Thus,

f(2Ω + xTx+ 2) ≥ Ω, so, lemma 4.

Then, the key point of the minimization of F is that: F (v) ≤ F (v0) ⇒
f(vn) ≤ F (v0) + N |f∗| because f(vn) + (N − 1)f∗ ≤

∑
n
f(vn) ≤ F (v). Let

Γ = max
n

AnA
T
n and v0 = 1√

Γ
1, then F (v0) ≤ N2 + N log(Γ). And, using

lemma 4, F (v) ≤ F (v0) implies f(vn) ≤ F (v0) +N |f∗| which bounds all vn by
Θ = 2N2 + 2N log(Γ) + 2N log(xTx) + xTx+ 2.

Now, if F (v) ≤ F (v0) and AkA
T v ≤ 0, let define δ = 1

4ΓΘ2+2 and w such

that ∀n 6= k,wn = vn and wk = (1 + 2δ)vk, then F (w) ≤ F (v) + 2AkA
T v × δ +

2vkAkA
T
k vk × δ2 − log(1 + 2δ). Then, using the fact that AkA

T v ≤ 0, it stands
that F (w) ≤ F (v) + 1

2vkAkA
T
k vk(2δ)2 − log(1 + 2δ). Using the bound on v, it

stands that F (w) ≤ F (v) + 1
2ΓΘ2(2δ)2 − log(1 + 2δ). Then, as expected 2δ has

been selected such that lemma 2 can be applied, thus F (w) < F (v) − δ. This
implies that F (v) > F ∗ + δ because F (w) can not be lower.

∀v ∈ QN , F (v) ≤ F (v0) and F (v) ≤ F ∗ + δ ⇒ AAT v > 0
(with δ = 1

4ΓΘ2+2 , Θ = 2N2 + 2N log(Γ) + 2N log(xTx) + xTx+ 2,

Γ = max
n

AnA
T
n , v0 = 1√

Γ
1 and x such that Ax ≥ 1)

2.3 Complexity of Newton descent on F

Let now assume that ∀i, j, Ai,j ≤ 2L. Then, Γ ≤ D22L (D is the number of
variables of the original problem which has only logarithmic impact here), so

N log(Γ) = Õ(NL). Also, there is x such that Ax ≥ 1 and xTx ≤ N22NLN2N

(see appendix B for precision). So log(xTx) = Õ(NL) Finally, log(Θ) = Õ(NL)
(xTx dominates all other term in N2 +N log(Γ)+N log(xTx)+xTx), and, thus

log( 1
δ ) = Õ(NL).

Now, F is self concordant as sum of self concordant function (− log is and
semi definite quadratic term is). So, Damped Newton descent [6]

v = v − 1

1 +
√

(∇vF )T (∇2
vF )−1(∇vF )

(∇2
vF )−1(∇vF ) (4)

starting from v0 allows to reach v such that F (v) ≤ F ∗ + δ in O(F (v0)− F ∗ +
log log( 1

δ )) Newton steps. Here log log(1
δ ) is completely negligible, only count

F (v0) + |F ∗| = Õ(N log(1TAAT1 × xTx)) = Õ(N2L). Thus starting from v0,

reaching v such that F (v) ≤ F ∗ + δ can be done in Õ(N2L) Newton steps.
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Importantly, preprocessing A (e.g. normalizing rows) has no impact on the
complexity as 1TAAT1× xTx is constant when scaling A.

Damped Newton descent eq.(4) allows to minimize sufficiently F eq.(2) and
thus to find v > 0 such that AAT v > 0 eq.(3) in a polynomial number of

Newton steps.

Importantly, during a step, using infinite precision representation of numbers
(e.g. fraction with infinite length integer) is possible allowing to avoid any nu-
merical issue. But using infinite precision in all algorithm leads the binary size
of the number to explode. Yet, using infinite precision in a step, but, ceiling all
vn on a common denominator after each step allows both to avoid numerical is-
sue and to keep a frozen binary size. Indeed, as v is bounded (as F (v) ≤ F (v0)),
ceiling can be done such that this increases vTAAT v no more than the half of
Newton decrease (log terms are not affected). So it just double the number of
Newton steps. Also, it is required to approximate 1

1+
√

(∇F )T (∇2F )−1(∇F )
as this

quantity is not in Q. Hopefully, as F is convex, approximating it by a factor
2 just doubles the number of Newton steps (importantly, here approximating
√
ρ can be computed easily in Õ(log(L)) because one does not need µ such that

µ − 1 <
√
ρ < µ + 1, but, µ <

√
ρ < 2µ). Thus, each step requires at most

Õ(N3 × NL) binary operations using controlled arithmetic: precisely it is the
complexity of solving (∇2F )u = ∇F which is slightly less than N3 (for the NL
it is because binary size of number may increase by a factor N). It also assumes

L-binary-size number multiplication is done in Õ(L). So, not only the number
of step is polynomial, but also, the binary complexity of each step.

Damped Newton descent eq.(4) allows to find v > 0 such that AAT v > 0
eq.(3) in a polynomial times.

3 Constrained minimization of vTAATv

Let consider v∗ the solution of

min
v≥1

vTAAT v (5)

If AnA
T v∗ < 0, then (this is the principle of the Perceptron) one could increase

v∗n a little and produces a better solution. So AnA
T v∗ ≥ 0.

Yet, AAT v∗ 6= 0 because v∗AAT v∗ 6= 0 so one could remove the n such that
AnA

T v∗ > 0 and starts again with the others. This process of removing rows
converges in at most N runs (see appendix C).

An algorithm minimizing eq.(5) can be used to solve eq.(3).

Yet, here solving eq.(5) can be done exactly (without exploding binary size)
using combinatorial algorithm.
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3.1 Algorithm for constrained vTAATv minimization

Let consider the following algorithm:

1. v = 1

2. if AAT v ≥ 0 exits

3. I = {i / vI = 1}

4. w = min
uI=1

uTAATu

5. if wTAATw < vTAAT v

(a) consider u = v + t(w − v)

(b) if ∃0 < t ≤ 1 such that uj = 1 and j /∈ I
i. v = v + t(w − v) (add at least one j to I)

ii. goto 2 (vTAAT v has decreased and I has increased)

(c) else v = w goto 2 (5 will false and vTAAT v has decreased)

6. select i ∈ I such that AiA
T v < 0

7. vi = vi + |AiA
T v|

AiAT
i

goto 2 (vTAAT v has decreased)

This algorithm converges:

• Step 5.a can not be seen more than N times without going to step 6
(because I increases strictly)

• When entering step 6, v is entirely defined by I because v is the solution
of min

uI=1
uTAATu (currently this solution may not be unique but at least

vTAAT v is entirely defined by I)

• But step 7 ensures vTAAT v decreases lower than the value when entering
step 6. So step 6 can happens only once per I, but, there is no more 2N

such set I

• Thus, the number of steps 6 is lower than 2N and there is no more than
N steps 5.a between 2 steps 6

Obviously, step 6 could be improved by trying to make all i such that
AiA

T v < 0 exiting I the same time. Step 1 should start from 2 instead of
1, and, solving step 4 could probably be done efficiently as such minimization
is somehow making free AiA

T v to be 0, so it may not require expensive matrix
inversion. But anyway, this algorithm converges as it (despite complexity may
be exponential).
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3.2 Synergy with log barrier

Let introduce an important quantity related to this algorithm

R = {I ⊂ {1, ..., N} / min
v≥1,vI=1

vTAAT v = min
vI=1

vTAAT v}} (6)

By construction, algorithm enters step 6 with a set I such that I ∈ R,
because one enters step 6 if and only if wTAATw = vTAAT v with w =
min
uI=1

uTAATu and v ≥ 1.

Thus, despite R may contain a lot of sets in general, this combinatorial
algorithm will be very efficient on instances such that R is small. This is a
complementary feature regarding log barrier, because log barrier complexity is
not related to R. Even more, there may have instance where R is small bellow
(or higher or between) than a specific vTAAT v value. In such situation, starting
(or terminating or swapping) with log barrier may be relevant.

Let vcons and vlog the current point of constraint and log barrier minimiza-
tion of vTAAT v, vcons should be replaced by vlog i.i.f.

vTconsAA
T vcons >

vlog
minn vlog,n

T
AAT

vlog
minn vlog,n

(adding 1−minn vlog,n)× 1 is also a possibility).
And, inversely, vlog should be replaced by vcons i.i.f.

F (vlog) > F

(√
N

vTconsAA
T vcons

vcons

)

(indeed, F (λv) is minimal on λ when Nλ2vTAAT v = 1).
Currently, both swapping could naturally happens. Log barrier on F leads

to increase the product of vn with constant vTAAT v. So despite, the minimum
of vn could be low (while the product may be high), log barrier tends to create
large v with low vTAAT v which may be suitable for constrained minimization.
And, inversely, constrained minimization decreases vTAAT v while keeping large
v producing points which may naturally suitable for F .

4 Implicit minimization of vTAATv

The final algorithm is also exponential, but, potentially fast for examples when
rank of the matrix is very low. It is quite different from the other as it contains
recursive call, and, some memory. Yet, at the highest level of recursion, synergy
with log barrier or constrained minimization is still possible (and the memory
could benefit to other algorithms). Technically, this algorithm does not focus on
vTAAT v but on min

n
AnA

T v. Yet, each step consists in increasing min
n
AnA

T v

while making v higher. Thus, vTAAT v decrease at each step (even normalizing
v for example by 1T v).
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4.1 Recursive algorithm

Let consider the following algorithm:

• The algorithm has memories E, B, H: with the following specifications

– AIA
T
I E[I] > 0, E[I] ≥ 0 (E for exit)

– AIA
T
I B[I] = 1, B[I] ≥ 0 (B for bisection)

– H is the list of all encountered point - in particular if v, w ∈ H with
w ≥ v and AIA

T
I (w − v)I = ρ1, then, 1

ρ (w − v)I can be push into

B[I].

– recurse(I) has access to shared A,E,B,H

• highest level of recursion is recurse({1, ..., N})

• recurse(I) =

1. v = 1 (v has only dimension |I|)
2. if AIA

T
I v ≥ 0 exits after adding v to E[I]

3. µ = min
i∈I

AiA
T
I v

4. J = {i ∈ I / AjATI v = µ}
5. if J /∈ B

(a) addToHandUpdateBandE((I, J, v))

(b) if J /∈ B and J /∈ E
i. recurse(J)

6. if J ∈ B
(a) consider v = v + tB[J ] to maximize min

i∈I
AiA

T v

7. else

(a) consider v = v + tE[J ] to maximize min
i∈I

AiA
T v

8. goto 2

This algorithm converges because

• at any level of recursion, step 5.a can happen only twice per set J (the
second time J enters in B)

• step 6.a can not happen more than N successive times because J strictly
increases each step 6.a

• J can not be equal to I (even more AIA
T
I v ≤ 0 is impossible otherwise

vAIA
T
I v ≤ 0) so recursive call does not loop. And, recursion can only

happens once per J as otherwise it is in B

• so number of steps is no more than N22N (with no more than 2N recursive
calls).

8



Obviously, this algorithm could benefit for directly checking if AIA
T
I v = 1

admits a positive solution (it admits a single one when rank of AI is maximal).
Yet, convergence does not require this improvement. Let remark that looking
for v / AIA

T
I v = 1, v ≥ 0 is as hard as the problem tackled in this paper, so it

is not an option.

4.2 Synergies with log barrier

This recursive algorithm works by improving min
n
AnA

T v. Yet, a trivial way to

improve min
n
AnA

T v is just to decrease the norm of v. Thus, it is required to

consider normalized vector. Typically, vrec should be replaced by vlog i.i.f.

min
n

AnA
T vrec

1T vrec
< min

n

AnA
T vlog

1T vlog

Inversely, the condition to replace vlog by vrec is the same than for vcons
(let stress that at the higher level of recursion vrec is initialized by 1 and only
increase so vrec ≥ 1 like vcons): i.i.f.

F (vlog) > F

(√
N

vTrecAA
T vrec

vrec

)

Again, such swapping is possible: at the end of Newton descent, AAT vlog >
0, so a fortiori, at some point vlog may help implicit minimization. And, in-
versely, implicit minimization decreases vTAAT v while increasing v so each of
these steps decrease F , and, thus swapping is possible.

Finally, let consider S = {I ⊂ {1, ..., N} / ∃v > 0/I = arg min
n

AnA
T v},

on some instances, |S| may be small (it seems it could happen when normal-
ized rows of A have very low rank as only support vectors could be included in
I). The recursive algorithm only performs |S| recursive calls (from top level).
As, recursive calls are done on sets from |S|, they will also lead to recursive
calls in |S|. So, the algorithm converges after at most N(factorial(|S|))2 steps
(currently complexity of a single step is not that clear depending on the imple-
mentation of H). Obviously, this complexity is bad in general, but, if |S| is a
O(1), then, this algorithm is strongly polynomial.
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Appendix A: Equivalence on linear programming

Let consider all those algorithm specifications:

1. algo5 takes A ∈ ZN×D, b ∈ ZN , c ∈ ZD, and, produces x such that x =
min

z/Az≥b
cT z or a certificate that no such x exists in less than C5(N,D,L)

binary operations.

2. algo4 takes A ∈ ZN×D, b ∈ ZN , and, produces x such that Ax ≥ b or a
certificate that no such x exists in less than C4(N,D,L) binary operations.

3. algo3 takes A ∈ ZN×D, b ∈ ZN , and, produces x such that Ax ≥ b if such
x exists in less than C3(N,D,L) binary operations - or has an undefined
behavior otherwise.

4. algo2 takes A ∈ ZN×D, b ∈ ZN , and, produces x such that Ax > b if such
x exists in less than C2(N,D,L) binary operations - or has an undefined
behavior otherwise.

5. algo1 takes A ∈ ZN×D, and, produces x such that Ax > 0 if such x exists
in less than C1(N,D,L) binary operations - or has an undefined behavior
otherwise.

6. algo2 takes A ∈ ZN×D, and, produces v ≥ 0 such that AAT v > 0 if such
v exists in less than C0(N,D,L) binary operations - or has an undefined
behavior otherwise.
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Obviously if one has an implementation of algo5 one could implement the
others: algo5(A, b,0) is a correct implementation of algo4(A, b), and algo4(A, b)
is a correct implementation of algo3(A, b) which is a correct implementation of
algo2(A, b). algo2(A,0) is a correct implementation of algo1(A), and, finally,
by considering the matrix A = AAT concatenate with Id (the identity), then,
algo1(A) is a correct implementation of algo0(A).

Inversely, if one has an implementation of algo0 one could also implement
the others

• let A such that ∃x/Ax > 0, the core of Perceptron proof [9] guarantees
that one such x could be find in the form of AT v with v > 0. So, algo1(A)
can be implemented by computing v = algo0(A) and returning AT v. With
this implementation C1(N,D,L) ≤ C0(N,D,L).

• let A and b such that ∃x/Ax > b, finding such x is equivalent to find a
pair x, t such that Ax− t× b > 0, t > 0 because x

t is a solution. Let A the
matrix with A plus 1 as additional column and (0 1) as additional row.
Thus, algo2(A, b) can be implemented by computing (x t) = algo1(A) and
returning x

t . With this implementation C2(N,D,L) ≤ C1(N+1, D+1, L).

• let A and b such that ∃x/Ax ≥ b, finding such x is equivalent to find a pair
x, t such that Ax+ t1× > b, 0 < t < 1

max
S⊂A

Det(S) . Indeed, from such pair,

one could project x on {z / Az ≥ b} while minimizing t, this leads to x̂, t̂
with t̂ ≤ t < 1

max
S⊂A

Det(S) but x̂, t̂ is a vertex of A. So Cramer rule applies,

and so there exists S such that t̂ =
Det(Spartiel)

Det(S) but seeing constraint on t̂

it forces t̂ = 0 i.e. Ax̂ ≥ b. So, algo3(A, b) can be implemented by

– computing (x t) = algo2(A, β) with A being A plus 1 as additional
column, and (0 1), (0 − 1) as additional rows and β = b plus 0 and
− 1

max
S⊂A

Det(S)

– projecting (x t) on {(z τ) / Az + τ1 ≥ b} while minimizing t

– returning x

Importantly, if highest number in A, b is bounded by 2L, then, maximal
determinant is lower than 2NL+N log(N) (Hadamard bound when N >
D otherwise 2DL+D log(D)), so with such implementation C3(N,D,L) ≤
C2(N,D,NL)

• let A, b, solving Ax ≥ b is equivalent to solve min
z /Az+t1≥b,t≥0

t (there is

a solution if the minimum is 0). Yet, this last linear program is struc-
turally feasible and bounded, thus, primal dual theory gives a system
Aprimal−dual(x y) ≥ bprimal−dual whose solution contains solution of the
linear program min

z /Az+t1≥b,t≥0
t and thus of x such that Ax ≥ b or a certifi-

cate that no solution exists. So a possible implementation of algo4(A, b)
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is to compute (x y) = algo3(Aprimal−dual, bprimal−dual) returning only
x or the certificate. Importantly, this primal dual has only N + D + 6
variables and constraints from an original problems with D variables and
N constraints, so C4(N,D,L) ≤ C3(N +D + 6, N +D + 6, L).

• finally, algo5(A, b, c) can be computed using 3 calls to algo4: one to know
if the problem is feasible algo4(A, b), one on the dual to known if it is
bounded algo4(Adual, bdual) and one on the primal dual to get the optimal
solution if it is feasible and bounded. So C5(N,D,L) ≤ 3C4(N + D +
6, N +D + 6, L).

All these equivalences shows that if one produce a polynomial times imple-
mentation of algo0, it leads to a polynomial times implementation of algo5 just
adding a factor N .

In addition, these equivalences consider the production of certificate of im-
possibility. Currently, if weakAlgo(A) produces v > 0 such that AAT v > 0 in

less than Õ(F(N,L)) binary operations when it exists, than, it is sufficient to

wait Õ(F(N,L)) + 1 operations to known that no solution exists, but, in this
case there is no certificate.

Appendix B: Perceptron and support vector ma-
chine

If ∃v > 0 / AAT v > 0, then, A(AT v) > 0 so ∃x / Ax > 0 and by scaling
∃x / Ax ≥ 1.

Inversely, if ∃x / Ax ≥ 1 with rows of A being normalized, one could consider
the algorithm xt+1 = xt+a

T
t with atxt ≤ 0 (which stops if Ax > 0) with v0 = 1.

Then, (xTxt)
2 ≤ xTxxTt xt (Cauchy)

But xTt+1xt+1 ≤ xTt xt + 1 because atxt ≤ 0 and ata
T
t = 1

While xTxt+1 ≥ t because Ax ≥ 1
So (xTxt)

2 ≤ xTxxTt xt becomes t2 ≤ xTxt i.e. t ≤ xTx.
So, this serie can not last more than xTx step, and, thus the algorithm

converges and returns some x.
Now, at the end, the solution is a positive linear combination of rows of A.

So, by remembering the steps of the algorithm, one could recover v > 0 such
that AAT v > 0.

So, Perceptron converges in less than 1TAAT1×xTx steps with x such that
Ax ≥ 1 while Newton descent on F terminate in less than N log(1TAAT1×xTx)
(coarsely). But, how much xTx could be large ?

The minimal value of such x is

min
x /Ax≥1

xTx

i.e. the solution of the support vector machine problem linked to A. Currently,
from any x such that Ax ≥ 1, one could build a larger x but this paper proof is
true with the minimal x.
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Now, it is not trivial to show directly that this xTx is small. But the classical
trick is to consider the following theoretical problem (that nobody is going to
solve) min

χ /Aχ≥1
Υ((χ Aχ − 1) where Υ(p) > Υ(q) if and only if υ(p) > υ(q)

or υ(p) = υ(q) and ||p||1 > ||q||1 and where υ(p) is the lexicographic rank of
not-zero index vector p i.e. υ(p) > υ(q) if and only if ∃i /(∀j < i, pj = 0 ⇔
qi = 0) ∧ pi 6= 0 ∧ qi = 0.

The solution of this problem is unique (because if there is 2, one could explore
the linear combination of the two either to saturated some Ajχ ≥ 1 or to make
0 some χi). And, this solution is naturally a vertex because it maximizes the
size of a set of equality. Thus, the solution of this theoretical problem is also
the only solution of a set of equality AJχ = 1, χJ = 0. Thus, this system
is full rank, so one could extract a square not singular matrix A from it, and,
Aχ = B with A being a sub matrix of A (plus some Dirac vector) and B being
0-1 vectors. Then Cramer rules hold, and, ensure that each component of χ is
bounded by a sub determinant of A.

So, there exists χ such that Aχ ≥ 1 and such that χTχ ≤ NN2N22NL i.e.
log(χTχ) = Õ(NL) (a fortiori xTx ≤ χTχ = Õ(NL)).

Appendix C: recursive row elimination

If v > 0 verifies AAT v > 0, then, AAT v ≥ 0.
Now, assume one is able to solve v > 0 and AAT v ≥ 0 i.e. it takes A as

input such that ∃x/Ax > 0 and it produces F(A) > 0 / AATF(A) ≥ 0.
First, AATF(A) = 0 is impossible otherwise F(A)TAATF(A) = 0 i.e.

ATF(A) = 0 and 0 = xT0 = xTATF(A) ≥ 1TF(A) > 0 contradiction.
So, let consider the following algorithm given A:

• A0 = A, v0 = F(A)

• given vt, It = {i / At,iATt vt = 0}, Jt = {i / At,iATt vt > 0}, At+1 = At,It

• vt+1 = F(At+1)

Using previous lemma, it stands that It does not contain all indexes, thus,
this serie can not be infinite. At the end, one has v1, ..., vK and I1, J1, ..., IK , JK
with AIkvk = 0 and AJkvk > 0 and Jk+1 ∪ Ik+1 = Ik, Ik 6= Ik+1

Thus, it is than possible to consider:

• wK = vK

• wk−1 = (1 + min
j∈Jk−1

AjA
Twk

vj
)vk−1 + wk

This way, ∀k, ∀j ∈ ∪
t≥j
Jt, AjA

Twk > 0 For k = 0, AATw0 > 0.

So, N calls to the routine finding v > 0 and AAT v ≥ 0 are sufficient to find
v > 0 and AAT v > 0.
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Independently, if ∃φ / Aφ = 0, φ 6= 0, then, for all solutions x such that
Ax > 0, x+ λφ is also a solution. Thus, if there is a solution, there is one such
that Ax > 0, φTx = 0. But, the constraint φTx = 0 can be used to remove one
variable while leading to a new problem in the same framework (i.e. still a find
x such that Ax > 0 problem).

So, one could even assume that ∀φ 6= 0, Aφ 6= 0. Unfortunately, it does
not make AAT not singular (duplicate rows for example create singularity in
AAT ). Log barrier minimization does not require this feature as the diagonal 1

v2

is added to AAT . But, constrained minimization algorithm is less deterministic
considering that min

uI=1
uTAATu has multiple solutions. However, algorithm is

still valid: if vTAAT v = min
uI=1

uTAATu then u has no importance, and, if

vTAAT v > min
uI=1

uTAATu, any such u makes the algorithm to converge.
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