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A polynomial-time log barrier algorithm for
linear programming with simplex-like features.

Adrien CHAN-HON-TONG

ONERA, université Paris Saclay, France

This paper presents a polynomial-times log barrier algorithm which solves linear programming which has some
simplex-like features.

As simple log barrier, this algorithm is probably less efficient than central path log barrier but still polynomial times.
But, it is suitable for hybridization.

Keywords: Linear programming, polynomial times log barrier, simplex, hybridization

1 Introduction

Linear programming is the very studied task of optimizing a linear criterion under linear equality and
inequality constraints. This problem has been first tackled by exponential algorithms like simplex Dantzig
(1955) or perceptron [Rosenblatt (1958). The first polynomial time algorithm solving this problem is the
ellipsoid method [Khachiyan| (1979); |Grotschel et al.| (198 1)) which is mostly theoretic. Today, the state of
the art of polynomial time algorithm for linear programming is central-path log-barrier algorithm|Nesterov
and Nemirovskii|(1994); Nemirovski (2004)) (despite the recent Chubanov method|Chubanov|(2015) could
be a challenger).

Yet, it is known that simplex algorithm solves simple instances much more quickly than interior point
algorithm (while being exponential on hard ones). Simple instances are typically instance with very low
number of variables and/or constraints, and/or non degenerated instances with very low number of vertices
(non degeneracy is important Megiddo| (1986))). Indeed, in such instances, simplex like algorithms are
good both in theory (they are strongly polynomial for such instances), and, in practice, while log barrier is
an overkill. In addition, Allamigeon et al.| (2018)) recently proves a strong negative result on central path
log barrier method: they are not strongly polynomial.

Thus, it could be interesting to run simultaneously different algorithms like 1 simplex/perceptron and 1
polynomial-times one (either ellipsoid or log barrier). Each algorithm will run only twice slower than if it
was alone, but, the resulting portfolio algorithm terminates as the faster ones. In particular, such portfolio
algorithm is polynomial-times in all cases (thank to ellipsoid/log barrier) while being as fast as simplex
on simple instances.

Now, if both algorithms could help each other, it could produce an even better ones. Yet, it seems not
trivial to make simplex/perceptron and ellipsoid/log barrier helping each other. For example, it seems
impossible to help the ellipsoid algorithm. As the only invariant of the algorithm is that the current
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ellipsoid contains a solution, moving the center even in relevant direction could break the invariant (or
required to increase the volume of the ellipsoid which is as bad).

The contribution of this paper is to proves that it is possible to design a log barrier algorithm (polyno-
mial even if probably not competitive alone with central path log barrier) which has some simplex like
features, and, and thus which seems suitable for hybridation with a simplex/perceptron like algorithm.
This statement is clarified in next section which also presents the algorithm. Then, a discussion section
presents the difference with classical log barrier.

Notation

The set of matrices of size M x N on real numbers is written R >N (the same with Q for rational
numbers or Z for integer numbers). If A is a matrix from RM > then, the transposed matrix is written
AT € RNXM = Also, A; is the row i of A considered as a 1 x N matrix. If T is the set of indexes, Ay
is the submatrix when keeping only row ¢ from I. Vectors of dimension N are considered as matrix with
size N x 1, but, matrices 1 x 1 are considered as number: so, if v is a vector v; is the value of component
. 0, 1 are the vectors with all components being O or 1, and, b; the ¢ vector of the natural basis i.e. all
components are O except component ¢ with is 1.

The set of M x N matrix is a vectorial space with an addition written 4+, and, a product between a
scalar and a matrix written X. Independently, the set of all matrices of any size has a product (not scalar)
which is represented by juxtaposition of matrices: if A € R?*”/ and, B € R7*X then, AB is the matrix
product of A and B which is in R’*¥ Thus, the scalar product between two vectors v and v is written
uTv (no related to the product of a scalar \ and vector/matrix written with x).

Det(A) is the maximal determinant of any submatrix A; with size of I being the number of columns.
And, the kernel of a matrix A is Ker(A) = {x € QV / Az = 0} (A can be not square).

Finally, if f is a derivable function of z, V, f is the gradient of f in z and V2 f is the hessian of f in z.

This paper uses Greek letters (except A\) only to design abstract object (object which could not exist
(when proving contradiction), optimal solution which are not decidable, not rational numbers...). Only
exception is A which used consistently with Nemirovski (2004) to design an important quantity in the
Newton descent process.

2 Decoupled log barrier algorithm

2.1 Reduced homogeneous linear feasibility

The offered algorithm requires some preprocessing of the input linear program allowing to cast it in a
reduced homogeneous linear feasibility. Importantly, any linear program without any assumption can be
casted in such working form (see appendix A). So, this is not an assumption on the input, but just a pre
processing step.

A reduced homogeneous linear feasibility instance is given by any matrix A (of arbitrary size N, M i.e.
A € ZM>*N) with Ker(A) = {0}, and, with the property that there exists ) € RY such that Ay > 1,
and, if ¢T1) is written U, with log(¥) is bounded by a polynomial in the binary size of A. The reduced
homogeneous linear feasibility task is to find € QY such that Az > 0 (equivalently Az > 1).
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2.2 Pseudo vertex

For all reduced homogeneous linear feasibility instances A € ZM*N and vectors z € QV, let e =

min  Aprand E={me{l,...M}/ Anx=e} = argmin A,z.
me{l,...,.M} me{l,....,M}

The set E is called the pseudo vertex of x regarding A. This concept of pseudo vertex is somehow a
gap between vertex based algorithm (e.g. simplex) and interior point one.

In particular, Vi,j € E, Ajx = Ajz. So, x is in the kernel of the matrix formed from Ag after
subtracting A; (any ¢ € F works) to all rows. So, not all subsets of {1, ..., M} could be pseudo vertex.

Also, let K be the size of the vertex F, if there is u € Q¥ such that Ap ALu = 1 and u > 0, then, u
is called a proper greedy improvement. In particular, if A A% is not singular, there is a proper greedy
improvement iff (AgAL)~11 > 0.

The interesting point of successive proper greedy improvements (see also section 4) is that it cor-
responds somehow to the projection of the current point on maximal pseudo vertex. Typically, If u
is a proper greedy improvement of z regarding A, then, either AAZu > 0, or, one could consider

y=z+1x ALuwithl =max min A, (z +t x ALu). Importantly, let £ = argmin A,
teR me{l,...,M} me{l,...,M}
and ' = argmin A,,y, then, F is a strict subset of F' which is also a pseudo vertex.
me{l,...,M}

2.3 Main statement

Now that the notions of reduced homogeneous linear feasibility, and, proper greedy improvement are
defined, the main theorem of this paper can be stated:
Theorem:

There exists an algorithm solving the reduced homogeneous linear feasibility problem in poly-
nomial times, characterized by an inner state x such that, at any point during runtime, x can
be replaced by = + [ALu with E the pseudo vertex and u a proper greedy improvement, and,

0<I< max {min iy A (x + t X u) without increasing the complexity of the algorithm.
eR me{l,...,

Algorithm:
1

Let log(v) and % the vectors such that Vm € {1,..., M} being log(v,,,) and --.

The offered algorithm is a Newton descent on log barrier function F'(v) from ]0, oo[™ to R linked with
the inner state x(v) from ]0, co[M to RY defined by:

M
z(v) = ATv = Z vm AL
F(v) = z(v)Tz(v) — 17 log(v)

M M
=0T AATY — 1T log(v) = Z VU5 X AiAJT — Zlog(vi)
i=1

ij=1
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2.4 Proof
2.4.1 Minimum of F is a solution

Lemma: F goes to oo when any of the v,,c(1, .. 1} goes to 0 or to oo.

From Cauchy, for all z, %)z < /4Ty x 2Tz = /U x 2Tx. So, +(WTx)? < 27w Let stress that ¥
can be assumed higher than 1 (scaling ¢ with a number higher than 1 is possible). In particular, for z:(v),
it gives ¢ (7 ATv)? < z(v)Tz(v) but Ap > 1s0 ¢ (170)? < z(v)T2(v). Asv > 0, (1v)? > vT, so,
gvTv < 1’( )T (v).

So, F(v) > %,’UTU — 1log(v).

Let ®(t) = 4t — log(t) from |0, o[ to R. ®(t) goes trivially to oo when ¢ goes to 0 or 0o, so, ® has

a minimum ®*. ®/(¢) = 2¢ — 1, and, ®'(t) = 0 as an unique solution. It leads to ®* = ®({/ %) =

— % log(¥) + %10g(2). In particular, ®* is polynomial in the binary size of A (due to assumption on
log(®)).

Then, F'(v) > > @ (vyy,). A fortiori, for all m € {1,..., M}, F(v) > (M — 1)®* + ®(vy,)

me{l,...,M}

with @ (v,,,) going to infinity is v,,, goes to 0 or infinity.

Independently, V,F' = 2 x Az(v) — 1.

Implications: F has a minimum F* = F(v) with v €]0, 00[™. So, V,F' = 0. So, Az(v) = & > 0.

So, the minimum of F' is a solution to the homogeneous reduced linear feasibility problem (currently,
v is even the only root of V, F' = 0).

2.4.2 Approximating the minimum of F' leads to a solution
LetT' = ?glaxM}AmAfT (let stress that log(T") is polynomial in the binary size of A).
meil,...,
Starting point:

T
Let vy = (\/AllAT""’ L > . From Cauchy, 4; AT < \/A;AT\/A; AT, s0, z(vo)2(vo) <

\/AMAE
M?2, and, so F(vy) < M? + % {123 M}log(AmA%) < M? + Mlog(T). In particular, F(vg) is
mel,...,
polynomial in the binary size of A.
Precise bound on v:

Independently, as ®”(¢) > 0, it holds that V¢, s if t > s then ®(t 4+ s) > ®(s) + tP’(s). In particular
®'(¥) = 2— & > 1 (as ¥ can be assumed higher than 1). So, Vt > ¥, ®(t + ¥) > (V) + ¢ =
U —log(¥) +¢.

So, there is two cases:

o cither ®(¥) = U — log(V) > F(vg) — (M — 1)®*, then, for any k € {1, ..., M}, vy, > ¥ implies
that F'(v) > ( —1)®*+P(vg) > (M—1)P*+P (V) > (M—1)D*+F(vg)— (M —1)®* > F(vp)

e cither <I>( ) =¥ —log(¥) < F(vg) — (M — 1)@*, then for any k € {1,..., M}, v, > F(vg) —
(M —1)®* + log( ) implies that F'(v) > (M — 1)®* + ®(vy,) = (M — 1)<I>* + O((F(vo) —
(M —1)®* +-1og(V) =)+ V) > (M —1)®* + &(V) + F(vg) — (M —1)®* 4 log(V) — ¥ =

(M —=1)®* + ¥ —log(¥) + F(vg) — (M — 1)®* 4+ log(¥) — ¥ = F(vp)
In both case, if any v, > max(¥, F'(vg) — (M —1)®* +1og(¥)) (k € {1, ..., M}), then, F(v) > F(vg).
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Implications:

Now, let assume that F'(v) < F(vg) and F(v) — F* < ¢ and there is k such that Azz(v) < 0.

There is two cases: either v, > % (hard one) or v, < % (easy one).

If v, > %, let consider § = W (6 € ]0,1]) and w such that w,,, = v, but wg = (1 + &)vg.
F(w)—F(v) = z(w)Tz(w) —2(v)Tz(v) —log(1+§) But, (w) = z(v) + vk x AL. So, F(w)— F(v) =
z(v)Tz(v) + 26 X Apz(v) + 620} x AgAT — 2(v)Tx(v) — log(1 + §). As, Agz(v) < 0 it means that
F(w) — F(v) < 8?0} x Ay AT —log(1 +9)

ButVt € [0,1], £ <log(t+ 1), s0 F(w) — F(v) < 6%} x A AT — 5 = 16u§xlAkA{ - 8v§x}4kA{ =

1
T 8uZXALAT

So, F(w) — F(v) € ——o-t—r. As, F(w) > F* and F(v) — F* < ¢, it holds that ——t—+ < e.

= T8I xARAT" 82X AR AT

But, vy, < max(U, F(vg)—(M—1)P*+log(¥)), so L > 1

> 18v§xAkAkT, = 8max(V,F(vg)—(M—1)®*+log(¥))2x A AL~
max(¥,F (vo)—(M—1)®*+log(¥))2x A, AT~

it is sufficient to consider § = ﬁ (less than 1) because it also leads
k

So, it is not possible that ¢ < 5

For the easy case v, > i,
to F(w) — F(v) < 6%0 x AR AF —log(1 + 0) ie. F(w) — F(v) < 71614114{ — log(1 + lelAg) <

1 1 7 ;
16AL AT 2A,AT < TT6ARAT o=

Let x = 8T (max (¥, F(vg) — (M — 1)®* + log(¥),2))? (log(x) is polynomial in the binary size of
A): if F(v) < F(vg) and F(v) — F* < i, then Az(v) > 0.

2.4.3 Minimizing F

In previous subsection, it is proven that if F'(v) < F(vg) and F(v) — F* < i, then Az(v) > 0. Yet, F
is a self concordant function because a positive quadratic function has positive second derivative and null
third derivative (V2(z(v)Tz(v)) = 2 x #(1)T2(1) > 0) and a sum of log is a self concordant function
Nemirovskil (2004).

So, it is possible to find v such that F'(v) < F(vg) and F(v) — F* < —log(l — ) — e in O(F(vg) —
F* 4 loglog(1)) steps Nemirovski| (2004). In particular, fore < 1, —log(1 — ) — & < 1. So, it is
possible to find v such that F'(v) < F(vg) and F'(v) — F* < ein O(F(vg) — F** 4 loglog (<)) steps (the
square goes into the O).

So it is possible to find F'(v) — F* < i and F'(v) < F(vg) in O(F(vg) — F* + loglog(x) steps.
Importantly, all the descent can be done with infinite arithmetic precision (plus rounding to keep accept-
able size) without evaluating log like for a classical log barrier. In other words, performing computation
with infinite precision (using rational representation) by rounding all variables on fixed denominator grid
is possible without breaking the convergence (only twice Newton steps are required), and, without eval-
vating log. Only square root approximation with clear termination criterion is required. This point is
presented in appendix B.

So, it is possible to solve Az > 0in O(F(vg) — F* + loglog(x)) steps, with F'(vg), —F™*,log(x) all
polynomial in the binary size of A.

This is impossible as soon as € <

2.4.4 Proper greedy improvement decreases F

At this point, applying standard gradient descent on F' allows to solve linear programming in polynomial
time. Yet classical log barriers do it too. But, the contribution of this paper is to show that this algorithm
is helped by proper greedy improvement.
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Importantly, the task of producing x such that Az > 0 and = # O is sufficient to solve homogeneous
reduced linear feasibility because it allows iteratively to build = such that Az > 0 (see appendix A).
Newton descent will directly produce Ax > 0, but, the coupling with proper greedy improvement may
resultin Az > 0z # 0.

First, — log is an decreasing function, so any proper greedy improvement u verifies 17 log(v + u) >
17 log(v) (as u > 0).

Then, let stress that ALu = z(u) (currently this is an abusive equality because u has not the same
dimension in both member: left u correspond to right u g other component being 0).

Now, for the quadratic part, z(v + u)T2(v + u) = (x(v) + 2(u))? (z(v) + z(u)) because x is just
a linear function. So, z(v + u)Tz(v +u) = z(v)Tx(v) + 22(w)T2(v) + 2(u)T2(u) = z(v)T2(v) +
2z(u)T (z(v) + z(u)) — x(u)?z(u). But u is a proper greedy improvement starting from a not solution
point and terminating in a not solution point. So, for all k£ such that us, # 0, Axz(v) < 0and Agz(v+u) <
0. So z(u)Tx(v) < 0 and z(u) T (z(v) + z(u)) < 0. In particular, 2(v) Tz (v) + 22(u) T (z(v) + z(u)) —
z(u)Tz(u) < z(v)Tz(v).

So, both the x part and the log part decreases when v becomes v + u with u a proper greedy improve-

ment. In other words, if u is a greedy proper improvement, either Au > 0, or, [ = max {mln A (z(v)+
teR me{l

t x z(u)) is defined and either F'(v+1u) < F(v) or x(v)+1 x x(u) is a solution (A(z(v)+Ix z(u)) > 0
andv + 1 X u > v # 0).

2.4.5 Decreasing F does not break the convergence

The fact that proper greedy improvements decreases F' does not imply that it could not break the conver-
gence. It is required to go into the mechanisms of the newton descent to check if modifying v could break
the process.

Hopefully, the descent has two phases (see [Nemirovski| (2004)) characterized by a quantity depending
on derivative of F: A\(v) = /(V,F)T(V2F)~1(V,F).

First phase has high A(v): A(v) > 1 with each Newton step leading to a decreasing of F' higher than
% — log(%) > % independently from A. This step is trivially fasten by proper greedy improvement which
decreases F' while having no side effect.

The second phase has low A(v): A(v) < i. In this phase, there is a quadratic convergence of \ to 0:
Av — 1+>\(v (V2F) LV, F)) < 2\(v)?, and very interestingly, F((v) — F* < —log(1 — A(v)) — A(v)
Nemirovski| (2004) (this is not trivial at all because v could have been very low implying that )\ is low but
neither V,, F' or F).

During this second phase modifying F' may have side effect of increasing A (this could break the con-
vergence). But, this second phase is very fast, and, one could have just forbid proper greedy improvement
during this phase. Now, it is even not required because: F( ) — F* < —log(1 — A(v)) — A(v) so
small A implies small F'(v) — F™*, but, F'(v — 1+)\(v (V2F) YV,F)) < F(v) — A(v) + log(1 + )\(v))
F(v) — F* small also implies small A. Precisely, — log(1 — A(v)) — A(v) < % So, for Av) <
—log(1 — A(v)) — A(v) < A(w)% And, for A(v) < 1, =A(v) + log(1 + A(v)) < FA(v)% So
1XMv)? < F(v) — F* < Mv)% Or, in other words, F(v) — F* < A(v)? < 2(F(v) — F*). So, the
second phase can in reality be expressed using F' — F'™* only.

So decreasing F' can not break the convergence neither in the first nor the second phase.
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3 Discussion

3.1 Are proper greedy improvements really interesting ?
_ Aiz(v)

A; AT
increase log(v). So, it will decrease F'. Yet, such minor improvement are not interesting (except if

— Xﬁ? > pw; with large p at the early beginning of the algorithm), because, the yield/efficiency of such

improvement (per times) is generally lower than the Newton descent alone. Indeed, algorithm of first

order based on the idea to do v;+ = — f:ﬁ;) when A;2z(v) < 0 is somehow the perceptron, and, it is

If A;xz(v) < 0, it is possible to increase v; a little (v;4+ = ) to both decrease x(v)Tz(v) and

exponential.

Now, improvements which maintains E are different because they consider the set of most violated
constraints, and, makes them less violated, leading E to increase as set (or leading to a solution). So,
there can not have more than M successive proper greedy improvements before reaching a point which
can not be improved this way.

For example, let consider Eli;ab cx. Given an admissible point z saturating the set of constraints F,
Tz

if there exists y such that Ay = 0, and, cTy < 0, then, x = = + [ x y either produces an unbounded
point, or, leads E to increase. By doing so (at most M times), one reaches a new x saturating a new &
which is maximal as there is no y such that Agy = 0, and, cTy < 0. If, one find z such that Az > b
and ¢Tz < cTy, then, this process could be restarted from z, and, importantly will never saturating £
again (otherwise, there was some y). Such process may converge efficiently if number of maximal set £
is low, and, if it is easy to produce a z allowing to escape the vertex £. Using proper greedy improvement
while reaching some maximal vertex, and, then, Newton step, one could hope to have a polynomial times
algorithm which is, in addition, strongly polynomial when the number of maximal sets £ is low (even
under degeneracy). This is the motivation of this paper.

Obviously, this paper does much less: first it only tackles reduced homogeneous linear feasibility.
This way, there is no direct equivalence of the previous process (moving toward O is always a way to
improve the satisfaction of most violated constraints), and, the algorithm only considers proper greedy
improvement. In addition, performing Newton step has in reality no reason to produce a z allowing to
escape the vertex £: I would decrease, but there is no reason that it improves the satisfaction of most
violated constraints.

Yet, this is still a bit of hybridization: let consider the algorithms described in figure 1. The first
algorithm never performs line 14 twice on the same set E, and, never performs more than M line 4
successively without reaching a line 14. As line 14 is exponential, and, as there can exists an exponential
number of sets E, this algorithm is exponential, but, strongly polynomial if each line 14 are strongly
polynomial, and, if the number of set E' reaching line 14 is low. Now, this paper offers to replace line 14
by Newton step using the offered function: the global algorithm is polynomial (no more than M greedy
steps between each Newton step - greedy steps being harmless). But, potentially, the algorithm can be
strongly polynomial when the number of set ' reaching Newton step is low (but not always due to the
limitation to proper greedy improvement, and, the fact that there may have looping from E point of view).
Alternatively, someone may just run each simultaneously and swap v for one to the other when one is
dominated.

So clearly, this algorithm is only a first step toward merging vertex based algorithm with polynomial
times ones. But, still, it is a polynomial times log barrier algorithm with vertex-based features.
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Algorithm 1 recurrent perceptron vs greedy plus log barrier

11 A € ZM*N with Ker(A) = {0}, and, there exists 1 such that Ay > 0
// both return solution of the reduced homogeneous linear feasibility problem
recurrent_perceptron(A) =

Lov=1
2 H= []
3. while =AATv > 0do
4: e= min Ap,z(v)
me{l,....M}
5 E={me{l,., M}/ Anxz(v) =e}
6: if Ap AL not singular and (A AL)~11 > 0 then
7 w = (AEAE)_I].
8 else
9: if £ € H then
10: w=v— H[E|
11: else
12: H[E]=v
13: w = recurrent_perceptron(Ag)
14: v=v+Ixwwithl = max m"iln A (AT (v 4 g x w)) (or exit)

greedy_and_barrier(A) =

1: v =19
2. H = []
3. while =AATv > 0 do
4: e= min  Apz(v)
me{l,....M}
5 E={me{l,., M}/ Anx(v) =€}
6: if ApAZL not singular and (A AL)~11 > 0 then
7: w = (AEA§)711
8: v=v+IlXxXw
o: continue
10: else
11: if £ € H then
12: w=v— H[E|
13: if v(v+1x w)Tz(v+1 xw) < z(v)Tz(v) then
14: v=0v4+I1XxXw
15: continue

16: H[E|=v
17: perform a Newton step on F’
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3.2 Comparison with classical log barrier

Given, a reduced homogeneous linear feasibility A instance, the classical log barrier algorithm to find a
solution is to minimize F'(z,t,Q) = mign Qt + > log(Apmx + t). Indeed, if t < &, but, A;x +t > &,
z, m

than, it means that A;2 > 0.

Precisely, if F'(v) is very low it could means that there is ¢ with A;x very high, and, other A;z? low
(positive or negative), or, Az > 0. But this allows to find a solution in both cases because, if there is ¢
with A;x very high, and, other A ;22 low (positive or negative), then, such z can be projected into a vertex
leading to a point y such that Ay > 0 and y # O.

Thus, minimizing F' using Newton descent allows to build a solution. Currently, as the convergence
depends on the value of xg, () can not be too large at first step, but, should not be too low at final step
otherwise the final x is not a solution. So, @) needs to be updated during runtime. Hopefully, when
algorithm is in the second phase, multiplying () by some constant allows to make the whole algorithm to
converge.

Such, log barrier algorithm allows to solve linear program in polynomial time, and, also allows to
tackles raw form (not just homogeneous forms provided here). Today very efficient version of this log
barrier (e.g. central path) have interesting practical and theoretic complexity. Central path log barrier may
be better than the offered one alone.

Yet, this approach has the drawback of not being suitable for hybridization. First there is the issue of the
fact that @) changes during runtime, so, even if F'(z',t', Q) < F(z,t,Q) it is not sure that this property
is still true for Q’. But, even if @ is frozen, checking if ', ¢’ is better than z, ¢ require either to do it on A
(second phase only) or to approximate log. Indeed, as it is not possible to improve simultaneously all log
term (which are correlated), it is not possible to simply improve F(z). In the offered algorithm, as each
log only contains independent variables, doing so is trivial. Let stress than using stack variables (see for
example |Allamigeon et al.|(2018)) in log is absolutely not equivalent, because, stack variables are linked
by equality constraints Ax = b.

So, there is a real difference with classical log barrier (currently F'(v) is probably less efficient than
F(x) alone, but both are polynomial times, and, one is more suitable for hybridization than the other).

4 (Conclusion

This paper presents a log barrier algorithm for linear programming. This algorithm has polynomial com-
plexity (despite probably not competitive compared to central path log barrier). Yet, the interest of this
algorithm is that it has some simplex like features and could have synergy with vertex based algorithm
like derived version of perceptron. Such mixing may allow to have an algorithm better than the simple
simultaneous run of the two.

It could be interesting to check the behavior of the offered algorithm (coupled with perceptron like
algorithm) on central path log barrier worse cases|Allamigeon et al.|(2018)); Deza et al.| (2006, [2008)
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Appendix A: Equivalence on linear programming

The native form of linear program is the task of solving min cx for given A €
zeQN / Az>b

ZM*N 3 matrix, b € ZM and
N
¢ € Z"" some vectors.

But, it is well known that solving Zgnin cx is equivalent to find a solution 2 € QM+ (or prove there is
zeQN / Az>b

not) to a system of inequality Hz > h with (H € ZM+NFDXWNHM) anq b ¢ ZN+M+2) thank to primal dual
theory. The primal dual has a solution if and only if the original problem is both feasible and bounded. As finding

(or prove there is not) « such that Hx > h is equivalent to solve min t which is a feasible and
z,t€QN xQ / Hx+t>h,t>0

bounded problem, it is possible to consider primal dual again (on this last one). Thus, solver can assume that some
solution exists, and, that the task is to find it.

Then, as maximal determinant of a sub matrix is bounded by polynomial in the binary size of the matrix, any
solution of Hx +t > h,t > 0,—t > —e for a decidable € can be converted into a solution by greedy projection.
Indeed, any solution of this last problem can be projected on a vertex. The resulting point is defined by cramer rule
for a sub matrix, thus, ¢ = 0 when ¢ is lower than some sub determinant of A. So, finding = (which exists) such that
Hzx > his equivalent to solve a system of strict inequality Gz > g.

Finally, Gz > gisequivalent to find  such that Az > 0 because it is always possible to write it ( g 719 ) ( f
0. This is also trivially equivalent to produce x such that Az > 1.

)>
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This way, any linear programming solver can assume without restricting the generality to expect an input A €
ZM*N | with the task of producing z € Q" such that Az > 0, with the prior that such z exists.
Yet, it is classical that one could remove extra variables until kernel of A (Ker(A) = {z € Q~ / Az = 0})

is reduce to O: if there exists x, x such that Ax = 0, x # 0 and Ax > 0, then, A(z — %X) = Az > 0, and,

x(z— %X) = 0. So, one could just find y such that Ay > O after injecting yx = 0 (i.e. 1 = 7)%1 > XnTn
n={2,...,N}

into Ay > O - this does not change the form of the problem).

Finally, if I, J is a partition of all indexes of rows of A, then, finding Ayx > 0, Ajz = 0, and, A;y > 0 is
sufficient to find z such that Az > 0. Indeed, even if A;y may not be acceptable positive, it will be possible to
deal with it by adding 6= which does not modify Ary. So if one find = such that Az > 0 and Az # O, then it
is only required to look for y verifying the same on null components (this strictly reduces the number of rows, and,
possibly the number of variable as extra variable are removed). So, with all this reduction, one could consider reduced
homogeneous linear feasibility only.

Finally, linear programming is equivalent to the task of finding = € Q" given A € Z™*¥ with Ker(A) = {0}
such that Az > 0, x # 0, and, with the prior that there exists ¢» € RY such that Ay > 1. As there is such ¢ which
is the solution of an equality system linked to A ¢ = 1 is bounded by a polynomial in Det(A), and so, log(¥) is a
polynomial in the binary size of A

Appendix B: Implementation issues

Newton descent has two implementations issues:
e computing exactly A(v) is not possible as the root of rational number are not always rational

e taking care of the binary size of v is critical to bound the number of binary operation

Computing A(v)

Selecting a correct step for the newton descent is in reality not a big issue because it only requires an not-too-high
upper bound of A(v):
During first phase, A(v) > 1 and F(v-— 1+)\(u 5 (

So,if 0 < A(v) < 26, then, 1+29 < 1+A( ) (soitis admissible), and, 1+29 > %1-‘—)\(1))

VoF) (Vo F ))<F( v) = 5%

.50 F(v—1355 (Vo F) "1 (Vo F)) <
F(v) — 155 (by convexity).

So, the first phase of the newton descent terminates with only twice the number of steps when done with § <
A(v) < 26.

For the second phase, it is simpler: A\(v — 1+>\(’U) (VZF)"Y(V,F)) < 2X(v)?, so, it is sufficient to approximate
A(v) by § > A(v) and to check if AM(v — 135 (V2F)"Y(V,F)) < 5)\(1))2. One just has to continue to approximate
A(v) until reaching such inequality. It is always p0s51ble to find such 6 as SA(v)? > 2A(v)?. Using 2 does not break
convergence because if A(v) < 1, then, 3A(v)? < & < 1 = 5. And, )\( — 1+(L,(V?JF)_I(VWF)) < S (v)?
sufficient to ensure a quadratic convergence of A to 0.

So, even with approximation of A(v), one could produce v such that F(v) — F* < L in O(F(vo) — F* +

loglog(x)) )

Rounding numbers

It is critical to select a denominator allowing to round into fixed grid the infinite size arithmetic operations (as v is
bounded, all operations are fixed size if denominator is fixed).
For the first phase, the idea is to ensure the possibility to project each ’Uk in a grid while not increasing F' by 200

infinite arithmetic precision with @ instead of A leads F' to decrease from 100, by forcing F' not to increase by more
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than % after each rounding, one could be sure that F' decreases by at least 200 after each step with both rounding
and 6 instead of A. Importantly, if all vi increases during rounding, there is no need to deal with the log.

This (positive) projection on a grid can be seen as u with 0 < u < p X 1 where p is the size of the grid.

As, (v+u)TAAT (v+u) = vTAATv +uT AATv +uT AATu, the problem is to find p such that 0 < u < px 1

leads to uT AATv +uT AATw < 200 This way, all v can be expressed as multiple of p.

Hopefully, vy, is upper bounded, so u” AATv + uT AATu < pM>T max(¥, F(vo) — (M — 1)®* + log(¥)) +
p*T2M?. So, safe rounding can be done by selecting p such that pM>T max(¥, F(vg) — (M — 1)®* +log(¥)) +
2F2M2 < 305+ For example, p = 2M2T max(¥, F(vo) (M—1)®*+log(¥)) "

Importantly, log(p) is polynomial in the binary size of A, as, log(T"), log(¥), ®*, F(vo) are also polynomial in

the binary size of A.
For the second phase, there is no issue as the second phase last less than the log of binary size of A.
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