
HAL Id: hal-00722920
https://hal.science/hal-00722920v25

Preprint submitted on 20 Jan 2020 (v25), last revised 16 Jan 2023 (v38)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Could log barrier be implicit in barrier based linear
programming solvers ?

Adrien Chan-Hon-Tong

To cite this version:
Adrien Chan-Hon-Tong. Could log barrier be implicit in barrier based linear programming solvers ?.
2019. �hal-00722920v25�

https://hal.science/hal-00722920v25
https://hal.archives-ouvertes.fr

Could log barrier be implicit in barrier based

linear programming solvers ?

Adrien CHAN-HON-TONG

January 20, 2020

Abstract

Given a matrix A ∈ ZM×N , computing an approximate solution of
the unconstrained optimization problem min

v∈RM
vTAAT v − 1T log(v) is a

straightforward way to get a solution of the homogeneous linear program
Ax > 0 (as general as linear programming). This can be done by newton
method as the function is self concordant.

Yet, this method becomes very complex when dealing with matrix
A with arbitrary large number: one has to carefully round the internal
state at each step, but, such rounding is made difficult as evaluating the
function is even not straightforward.

This paper wonder if minimizing directly vTAAT v while maintaining
v > 0 could be done in polynomial time. This could allow to remove (or
precisely make implicit) the logarithm.

1 Introduction

Linear programming is the very studied task of optimizing a linear criterion
under linear equality and inequality constraints. This problem has been first
tackled by exponential algorithms like simplex [2] or perceptron [6]. Today, this
problem is tackled by polynomial time algorithms like ellipsoid method [4, 3],
log barrier method [5], or recently, Chubanov method [1].

1.1 Notation

The set of matrices of size M × N on R is written RM×N (the same for Q or
Z). This set is a vectorial space with an addition written +, and, a product
between a scalar and a matrix written ×. If A is a matrix from RM×N , then,
the transposed matrix is written AT ∈ RN×M . The set of all matrices of any
size has an inner product which is represented by juxtaposition of matrices: if
A ∈ RI×J , and, B ∈ RJ×K , then, AB is the matrix product of A and B which
is in RI×K . If A is a matrix, then Ai is the row i of A considered as a 1 × N
matrix. If I is the set of indexes, AI is the submatrix when keeping only row i
from i. Vectors of dimension N are considered as matrix with size N × 1, but,

1

matrices 1 × 1 are considered as number: so, if v is a vector vi is the value of
component i. The product of a matrix A with a number l is written l × A but
not lA as the number-matrix product is not a matrix-matrix product. 0, 1 are
the vectors with all components being 0 or 1, and, bi the i vector of the natural
basis i.e. all components are 0 except component i with is 1. Finally, Det(A) is
the maximal determinant of any square submatrix of A (with maximal number
of columns).

Greek letter are used to design abstract object (object which could not ex-
ist when proving contradiction, optimal solution which are not decidable, not
rational numbers...).

1.2 Equivalence on linear programming

The native form of linear program is the task of solving min
x∈QN / Ax≥b

cx for given

A ∈ ZM×N a matrix, b ∈ ZM and c ∈ ZN some vectors.
But, it is well known that solving min

x∈QN / Ax≥b
cx is equivalent to find a

solution y ∈ QM+N (or prove there is not) to a system of inequality Hy ≥ h
with (H ∈ Z(M+N+2)×(N+M) and h ∈ ZN+M+2) due to primal dual theory.
There is a solution if and only if the original problem is both feasible and
bounded. As finding (or prove there is not) y such that Hy ≥ h is equivalent
to solve min

z,t∈QN×Q / Hz+t≥h,t≥0
t which is a feasible and bounded problem, it

is possible to consider primal dual again (on this last one). Thus, solver can
assume that some solution exists, and, that the task is to find it. Then, as
maximal determinant of a sub matrix is a polynomial in the binary size of the
matrix, any solution of Hz + t ≥ h, t ≥ 0,−t ≥ −ε for a decidable ε can be
converted into a solution by greedy projection. So, finding y (which exists)
such that Hy ≥ h is equivalent to solve a system of strict inequality Gz > g.
Finally, Gz > g is equivalent to find x (not related to original problem) such

that Ax > 0 because

(
G −g
0 1

)(
x
t

)
> 0. This is also trivially equivalent

to produce x such that Ax ≥ 1.
This way, any linear programming solver can assume without restricting the

generality to expect an input A ∈ ZM×N , with the task of producing x ∈ QN
such that Ax > 0, with the prior that such x exists.

Then, it is classical that one could remove extra variables until kernel of A
(Ker(A) = {x ∈ QN / Ax = 0}) is reduce to 0: if there exists x, χ such that
Aχ = 0, χ 6= 0 and Ax > 0, then, A(x − xχ

χχχ) = Ax > 0, and, χ(x − xχ
χχχ) =

0. So, one could just find y such that Ay > 0 after injecting yχ = 0 (i.e.
x1 = − 1

χ1

∑
n={2,...,N}

χnxn into Ay > 0 - this does not change the form of the

problem).
Finally, if I, J is a partition of all indexes of rows of A, then, finding AJx > 0,

AIx = 0, and, AIy > 0 is sufficient to find z such that Az > 0. Indeed, even if
AJy may not be acceptable positive, it will be possible to deal with it by adding

2

λx which does not modify AIy. So if one find x, then it is only required to
look for y (this strictly reduce the number of rows, and, possibly the number of
variable as extra variable are removed). So, with all this reduction, one could
consider reduced homogeneous linear feasibility only.

Definition: reduced homogeneous linear feasibility

Linear programming is equivalent to the task of finding x ∈ QN given
A ∈ ZM×N such that Ax ≥ 0, x 6= 0 given A ∈ QM×N with Ker(A) = {0},

and, with the prior that there exists y ∈ RN such that Ay > 0.

2 Interior point

2.1 Mathematical description

This section describes the classical interior point method in context of homo-
geneous linear feasibility. Precisely, usually barrier function is used on the con-
straint log(Aix− bi) to forbid Aix ≤ bi. This allows to to deal with problem in
primal form but this requires to update cost function c during runtime. Here
barrier function is only used on decomposition of x allowing to use a static
problem, and, with unrelated constraints. This comes with the cost of casting
the problem in homogeneous form. But this transformation is polynomial. So
this is not an issue (it may in practice, as, homogeneous may have quadratic
number of variables, constraints, and binary size - but it is ok in theory).

Let consider F (v) from]0,∞[M to R, and, x(v) from]0,∞[M to RN defined
by:

x(v) = AT v =

M∑
m=1

vmA
T
m

F (v) = x(v)Tx(v)− 1T log(v)

= vTAAT v − 1T log(v) =

M∑
i,j=1

vivj ×AiATj −
M∑
i=1

log(vi)

Let write 1
v for the vector in RM such that value of component m is 1

vm
,

then, ∇vF = Ax(v)− 1
v . The link with linear feasibility is that: if there exists

ν ∈]0,∞[M such that ∇νF = 0, then, Ax(ν) = 1
ν > 0.

Even more, the two assumptions ||∇vF || ≤ δ and ∃k such that Akx(v) < 0
implies that |Akx(v)|+ 1

vk
≤ δ i.e. vk ≥ 1

δ .
But, at this point, even for very small δ, this could be possible. Currently it

is possible if exists v such that x(v)Tx(v) = vTAAT v = 0. But, as y exists, then
AAT is semi definite positive. So, there exists λ > 0 with binary size polynomial
in binary size of A such that x(v)Tx(v) = vTAAT v ≥ λvT v when v ≥ 0.

Main consequence is that F (v) ≥ λ−vT v − 1T log(v).
So, let introduce the function f(t) from]0,∞[to R defined by f(t) = λ−t

2−
log(t). This function goes to ∞ when t goes to 0 or to ∞ (t2 dominates log(t)).

3

So, this function admits a minimum f∗ = f(τ) = 1+ 1
2 log(λ) which corresponds

to f ′(τ) = 0 for τ = 1√
λ

.

By combining the two previous statements, F (v) ≥ Mf∗, so F admit a
minimum F ∗ = M + M

2 log(λ) corresponding to ||∇νF || = 0, and importantly,
F ∗ = F (ν) is bounded by a polynomial in the binary size of A.

Also, as f(t) goes to ∞ when t goes to 0 or to ∞, then, f(t) ≤ φ implies
t ∈ [α(φ), β(φ)]. Precisely, α(φ) = exp(−φ), because, − log(t) ≤ f(t) ≤ φ. For
β(φ), either it is τ , or, β is the inverse of f(t) on [τ,∞[. Currently, one can lower
bound f(t) by f(2√

λ
) + (t − 2√

λ
)f ′(2√

λ
) (this is a very coarse lower bound but

log(β)) is polynomial in the binary size of A, so...). Now, let consider F , and,
an index k. Then, F (v) ≥ λ−v

T v − 1T log(v) ≥ (M − 1)f∗ + λ−v
2
k − log(vk).

So, λ−v
2
k − log(vk) ≤ F (v)− (M − 1)f∗. So, a fortiori α(F (v)− (M − 1)f∗) ≤

vk ≤ β(F (v)− (M − 1)f∗) at any point and for all k.
So, it is not possible to have simultaneously the three statements F (v) <

F (v0), ||∇vF || ≤ 1
β(F (v0)−(M−1)f∗) and ∃k such that Akx(v) < 0, because first

assumption implies that vk < β(F (v0) − (M − 1)f∗) but last two imply that
vk ≥ β(F (v0) − (M − 1)f∗). So, if one find v such that F (v) < F (v0), and,
||∇vF || ≤ 1

β(F (v0)−(M−1)f∗) , then, Ax(v) > 0.

Now, F is self concordant (a sum of -log and a quadratic term). So, damped
newton method can be applied on F .

This descent has two phases. First phase is characterized by a high gradient
(∇vF)T∇2

vF (∇vF) ≥ 1
4 but F (v after update) ≤ F (v)− 1

4 . So, this phase can
not last more than 4(F (v0)− F ∗) steps.

Let consider v0 = (1√
A1AT1

, ..., 1√
AMATM

) then as AiAj ≤ ||Ai||||Aj ||, it holds

that F (v0) ≤ M2 + 2
M∑
m=1

log(AmAm) i.e. F (v0) is polynomially bounded in

the binary size of A. So, the number of step with (∇vF)T∇2
vF (∇vF) ≥ 1

4 is
polynomial in the binary size of A (as 4(F (v0)− F ∗) is).

Then, the algorithm enters in the second phase where (∇vF)T∇2
vF (∇vF) ≤

1
4 . But, then, for every steps after this point, there is a quadratic converge of

gradient to 0: (∇v afterF)T∇2
v afterF (∇v afterF) ≤ 2

(
(∇vF)T∇2

vF (∇vF)
)2

.

So, one can make ∇v step tF)T∇2
v step tF (∇v step tF ≤ ε with t ≤ O(log log(1

ε)).

But, (∇vF)T∇2
vF (∇vF) ≥ exp(−2F (v0))∇vFT∇vF because the hessian is

AAT (semi definite positive) plus 1
v2 a definite positive matrix bounded by

exp(−2F (v0)). So, newton descent can make ∇vFT∇vF small, precisely one

can have ∇vFT∇vF ≤ 1
exp(−2F (v0))

(
(∇vF)T∇2

vF (∇vF)
)2 ≤ ε after a number

of steps lower than log log(1
ε exp(−2F (v0))). For ε = λ

β(F (v0)−(M−1)f∗) , one has

the solution of the problem in a number of steps polynomial in the binary size
of A.

4

2.2 Implementation issue

Now, let stress, this is not done yet: applying naive damped newton method will
make binary size of v becoming exponential (and require to compute the root of
1 + (∇vF)T∇2

vF (∇vF) for the damped step). So, naively, each step will require
exponential binary operation in binary size of A. This is why, it is important
to do the damped newton descent while keeping an acceptable binary size.

Let consider v, v′, v′′ 3 successive points during the newton descent. From v
the descent needs K steps, K−1 from v′ and K−2 from v′′. If one can round v′′

such that F (round(v′′)) is lower than F (v′), then, the descent should required
less than K− 1 steps from round(v′′) i.e. if rounding ensure that F (round(v′′))
is lower than F (v′), then, the algorithm will convergence is less than 2K steps
(where K is the number of steps for the infinite precision convergence).

So, the idea is to force denominator of even-step v to be 2−Γ with 2−Γ suf-
ficiently small such that the error (less than M

2−Γ) between native and rounded
vectors does not make F to go higher than the corresponding odd-step v (nu-
merator can be arbitrary large (as vk ≤ β(F (v0)− (M − 1)f∗), numerator can
not be higher than 2Γ+ceil(log(β(F (v0)−(M−1)f∗)))).

Hopefully, v is upper and lower bounded, then, F is lipschitz. Here, F is
even lipschitz with a coefficient γ polynomial in the binary size of A. So, it is
sufficient that 2Mγ−Γ is lower than the smallest newton improvement. Let ω be
the smallest improvement. It is sufficient that Γ ≥ Mγ − log(ω). And, ω is 1

4
for first phase, and, related to the gradient in the second phase (so higher than
ε from which one has created a solution).

Now, there is another issue which is that checking if F (v) ≤ F (w)−ε is even
not that easy because it requires a careful approximation of log, and inner step
of the damped newton descent requires to compute approximate square root !

This issue when dealing with arbitrary large number may plague numerous
algorithm. Typically, ellipsoid method has a square root step, and, requires to
round solution. Of course, this can be mitigated.

Yet, if it was possible to solve linear program using elementary function
only, it could be interesting. Currently, Chubanov algorithm seems to have this
feature. But, it is not clear for an interior like algorithm.

So, instead of relying on F . One could wonder if it is not possible to directly
minimize x(v)Tx(v) under constraint v ≥ 0, vT1 ≥ 1. Let stress that this is very
different from minimizing x(v)Tx(v) under constraint Ax(v) ≥ 1: constraints
are linked in Ax(v) ≥ 1, but, independent in v ≥ 0 - only vT v = 1 links
the variable. Currently, the resulting solution may have nothing to do with a
support vector machine solution related to A.

3 claim

The task is to find x ∈ QN given A ∈ ZM×N such that Ax ≥ 0, x 6= 0 given
A ∈ QM×N with Ker(A) = {0}, and, with the prior that there exists y ∈ RN

5

such that Ay > 0. Let

ν = arg min
v≥0,vT 1≥1

vTAAT v = arg min
v≥0,vT 1≥1

x(v)Tx(v) (1)

Let stress yTx(ν) > 0, as ν ≥ 0, νT1 ≥ 1. So, x(ν) 6= 0, so νTAAT ν > 0, so
there is m ∈ {1, ...,M} such that AmA

T ν > 0.
Now, if ∃i ∈ {1, ...,M} such that AiA

T ν < 0, then, one could consider

AT ν− AiA
T ν√

ATi Ai
×ATi corresponding to φ = ν− AiA

T ν√
ATi Ai

×bi. Let stress that φ ≥ 0

because AiA
T ν < 0, and, also φTφ ≥ 1. So, by definition of ν, x(φ)Tx(φ) ≥

x(ν)Tx(ν). But, x(φ)Tx(φ) = x(ν)Tx(ν) − (AiA
T ν)2

2 < x(ν)Tx(ν). This is a
contradiction.

Let v ∈ QM×N with v > 0 and vT v = 1. Either AAT v ≥ 0, and, one has a
solution. Or, one could consider:

w = arg min
uT 1=0

(v + u)TAAT (v + u) + vTAAT v × uT


1
v2
1

0 0

...
0 0 1

v2
M

u (2)

First, this equation has a solution because 0 is admissible, and, it is pure
linear algebra (no inequality or no quadratic function).

Then, one could consider φ = ε × bi − ε × bm with AiA
T v < 0, and,

AmA
T v > 0, at first order, x(v+φ)Tx(v+φ) = x(v)Tx(v)+εAiA

T v−εAmAT v.
So x(v + φ)Tx(v + φ) < x(v)Tx(v) (at first order). But, vTφ = 0. So, the
equation (2) as a not trivial solution w with x(v + w)Tx(v + w) < x(v)Tx(v).

Now, if wi + vi ≤ 0, it means that w2
i ≥ v2

i , but, this last point implies

that wT


1
v2
1

0 0

...
0 0 1

v2
M

w ≥ 1. But, this leads necessarily to increase the

cost function of equation (2). So, the solution of equation (2) verifies that
v + w > 0. So, one could consider the algorithm consisting to compute w and
update v = v + w.

Let notice that wT1 = 0 implies that (v + w)T1 > vT1 = 1, so one could
never reach 0, and, assumption on v are always true: v > 0, vT1 = 1). So, this
algorithm is well defined, and, as x(v)Tx(v) is strictly decreasing, the algorithm
does not loop.

Currently, the algorithm is very very close than previous interior
point version, but, here the log is implicit, not explicit. One could
monitor and/or perform rounding operations much more easily with
this version ! Now, the question is the number of steps to converge.

Currently, one candidate for u is ω = λ× (ν − v) (so w give an even better
reduction) with:

λ =
vTAAT (v − ν)

(v − ν)TAAT (v − ν) + vTAAT v × 1T (1− ν
v)2

6

leading to x(v + ω)Tx(v + ω) = vTAAT v − (vTAAT (v−ν))2

(v−ν)TAAT (v−ν)+vTAAT v×1T (1− νv)2

(so x(v + w)Tx(v + w) is lower).
Obviously, this upper bound can be useless if 1T (1 − ν

v)2 is arbitrary high,
especially from a random initialization of v. Yet, in good case where (1− ν

v)2 ≤
Γ((u− ν)T (u− ν))γ , then, the dynamic of x(v + ω)Tx(v + ω) is somehow:

valuestep+1 = valuestep(1−
1

1 + Γ((u− ν)T (u− ν))γ
)

valuestep+1 = valuestep(
1

1 + 1
Γ((u−ν)T (u−ν))γ

)

Such dynamic corresponds to a quadratic convergence. This paper does
not prove such convergence in general case. It only claims that in good
case, the convergence of v toward ν may be fast.

Currently, this convergence should probably be helped by trying to balance
vi by hand (when AiA

T v < 0 it is always possible to do vi− = AiA
T v plus root

free normalization) and/or by forbidding v to try to reach some φ ∈ Ker(AAT).
Important remarks:
For the convergence, it is not clear that Ax(v) ≥ 0, even if x(v)Tx(v) is

arbitrary close to the optimum. Yet, even in this case, if Ax(v) ≥ − µ
2Det(A)1

one can produce a solution.
µ = min

v≥0,vT v≥1
max
i

(Aix(v))2 is not nul, So, if Ax(v) ≥ − µ
2Det(A)1, then,

Ax(1
µ × v) ≥ −2Det(A)× 1, but, there is i such that Aix(1

µ × v) ≥ 1. So, one
can consider min

x,t Ax+t×(1−bi)≥bi,t≥0
t, this auxiliary problem can be initialized by

x(v) and 1
2Det(A) . Just using greedy projection, one may reach a vertex with

t ≤ 1
2Det(A) . As cramer rule apply on vertex, it means that t = 0 (so x is a

solution of Ax ≥ bi, and, so a solution of the original problem (notice that it is
not necessarily matched with some v).

Also, equation (2) allows to decrease any vi to almost 0, but, not to increase
vi much than 2vi. Yet, this can be mitigate, because, if AiA

T v < −vi, it is
possible to do simple perceptron like update vi− = AiA

T v (which decreases
x(v)Tx(v) while increasing exponentially vi by a factor 2 - so there could not
have more than a polynomial number of such steps). So, equation (2) will only
be used on v such that AiA

T v + vi > 0.
Also, it could also be interesting to check if the minimizing of vTAAT v when

v is orthogonal to the kernel of A (this is just linear algebra: min
v,Bv=0

vTAAT v,

with B an orthogonal basis of the kernel). It seems that this means is an eigen
vector linked with the minimal not nul eigen value. Yet, being an eigen vector
implies constraint on v contrary to just being orthogonal to the kernel of A.

Finally, let remark that:

ν1 = arg min
v≥0,vT 1≥1

vTAAT v

7

is linked with

w = arg min
uT 1=0

(v + u)TAAT (v + u) + vTAAT v × uT


1
v2
1

0 0

...
0 0 1

v2
M

u

But,
ν2 = arg min

v≥0,vT v≥1

vTAAT v

is linked with

w = arg min
uT v=0

(v + u)TAAT (v + u) + vTAAT v × uT


1
v2
1

0 0

...
0 0 1

v2
M

u

(then one could normalize by vT v)
and

ν∞ = arg min
v≥1

vTAAT v

is linked with

w = arg min
u

(v+u)TAAT (v+u) + vTAAT v×uT
 1

(v1−1)2 0 0

...
0 0 1

(vM−1)2

u

In three case, if AiA
T ν < 0 one could increase νi while reducing νTAAT ν.

ν∞ seems more interesting as it seems linked to some vertex: ν∞ seems to be the
solution of vI = 1, AJA

T v = 0 (this seems to prove that ν is polynomial in the
binary size of A - this is not that trivial because ν is not an eigen value). Also the
∞ version does not require any normalization when performing perceptron like
update. So, considering ν∞ instead ν1 should be interesting, yet, it seems not
in preliminary numerical experiments - but this may lead to better theoretical
properties. Also, ν2 seems more elegant but may require normalization i.e.
square root - so it is not interesting for the purpose of making easier arbitrary
large number optimization.

References

[1] Sergei Chubanov. A polynomial projection algorithm for linear feasibility
problems. Mathematical Programming, 153(2):687–713, 2015.

[2] George B et. al. Dantzig. The generalized simplex method for minimizing a
linear form under linear inequality restraints. In Pacific Journal of Mathe-
maticsAmerican Journal of Operations Research, 1955.

8

[3] Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid
method and its consequences in combinatorial optimization. Combinatorica,
1(2):169–197, 1981.

[4] Leonid Khachiyan. A polynomial algorithm for linear programming. Doklady
Akademii Nauk SSSR, 1979.

[5] Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algo-
rithms in convex programming, volume 13. Siam, 1994.

[6] Frank Rosenblatt. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, 65(6):386, 1958.

9

