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Abstract

The structure of main polynomial time algorithms for linear program
forbid them to use greedy improvement which could allow to stick to the
combinatorial structure of the problem.

This paper reviews interior point for linear feasibility, and, wonder if
a direct optimization could be feasible.

1 Introduction

Linear programming is the very studied task of optimizing a linear criterion
under linear equality and inequality constraints. This problem has been first
tackled by exponential algorithms like simplex [2] or perceptron [6]. Today, this
problem is tackled by polynomial time algorithms like ellipsoid method [4, 3],
log barrier method [5], or recently, Chubanov method [1].

1.1 Notation

The set of matrices of size M × N on R is written RM×N (the same for Q or
Z). This set is a vectorial space with an addition written +, and, a product
between a scalar and a matrix written ×. If A is a matrix from RM×N , then,
the transposed matrix is written AT ∈ RN×M . The set of all matrices of any
size has an inner product which is represented by juxtaposition of matrices: if
A ∈ RI×J , and, B ∈ RJ×K , then, AB is the matrix product of A and B which
is in RI×K . If A is a matrix, then Ai is the row i of A considered as a 1 × N
matrix. If I is the set of indexes, AI is the submatrix when keeping only row
i from i. Vectors of dimension N are considered as matrix with size N × 1,
but, matrices 1× 1 are considered as real: so, if v is a vector vi is the value of
component i. 0, 1 are the vectors with all components being 0 or 1, and, bi the
i vector of the natural basis i.e. all components are 0 except component i with
is 1. Finally, Det(A) is the maximal determinant of any square submatrix of A
(with maximal number of columns).
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Greek letter are used to design abstract object (object which could not exist
when proving contradiction, optimal solution which are not computable...).

1.2 Equivalence on linear programming

The native form of linear program is the task of solving min
x∈QN / Ax≥b

cx for given

A ∈ ZM×N a matrix, b ∈ ZM and c ∈ ZN some vectors.
But it is well known that solving min

x∈QN / Ax≥b
cx is equivalent to find a

solution y ∈ QM+N (or prove there is not) to a system of inequality Hy ≥ h
with (H ∈ Z(M+N+2)×(N+M) and h ∈ ZN+M+2) due to primal dual theory.
There is a solution if and only if the original problem is both feasible and
bounded. As finding (or prove there is not) y such that Hy ≥ h is equivalent
to solve min

z,t∈QN×Q / Hz+t≥h,t≥0
t which is a feasible and bounded problem, it

is possible to consider primal dual again (on this last one). Thus, solver can
assume that some solution exists, and, that the task is to find it. Then, as
maximal determinant of a sub matrix is a polynomial in the binary size of the
matrix, any solution of Hz + t ≥ h, t ≥ 0,−t ≥ −ε for a decidable ε can be
converted into a solution by greedy projection. So, finding y (which exists)
such that Hy ≥ h is equivalent to solve a system of strict inequality Gz > g.
Finally, Gz > g is equivalent to find x (not related to original problem) such

that Ax > 0 because

(
G −g
0 1

)(
x
t

)
> 0. This is also trivially equivalent

to produce x such that Ax ≥ 1.
This way, any linear programming solver can assume without restricting the

generality to expect an input A ∈ ZM×N , with the task of producing x ∈ QN
such that Ax > 0, with the prior that such x exists.

Then, it is classical that one could remove extra variables until kernel of A
(Ker(A) = {x ∈ QN / Ax = 0}) is reduce to 0: if there exists x, χ such that
Aχ = 0, χ 6= 0 and Ax > 0, then, A(x − xχ

χχχ) = Ax > 0, and, χ(x − xχ
χχχ) =

0. So, one could just find y such that Ay > 0 after injecting yχ = 0 (i.e.
x1 = − 1

χ1

∑
n={2,...,N}

χnxn into Ay > 0 - this does not change the form of the

problem).
Finally, if I, J is a partition of all indexes of rows of A, then, finding AJx > 0,

AIx = 0, and, AIy > 0 is sufficient to find z such that Az > 0. Indeed, even if
AJy may not be acceptable positive, it will be possible to deal with it by adding
λx which does not modify AIy. So if one find x, then it is only required to
look for y (this strictly reduce the number of rows, and, possibly the number of
variable as extra variable are removed). So, with all this reduction, one could
consider reduced homogeneous linear feasibility only.

Definition: reduced homogeneous linear feasibility

Linear programming is equivalent to the task of find x ∈ QN such that
Ax ≥ 0, Ax 6= 0 given A ∈ QM×N with Ker(A) = {0}, and, with the prior

that there exists y such that Ay > 0.

2



2 Interior point

This section describes the classical interior point method in context of homo-
geneous linear feasibility (precisely, usually barrier function is used on the con-
straint log(Aix − bi) to forbid Aix ≤ bi - but it requires to deal with problem
in primal form, and, to update cost function c during runtime - here barrier
function is only used on decomposition of x):

Let consider F (v) from ]0,∞[M to R, and, x(v) from ]0,∞[M to RN defined
by:

x(v) = AT v =

M∑
m=1

vmA
T
m

F (v) = x(v)Tx(v)− 1T log(v)

= vTAAT v − 1T log(v) =

M∑
i,j=1

vivj ×AiATj −
M∑
i=1

log(vi)

Let write 1
v for the vector in RM such that value of component m is 1

vm
,

then, ∇vF = Ax(v)− 1
v . The link with linear feasibility is that: if there exists

ν ∈]0,∞[M such that ∇νF = 0, then, Ax(ν) = 1
ν > 0.

Even more, the two assumptions ||∇vF || ≤ δ and ∃k such that Akx(v) < 0
implies that |Akx(v)|+ 1

vk
≤ δ i.e. vk ≥ 1

δ .
But, at this point, even for very small δ, this could be possible. Currently

it is possible if exists v such that x(v)Tx(v) = vTAAT v = 0. But, as y exists,
then AAT is semi definite positive (because there is a solution). So, there exists
λ− > 0 the minimal not null spectral value of AAT with binary size polynomial
in binary size of A such that x(v)Tx(v) = vTAAT v ≥ λvT v when v ≥ 0.

Main consequence is that F (v) ≥ λ−vT v − 1T log(v).
So, let introduce the function f(t) from ]0,∞[ to R defined by f(t) = λ−t

2−
log(t). This function goes to ∞ when t goes to 0 or to ∞ (t2 dominates log(t)).
So, this function admits a minimum f∗ = f(τ) = 1+ 1

2 log(λ) which corresponds
to f ′(τ) = 0 for τ = 1√

λ
.

By combining the two previous statements, F (v) ≥ Mf∗, so F admit a
minimum F ∗ = M + M

2 log(λ) corresponding to ||∇νF || = 0, and importantly,
F ∗ = F (ν) is bounded by a polynomial in the binary size of A.

Also, as f(t) goes to ∞ when t goes to 0 or to ∞, then, f(t) ≤ φ implies
t ∈ [α(φ), β(φ)]. Precisely, α(φ) = exp(−φ), because, − log(t) ≤ f(t) ≤ φ. For
β(φ), either it is τ , or, β is the inverse of f(t) on [τ,∞[. Currently, one can lower
bound f(t) by f( 2√

λ
) + (t − 2√

λ
)f ′( 2√

λ
) (this is a very coarse lower bound but

log(β)) is polynomial in the binary size of A, so...). Now, let consider F , and,
an index k. Then, F (v) ≥ λ−v

T v − 1T log(v) ≥ (M − 1)f∗ + λ−v
2
k − log(vk).

So, λ−v
2
k − log(vk) ≤ F (v)− (M − 1)f∗. So, a fortiori α(F (v)− (M − 1)f∗) ≤

vk ≤ β(F (v)− (M − 1)f∗) at any point and for all k.
So, it is not possible to have simultaneously the three statements F (v) <

F (v0), ||∇vF || ≤ 1
β(F (v0)−(M−1)f∗) and ∃k such that Akx(v) < 0, because first
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assumption implies that vk < β(F (v0) − (M − 1)f∗) but last two imply that
vk ≥ β(F (v0) − (M − 1)f∗). So, if one find v such that F (v) < F (v0), and,
||∇vF || ≤ 1

β(F (v0)−(M−1)f∗) , then, Ax(v) > 0.

Now, F is self concordant (a sum of -log and a quadratic term). So, damped
newton method can be applied on F .

This descent has two phases. First phase is characterized by (∇vF )T∇2
v(∇vF ) ≥

1
4 but F (v after update) ≤ F (v) − 1

4 . So, this phase can not last more than
4(F (v0)− F ∗) steps.

Let consider v0 = ( 1√
A1AT

1

, ..., 1√
AMAT

M

) then F (v0) ≤M2+2
M∑
m=1

log(AmAm)

i.e. F (v0) is bounded by a polynomial in the binary size ofA. So, if (∇vF )T∇2
v(∇vF ) ≥

1
4 until abrupt convergence, then, the number of steps is lower than 4(F (v0)−F ∗)
which is bounded by a polynomial in the binary size of A. In this case the prob-
lem is solved in polynomial time.

If the first phase ends before the convergence of the algorithm. Then,
it means that after a polynomial number of steps, (∇vF )T∇2

v(∇vF ) ≤ 1
4 .

But, then, for every steps after this point, (∇v afterF )T∇2
v after(∇v afterF ) ≤

2
(
(∇vF )T∇2

v(∇vF )
)2

. So,∇v step tF )T∇2
v step t(∇v step tF ≤ ε with t ≤ O(log log( 1

ε )).

But, (∇vF )T∇2
v(∇vF ) ≥ exp(−2F (v0))∇vFT∇vF because the hessian is AAT

(semi definite positive) plus 1
v2 a definite positive matrix bounded by exp(−2F (v0)).

So, newton descent will make ∇vFT∇vF ≤ 1
exp(−2F (v0))

(
(∇vF )T∇2

v(∇vF )
)2 ≤

ε after log log( 1
ε exp(−2F (v0)) ). For ε = λ

β(F (v0)−(M−1)f∗) , one has the solution of

the problem in a number of steps polynomial in the binary size of A.

Finally, let stress, this is not done yet: applying naive damped newton
method will make binary size of v becoming exponential (and require to com-
pute the root of 1 + (∇vF )T∇2

v(∇vF ) for the damped step). So, naively, each
step will require exponential binary operation in binary size of A. This is why,
it is important to do the damped newton descent while keeping an acceptable
binary size.

Let consider v, v′, v′′ 3 successive points during the newton descent. From v
the descent needs K steps, K−1 from v′ and K−2 from v′′. If one can round v′′

such that F (round(v′′)) is lower than F (v′), then, the descent should required
less than K− 1 steps from round(v′′) i.e. if rounding ensure that F (round(v′′))
is lower than F (v′), then, the algorithm will convergence is less than 2K steps
(where K is the number of steps for the infinite precision convergence).

So, the idea is to force denominator of even-step v to be 2−Γ with 2−Γ suf-
ficiently small such that the error (less than M

2−Γ ) between native and rounded
vectors does not make F to go higher than the corresponding odd-step v (nu-
merator can be arbitrary large (as vk ≤ β(F (v0)− (M − 1)f∗), numerator can
not be higher than 2Γ+ceil(log(β(F (v0)−(M−1)f∗)))).

Hopefully, v is upper and lower bounded, then, F is lipschitz. Here, F is
even lipschitz with a coefficient γ polynomial in the binary size of A. So, it is
sufficient that 2Mγ−Γ is lower than the smallest newton improvement. Let ω be
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the smallest improvement. It is sufficient that Γ ≥ Mγ − log(ω). And, ω is 1
4

for first phase, and, related to the gradient in the second phase (so higher than
ε from which one has created a solution).

3 Helping interior point

Frustratingly, neither ellipsoid method, or, the interior point described above
can take advantage of easy greedy improvement.

In ellipsoid method, even if Aix � 0 adding Ai to x except of sticking to
the global scheme is a bad idea because it will require to increase the bounding
ellipoid to be sure not to forgot solution.

In the interior point method, it is possible to check if moving along Ai
decreases F . Yet, as F implies log function, it is not possible to have infinite
precision in this computation.

Also, the method is quite complex compared to exponential simplex (espe-
cially, it leads to numerical issue which can be solved theoretically by rounding
one vector each two, but, may a coding nightmare).

Yet, instead of relying on F . One could wonder if it is not possible to
directly minimize x(v)Tx(v) under constraint v ≥ 0, vT v ≥ 1. Let stress that
this is very different from minimizing x(v)Tx(v) under constraint Ax(v) ≥ 1:
constraints are linked in Ax(v) ≥ 1, but, independent in v ≥ 0 - only vT v = 1
links the variable. Currently, the resulting solution may have nothing to do with
a support vector machine solution related to A.

Yet, let ν the solution of min
v≥0,vT v≥1

x(v)Tx(v), then, Ax(ν) ≥ 0,Ax(ν) 6=

0 i.e. x(ν) is a solution of the homogeneous linear feasibility instance.
indeed, if Aix(ν) < 0, then, one could add so ATi to x(ν) (corresponding to

add some bi to ν to improve the solution). Also, x(ν) 6= 0, because, ν 6= 0, so,
yTx(ν) ≥ ε1T ν (y is the solution i.e. such that Ay ≥ ε1 > 0). So, Ax(ν) 6= 0,
otherwise, x(ν)Tx(ν) = 0 (it is a positive sum of row of Ax(ν)).

So, one could consider the following algorithm:
Algorithm

From v such that vI = 0, AIx(v) ≥ 0, vJ > 0, vT v = 1, one could look for u
solving:

min
u:uT v=0,uI=0

(v + u)TAAT (v + u) = min
u:uT v=0,uI=0

x(v + u)Tx(v + u)

Solving this problem can be done (approximatively) with pure linear algebra
without combinatorial issue.

Then, if v + u ≥ 0, v = v + u or v = v + l × u with l to add some vector in I.
Then, if AIx(v) is not higher than 0, some ATi can be added to x (i.e. bi can

be added to v). Finally, v can be scaled to restore vT v = 1.

End algorithm
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Both steps of adding u and adding ATi makes vT v larger while making
x(v)Tx(v) decreases. So, rescaling also makes x(v)Tx(v) because v is always
larger than 1 just before the rescaling. So, this algorithm does not loop.

At this point, it may not converge, or, reaches a point with u = 0.
Yet, u = 0 means in reality that v is a solution, because, AIx(v) ≥ 0 and

AJx(v) ≥ 0 while v 6= 0, otherwise let split J in K,H with positive and negative
then u such that uj = ε

|K|vj if j ∈ K, and, uj = ε
|H|vj if j ∈ H could have been

considered.
Currently, when, I = ∅, this is even simpler just considering the function

f(t) = x
(

t×ν+(1−t)×v
||t×ν+(1−t)×v||

)T
x
(

t×ν+(1−t)×v
||t×ν+(1−t)×v||

)
- f is strictly decreasing from 0

to 1, and so, the derivatives of t×ν+(1−t)×v
||t×ν+(1−t)×v|| is a candidate for u.

For the convergence, it is not clear that Ax(v) ≥ 0, even if x(v)Tx(v) is
arbitrary close to the optimum. Yet, even in this case, if Ax(v) ≥ − µ

2Det(A)1

one can produce a solution.
µ = min

v≥0,vT v≥1
max
i

(Aix(v))2 is not nul, So, if Ax(v) ≥ − µ
2Det(A)1, then,

Ax( 1
µ × v) ≥ −2Det(A)× 1, but, there is i such that Aix( 1

µ × v) ≥ 1. So, one
can consider min

x,t Ax+t×(1−bi)≥bi,t≥0
t, this auxiliary problem can be initialized by

x(v) and 1
2Det(A) . Just using greedy projection, one may reach a vertex with

t ≤ 1
2Det(A) . As cramer rule apply on vertex, it means that t = 0 (so x is a

solution of Ax ≥ bi, and, so a solution of the original problem (notice that it is
not necessarily matched with some v).

So, the offered algorithm should converges because at least u could be a

simple perceptron like update v step t+ 1 = v step t − Aitx(v step t)

AitA
T
it

bit corre-

sponding to xt+1 = xt −
Aitx(v step t)

AitA
T
it

ATit

As, this update is at least 1
2Det(A) (or one can exit to build a solution), then,

the algorithm converges.
At this point the complexity is exponential, but, the offered algorithm has

some interesting feature:

• it is close to a well known polynomial method (it tries to minimize x(v)Tx(v)
with constraints v ≥ 0, and, vT v = 1 instead of directly minimizing
x(v)Tx(v)− log(v), so, the complexity may be polynomial (for example if
one could match newton step with algorithm step).

• yet, this algorithm manipulated simpler object like only quadratic func-
tion: this allows for example simple check to see if using some greedy
improvement does not break the algorithm convergence

• there is some combinatorial part I which appear will the algorithm is
currently an interior point algorithm.
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