
HAL Id: hal-00722920
https://hal.science/hal-00722920v23

Preprint submitted on 20 Dec 2019 (v23), last revised 16 Jan 2023 (v38)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Walking on the vertices of a polytope.
Adrien Chan-Hon-Tong

To cite this version:

Adrien Chan-Hon-Tong. Walking on the vertices of a polytope.. 2019. �hal-00722920v23�

https://hal.science/hal-00722920v23
https://hal.archives-ouvertes.fr

Walking on the vertices of a polytope.

Adrien CHAN-HON-TONG

December 2019

Abstract

This paper presents an algorithm for linear programming. This algo-
rithm is clearly exponential.

But, this algorithm has the interesting features of being strongly poly-
nomial for a given number of vertices/support sets. Precisely, the number
of operation required to solve an instance is linear in the total number of
vertices/support sets with a strongly polynomial factor.

1 Introduction

Linear programming is the very studied task of optimizing a linear criterion
under linear equality and inequality constraints.

This problem has been first tackled by exponential algorithms like simplex
[4] or perceptron [12]. Today, this problem is tackled by polynomial time algo-
rithms like ellipsoid method [7, 5], log barrier method [10], or recently, Chubanov
method [3]. Also, some families of linear programs are known to admit strongly
polynomial algorithm (question is open for general linear programming, [1] re-
cently shows that log barrier method is not strongly polynomial):

• linear program with -1/0/1 matrix A [13] (by specific algorithm)

• linear program with two variables per inequality [6] (by specific algorithm)

• Markov chain [11] (with simplex)

• system having binary solution [2] (by specific algorithm)

This paper offers a new algorithm for linear programming which is clearly
exponential (and, thus, not competitive with [7, 10, 3]), but, strongly polynomial
on several (small) families of linear programs. This algorithm is somehow related
to simplex, or to [8], but, with the interesting feature of dealing with non singular
and singular vertex in the same way.

Precisely, the algorithm walks on the vertices of the polytope. On common
instance, the number of vertices is exponential in the binary size of the input,
and, thus, this algorithm is exponential too. Yet, when the number of vertices
is strongly polynomial, then, the algorithm is too.

1

Notation

Set of N dimensional vectors is written QN , and, set of matrix of size M ×N
is written QM×N . If A is a matrix, or, x a vector, then, Ai or xi is the i
component of A or x (a N dimensional vectors for A and a scalar for x). If
u, v are two N dimensional vectors, uv is the scalar product of the vectors i.e.
uv =

∑
n∈{1,...,N}

unvn. If A ∈ QM×N is a matrix and x ∈ QN is a vector, then

Ax is the matrix-vector product of A and x. 0, 1 are the vectors with all
components being 0 or 1.

The binary complexity of an algorithm is a bound on the number of binary
operations required for the algorithm to produce the expected solution as func-
tion of the binary size of the input classically written L. A O(f(L)) binary
complexity means that exists a constant M such that this bound is Mf(L). A

Õ(f(L)) binary complexity means that exists γ such the binary complexity is
O(f(L) logγ(f(L))). One can speak about complexity (not binary) expressed in
the number of iterations or rational complexity (for the total number of rational
operation). Let stress that binary complexity of addition/multiplication of two

numbers of binary size L is already Õ(L).

2 The walking-on-vertices algorithm with recur-
rence

2.1 Pre processing

The native form of linear program is the task of solving min
x / Ax≥b

cx for given

A ∈ QM×N a matrix, b ∈ QM and c ∈ QN some vectors.
Let recall that solving min

x / Ax≥b
cx is equivalent to solve a system of in-

equality Hx ≥ h due to primal dual theory. As Hx ≥ h is equivalent to solve
min

x,t / Hx+t≥h,t≥0
t on which it is possible to consider primal dual again, one can

always assume that some solution exists, and, that the task is to find it. Then,
this last problem Hx ≥ h is equivalent to solve a system of strict inequality
Gx > g: as maximal determinant of a sub matrix is a polynomial in the binary
size of the matrix, any solution of Hx + t ≥ h, t ≥ 0,−t ≥ −ε for a decidable
ε can be converted into a solution. Finally, Gx > g is equivalent to Ax > 0

because

(
G −g
0 1

)(
x
t

)
> 0.

Erratum: Two faults plague paper hal-00722920 from version 9 to 22 inclu-
sive. This pre processing was claimed unknown. And, [3] was claimed strongly
polynomial, while it is only polynomial !

This way, the offered algorithm can assume without restricting the generality
to have an input A ∈ QM×N , with the task of producing x ∈ QN such that
Ax > 0, with the prior that such x exists.

2

2.2 Vertices

As it is a central notion in this paper, let introduce formally the concept of
vertex in the case of homogeneous linear system.
Definition: Vertex

Given A ∈ QM×N , a set of index I ⊂ {1, ...,M} is called a vertex if and
only if ∃x ∈ QN such that AIx = −1 and A{1,...,M}\Ix > −1

A non singular maximal vertex is just a point x such that AIx = −1 with
AI square and non singular, plus, A{1,...,M}\Ix > −1. But, here, all vertices
are considered: size of I can be different from N (lower or higher), and/or,
the matrix AI can be singular. Let stress that this definition specifies that
A{1,...,M}\Ix > −1, so, a point x can not belong to more than one vertex.

Currently, other names like feasible sets or support sets could have been
used instead of vertices. Yet, there is a link between classical vertices and
these vertices: Geometrical vertices are maximal vertices under this
definition.

The number of vertices is at most bounded by 2M . Yet, on common instance,
the number of vertices is 2M . Only few things could forbid I to be a vertex.
Typical example is when i, j, k verify Ak = (Ai+Aj), then, it is impossible that
Aix = Ajx = Akx = 1 because Akx = 2 > 1. Typically, for N = 2 there is no
more than M2 + M vertices. So the offered algorithm is not very relevant on
general case, but, could still be interesting, on few vertices instances.

2.3 Key ideas and pseudo codes

The key idea of the offered algorithm to find Ax > 0 is to reach some vertex
I 6= {1, ...,M}, and then, to call recursively the algorithm on AI to find some
vector v allowing to exit this vertex reaching another one. Yet, this single idea
is not efficient as it: alone, there is no bound on the number of times a vertex
I is observed.

To avoid this drawback, it is sufficient to store the different steps, this creates
a dictionary allowing to exit efficiently already encountered vertices. Currently,
such perfect exit which increases equally all constraints strictly increase the
working set.

The pseudo code is presented in figure-algorithm 1.
This pseudo code can be improved by sharing history across all recursive

calls: currently a perfect exit can only be detected in a single call while it
could be detected across different calls. Yet, code is much more easily with
this version. Sharing the history across all recursive calls is very hard from
coding point of view, as, it requires to maintain at every moment a real point,
while here, recurrent call restarts from 0. Also, this sharing requires to deal
with constraint outside I: it is possible as I is the set of most negative current
constraints so there is a margin to move before any constraints outside of I may
parasite the algorithm, but, this requires very careful implementation.

3

Algorithm 1 walking on vertices with recurrence

// input: A ∈ QM×N , such that ∃x, / Ax > 0
// output: x ∈ QN / Ax > 0 when called with I = {1, ...,M} and empty dicts
walking vertices rec(A, I, PerfectExit, Exit) =

1: x =
∑
i∈I
Ai

2: History = dict()
3: while True do
4: minAIx = min

i∈I
Aix

5: J = {i ∈ I, Aix = minAIx}
6: if minAIx > 0 then
7: if J == I then
8: PerfectExit[I] = x
9: else

10: Exit[I] = x

11: returns x
12: if J ∈ History then
13: PerfectExit[I] = x−History[J]
14: else
15: History[J] = x

16: if J ∈ PerfectExit then
17: v = PerfectExit[J]
18: else
19: if J ∈ Exit then
20: v = Exit[J]
21: else
22: v = walking vertices rec(A, J, PerfectExit, Exit)

23: if AIv > 0 then
24: x = v
25: else
26: l = max

λ
min
m∈I

Ai(x+ λv)

27: x = x+ lv

4

So, from theoretical point of view, there is not issue in sharing the history,
but, the convergence will be proven algorithm 1.

2.4 Consistency of the algorithm

To summarize the proof, this algorithm 1 converges because there can not have
more than M step 17 successively (because step 17 leads to add something in
J), and, because step 20/22 can not be done more than one per vertex (in a call
as sharing is not optimal - but globally with sharing).

2.4.1 lemmas

Let first present some basic result which are currently at the heart of the per-
ceptron algorithm [12].

Definition: Positive combination of vectors from A

Let Ω(A) be the set of vectors v ∈ QN such that there exists α ∈ QM
with v =

∑
m∈{1,...,M}

αmAm, α ≥ 0, and, α 6= 0

Ω will be used instead of Ω(A) is it creates no ambiguity. Let note that
v, w ∈ Ω⇒ v + w ∈ Ω. Then, the following lemma holds:

Lemma: ∀v ∈ Ω\{0}, there is i ∈ {1, ...,M}, such as Aiv > 0.
If ∀m ∈ {1, ...,M}, Amv ≤ 0, then, vv ≤ 0 but v 6= 0, so, vv > 0.
Corollary: ∀v ∈ Ω\{0}, if Av = λ1, then, λ > 0.
Lemma: if ∃x,Ax > 0 then 0 /∈ Ω.
xv ≥ (

∑
m∈{1,...,M}

Amxαm) > 0. So, v 6= 0.

2.4.2 Termination and correctness of walking-on-vertices

Lemma: all vectors in the algorithm belongs to Ω and minAIx strictly
increases.

This can be proven by inducting. Step 1 creates a vector in Ω. By induc-
tion, recurrent calls walking vertices rec return v ∈ Ω, and, for step 13, as
PerfectExit[J] is before x, it means that x = PerfectExit[J] + v with v ∈ Ω.
So, v ∈ Ω.

Then, the induction hypothesis is extended in step 27 as soon as l > 0. As,
AJv > 0 and AJx = minAIx1 and AI\Jx > minAIx1, then, there is some
l > 0 which makes minAIx increases.

Lemma: step 17 leads J to strictly increase.
By construction when using a perfect exit all vertors from J are maintained

in J while performing step 27. But, one will enter otherwise setp Now, while
moving along x− y, one constraint is going less and less validated. For l being
the maximal possible move, one constraint enter in J . And, J is bounded by
{1, ...,M} so

Corollary: there can not be more then M successive steps 17.
Lemma: J can not be I (in particular recursion is not infinite).

5

This is linked with the lemma that ∀v ∈ Ω, if Av = λ1, then, λ > 0. So, J
can not be I.

Lemma: algorithm never call twice step 20/22 on the same set J .
By construction, if J is seen twice, there is a perfect exit (in particular as

minAIx strictly increases it can be a pure loop). This allows to state one of
the main claim of this paper:

Corollary: walking-on-vertices terminates after at most 2M steps
20/22, each separated by at most M successive steps 17.

2.5 Why not using bisection ?

Importantly, one could wonder why not looking for v such that AJv = 1 directly
when reaching step 12. Because, applying the algorithm only when there is no
v such that AJv = 1 seems a good idea. Algorithm will only call himself on
maximal vertex.

But, such v may not be in Ω. Thus, moving along this v may lead to reach
0 and loop infinitely !

Currently, this is even worse: −x is always such bisector. But, moving along
−x is never a good idea.

Finding a way to compute bisector from Ω may be a very good improvement.
Allowing to consider only maximal vertices and not all vertices (this way this
algorithm may theoretically outperform simplex in every cases). Yet, this seems
as hard as the original problem.

3 Discussion

3.1 Complexity

The algorithm is exponential in common case.
Now, let assume that K the number of vertices is small.
By correctly sharing the history, each vertex is only explored one, or, will

be linked with a perfect exit. As, the number of move without exploration is
bounded by M , then the complexity is bounded by O(KM). But complexity of
a step is only O(MN + log(K)M): MN to compute step 4,5 and 26 (26 can be
done just by a for loop on all constraint), log(K)M for step 12,16,19 (assuming
a correct implementation of the dictionary - maybe less but query has size M
so probably not much less).

finally, numerical computation have a L binary complexity (currently this
statement is not that clear because number can increase during the loop. Yet,
there is no more than M multiplications so the final binary size should no be
more than Õ(LM)). This allows to state the main claim of this paper:

Rational complexity of walking-on-vertices is only Õ(KM2N), and,

binary complexity no more than Õ(KLM3N).

6

Let not that the offered pseudo code does not optimize sharing. Thus, in
this pseudo code, the complexity may be Õ(KMLM2N) which is clearly bad.
Yet, there is no theoretical issue by sharing a common history (not just perfect
exit and exit), only very hard implementation effort.

3.2 comparison to the state of the art

This algorithm is in some way similar to simplex [4]. Yet, main difference with
the simplex is that simplex can be trapped in a vertex I such that size of I is
very large seeing N . In such case, simplex typically loops over all the subset
of I with size N to find one allowing to increase the solution. Thus, exiting
one single vertex is exponential in N and M with simplex (and there can be an
exponential number of vertices).

Inversely, the offered algorithm will just basically compute the average of A
on I. This may not allows to exit the current vertex (increasing the minimal
constraint satisfaction). But, anyway, this will lead to reach another vertex
(which is necessarily different from I as AIv 6= 0 for v ∈ Ω). This way, the
algorithm goes from vertex to vertex. When, the algorithm has visited all
vertices, then, it finishes in M steps.

Of course, the number of vertices K can be larger than the number of square
sub matrices, in this case, just exploring all sub matrices is better. Also, if the
number of vertices is small, but, that vertices are not singular, then, simplex
is better because simplex will just explore maximal vertices. In other words,
simplex handles common vertex more efficiently, but, may require exponential
number of steps (in both N and M) to exit a singular one. While, the walking-
on-vertices algorithm handles all vertices poorly, but, without being sensible to
the singularity.

Very briefly, this algorithm is also close to [8]. However, it is not very clear in
which way [8] should be better than simplex. Indeed, [8] claims to find a way to
exit any vertex by projecting gradient. Yet, exiting a vertex is as hard as solving
the problem itself - this is known since [9], and, is very simple considering that

Ax > b ⇔
(
A −b
0 1

)(
x
t

)
> 0. The key idea of this paper is not to focus

on exiting vertex, but, only to collect vertices. When, all vertices are collected,
then the algorithm has converged.

Finally, when, this number is small, this algorithm is theoretically bet-
ter than current polynomial algorithms. They requires today at least Õ(L)
steps (generally there is even N or M factors), so, their binary complexity is

Õ(NML2) which is higher than Õ(KLM2N) (when K is negligible). So, the
following claim holds:

In the (restricted and unrealistic) use case of small number of
vertices with maximal vertices being heavily degenerated, the

walking-on-vertices algorithm is theoretically better than brute
exploration, simplex, and, current polynomial methods.

7

In practice, there is not many case where the number of vertices is small.
The only real interest of this algorithm seems to be matrix A with very large
L,M , low N , and, almost all sub matrices of A having a very low rank (but A
having full rank). For example, if A is the concatenation of a N × N identity
matrix with A a M ×N 2 rank matrix (L,M large). Then, current polynomial
methods will be bad (due to L), exploring directly all square sub matrices or
exiting a vertices is exponential in N and M , while, the number of possible
vertices is only 2NM2 which is not polynomial both in N and M .

3.3 Detecting impossibility

The offered algorithm allows to detect case where there is no Ax > 0. In these
cases, J can be I. But, by checking this point, one can detection impossibility.

Currently, this is not trivial that (¬∃x / Ax > 0) ⇔ (∃v ∈ Ω / Av = 0).
However, the algorithm relies on the assumption that ∃x / Ax > 0 only to state
that I 6= J . So, either the algorithm terminates because at no moment I = J
and there is some solution, or, the algorithm observes I = J but it means that
∃v ∈ Ω / Av = 0 which implies that there is no solution (it can be lower than
0 otherwise (Av)(Av) < 0).

So, there is an equivalence between observing I = J , and, impossibility.

3.4 Toy numerical experiments

Implementation with low sharing is offered in appendix. This implementation
outperforms simple perceptron for small N as soon as M becames large.

3.5 Application to support vector machine

Support vector margin is a very studied problem consisting in solving min
Ax≥1

xx.

This problem is a particular class of semi definite programming which can be
solved efficiently using log barrier algorithm [10].

However, it can also be solved by enumerating vertices of the polytope of
Ax ≥ 1, and, to compute xx for each. Obviously, this last way is exponential
in common cases where there is an exponential number of vertices. But, this
way could be interesting when there is a few vertices i.e. in the same case where
the walking-on-vertices algorithm is efficient. Indeed, as the offered algorithm
already works by collecting vertices, it can be extended to solve support vector
machine using this idea.

Pseudo code of the algorithm is presented in figure algorithm 2. The idea
is to walk on vertices using either projection or call to the walking-on-vertices
algorithm to find v such that AIv > 0.

Let prove quickly that this algorithm is correct. Globally, the proof is close to
the one of walking-on-vertices: step 10 can only happen M successive times as E
strictly increases. But, E is never seen again after a step 4, as, the algorithm has
found something better than the minimum (step 3) - it will be a contradiction
with the definition of the minimum

8

Algorithm 2 walking on vertices for support vector machine

// input: A ∈ QM,N and w with Aw ≥ 1
// returns: w such that Aw ≥ 1 and wTw is minimal
walking vertice svm(A,w) =

1: while True do
2: E = {m ∈ {1, ...,M} / Amw = 1}
3: compute wE = arg min

v∈QN /AEv=1

vT v and u = wE − w

4: if A{1,...,M}\EwE > 1 then

5: v = walking vertices rec

(
AE
−wTE

)
6: if v is None then return wE
7: chose δ: 0 < δ < h = min

(
{w

T
Ev
vT v
} ∪ {AmwE−1

−Amv
|Amv < 0}

)
8: w = wE + δv
9: else

10: g = min
m∈{1,...,M}/Amu<0

Amw−1
−Amu

11: w = w + gu

The main question is is there necessarily a vector v in step 5, if, wE is not
optimal ?. This statement is true see proof:

Let ψ = (
√

wTw
4(w∗)T (w∗)

+ 1
2)w∗ − w (currently, ψ is in RN and not in

QN but it still exists). Then, AEψ = (
√

wTw
4(w∗)T (w∗)

+ 1
2)AEw

∗ − AEw =

(
√

wTw
4(w∗)T (w∗)

+ 1
2)AEw

∗ − 1 ≥ (
√

wTw
4(w∗)T (w∗)

+ 1
2)1 − 1 ≥ 1

2 (
√

wTw
(w∗)T (w∗)

−
1)1 > 0 (because w∗ is admissible and (w∗)T (w∗) < wTw). Independently,

norm of (
√

wTw
4(w∗)T (w∗)

+ 1
2)w∗ is strictly less than

√
wTw

(w∗)T (w∗)
(w∗)T (w∗) =

√
wTw. So, wT ((

√
wTw

4(w∗)T (w∗)
+ 1

2)w∗) <
√
wTw

√
wTw = wTw (because αTβ ≤

√
αTα

√
βTβ). So wψ = (

√
wTw

4(w∗)T (w∗)
+ 1

2)wTw∗ − wTw < wTw − wTw = 0.

Let stress that careful implementations should share information about ver-
tices of A between different call of walking-on-vertices algorithm. Bisection
computed at step 3 should not be merged with bisection computed into the
walking-on-vertices, as, the bisection of step 3 are not positive combination of
vectors from A.

3.6 Application to linear program

For linear programs, classical conversions show that solving Ax > 0 is equivalent
to solve Ax ≥ b. Yet, this implies to consider min

Ax+t≥b,t≥0
t, then, it primal dual

Γχ ≥ γ, then, Γχ + µ ≥ γ, µ ≥ 0,−µ ≥ −ε, then, Γχ + µ − γρ > 0, µ >
0,−µ + ερ > 0. For example if 1 � N � M , considering the primal dual may
not be very efficient.

9

So, there is an interest to solve linear program min
Ax+t≥b,t≥0

t without conver-

sion. This could be done using the walking-on-vertices algorithm see algorithm
3. This will be efficient under the same condition on which the walking-on-
vertices algorithm is efficient on matrix A.

Algorithm 3 walking on vertices for linear program without conversion

Require: c ∈ QN , b ∈ QM , A ∈ QM×N with Ac > 0, Ax ≥ b ⇒ cTx ≥ 0,
Ax ≥ b
Ensure: return x: Ax ≥ b and cx is minimal

1: while True do
2: D = {m ∈ [1,M] / Amx = bm}
3: compute u the orthogonal projection of −c on Ker(AD)
4: if u = 0 then

5: v = walking vertices rec

(
AE
−wTE

)
6: if v is None then return wE
7: chose δ with 0 < δ < h = min

m∈[1,M]/Amv<0

Amx−bm
−Amv

(e.g. δ = h
4)

8: x = x+ δv
9: else

10: g = min
m∈[1,M] / Amu<0

Amx−bm
−Amu

11: x = x+ gu

4 Conclusion

This paper offers a new algorithm for linear programming which is not challeng-
ing polynomial methods (ellipsoid, log barrier or Chubanov) on general output,
but, may be interesting on families of instances where the number of vertices is
small (despite it is exponential in common instance).

Typically, this algorithm will be very efficient when number of constraints
and binary size are large, number of variables is moderate, and, almost all sub
matrices of the input matrix have low rank. In such case, polynomial methods
will be limited by binary size. Considering all square sub matrices will be
intractable due to the large number of constraints. Finally, simplex may be
locked by heavily degenerated vertices.

References

[1] Xavier Allamigeon, Pascal Benchimol, Stéphane Gaubert, and Michael
Joswig. Log-barrier interior point methods are not strongly polynomial.
SIAM Journal on Applied Algebra and Geometry, 2(1):140–178, 2018.

10

[2] Sergei Chubanov. A polynomial algorithm for linear optimization which is
strongly polynomial under certain conditions on optimal solutions, 2015.

[3] Sergei Chubanov. A polynomial projection algorithm for linear feasibility
problems. Mathematical Programming, 153(2):687–713, 2015.

[4] George B et. al. Dantzig. The generalized simplex method for minimiz-
ing a linear form under linear inequality restraints. In Pacific Journal of
MathematicsAmerican Journal of Operations Research, 1955.

[5] Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid
method and its consequences in combinatorial optimization. Combinator-
ica, 1(2):169–197, 1981.

[6] Dorit S Hochbaum and Joseph Naor. Simple and fast algorithms for linear
and integer programs with two variables per inequality. SIAM Journal on
Computing, 23(6):1179–1192, 1994.

[7] Leonid Khachiyan. A polynomial algorithm for linear programming. Dok-
lady Akademii Nauk SSSR, 1979.

[8] H.C. Lui and P.Z. Wang. The sliding gradient algorithm for linear pro-
gramming. In American Journal of Operations Research, 2018.

[9] Nimrod Megiddo. A note on degeneracy in linear programming. Mathe-
matical programming, 35(3):365–367, 1986.

[10] Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algo-
rithms in convex programming, volume 13. Siam, 1994.

[11] Ian Post and Yinyu Ye. The simplex method is strongly polynomial for
deterministic markov decision processes. Mathematics of Operations Re-
search, 40(4):859–868, 2015.

[12] Frank Rosenblatt. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, 65(6):386, 1958.

[13] Eva Tardos. A strongly polynomial algorithm to solve combinatorial linear
programs. Operations Research, 34(2):250–256, 1986.

Appendix

def add (u , v) :
re turn [u [n]+v [n] f o r n in range (l en (u))]

de f mul (l , v) :
re turn [l ∗e f o r e in v]

de f dot (u , v) :
re turn sum ([u [n]∗ v [n] f o r n in range (l en (u))])

de f perceptron (A) :
x = A[0] . copy ()
whi le True :

ax , a = min ([(dot (a , x) , a) f o r a in A])

11

i f ax>Fract ion (0) :
return x

e l s e :
x = add (x , a)

de f argmaxmin (A, I , J , x , minAIx , v) :
a s s e r t (a l l ([dot (A[j] , x)==minAIx f o r j in J]))
sJ = se t (J)
a s s e r t (a l l ([dot (A[i] , x)>minAIx f o r i in I i f i not in sJ]))
a s s e r t (a l l ([dot (A[j] , v)>0 f o r j in J]))

minAJv = min ([dot (A[j] , v) f o r j in J])
K = [i f o r i in I i f dot (A[i] , v)<minAJv]
candidate = [(dot (A[k] , x)−minAIx)/(minAJv−dot (A[k] , v)) f o r k in K]
return min (candidate)

de f wa l k i n g v e r t i c e s r e c (A, I , B i sector , Exit) :
i f I i s None :

I = l i s t (range (l en (A)))
i f B i s e c to r i s None :

B i s e c to r = d i c t ()
i f Exit i s None :

Exit = d i c t ()

History = d i c t ()
x = [0]∗ l en (A[0])
f o r i in I :

x = add (x ,A[i])

whi le True :
minAIx = min ([dot (A[i] , x) f o r i in I])
J = sor ted ([i f o r i in I i f dot (A[i] , x)==minAIx])

i f minAIx>0 and J==I :
B i s e c to r [tup le (I)] = x
Exit [tup le (I)] = x
return x

i f minAIx>0:
Exit [tup le (I)] = x
return x

i f minAIx==0 and J==I :
return None

i f tup le (J) in History :
i f tup le (J) not in B i s e c to r :

y = History [tup le (J)]
B i s e c to r [tup le (J)] = add (x , mul(−1,y))

e l s e :
History [tup le (J)] = x

i f tup le (J) in B i s e c to r :
v = Bi s e c to r [tup le (J)]

e l s e :
i f tup le (J) in Exit :

v = Exit [tup le (J)]
e l s e :

v = wa l k i n g v e r t i c e s r e c (A, J , Bisector , Exit)
a s s e r t (tup le (J) in Exit)
i f v i s None :

return None

i f min ([dot (A[i] , v) f o r i in I]) >0:
x = v
cont inue

e l s e :
l = argmaxmin (A, I , J , x , minAIx , v)
x = add (x , mul (l , v))
cont inue

from f r a c t i o n s import Fract ion
import random

def r and i n t f r a c t i on () :
re turn Fract ion (random . randint(−pow(10 ,5) , pow (10 , 5)))

de f randomVector (N) :
whi le True :

x = [r and i n t f r a c t i on () f o r n in range (N)]
i f dot (x , x) !=0 :

return x

def randomMatrix (M, x) :
A = []
whi le l en (A)!=M:

a = randomVector (l en (x))
i f dot (a , x) !=0 :

i f dot (a , x)>0:
A. append (a)

e l s e :

12

A. append (mul(−1,a))
return A

pr in t(”########### MAIN ###########”)

s o l u t i on f o r d ebug = randomVector (5)
A = randomMatrix (1000 , s o l u t i on f o r d ebug)

pr in t (s o l u t i on f o r d ebug)
pr in t (min ([dot (a , s o l u t i on f o r d ebug) f o r a in A]))

import time

pr in t (” perceptron ”)
pr in t (time . time ())
x=perceptron (A)
pr in t (a l l ([dot (a , x)>0 f o r a in A]))
p r in t (time . time ())

p r in t (” wa l k i n g v e r t i c e s ”)
p r in t (time . time ())
x=wa l k i n g v e r t i c e s r e c (A, None , None , None)
i f x i s None :

p r in t (”no s o l u t i on ”)
e l s e :

p r in t (a l l ([dot (a , x)>0 f o r a in A]))
p r in t (time . time ())

13

