
HAL Id: hal-00722920
https://hal.science/hal-00722920v21

Preprint submitted on 19 Nov 2019 (v21), last revised 16 Jan 2023 (v38)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An other Chubanov based algorithm for linear
programming

Adrien Chan-Hon-Tong

To cite this version:
Adrien Chan-Hon-Tong. An other Chubanov based algorithm for linear programming. 2019. �hal-
00722920v21�

https://hal.science/hal-00722920v21
https://hal.archives-ouvertes.fr


An other Chubanov based algorithm for linear

programming

Adrien CHAN-HON-TONG

November 19, 2019

Abstract

This paper presents an algorithm to solve linear programming based
on Chubanov algorithm for homogeneous linear feasibility. This algorithm
is different from the one described in arxiv.org/abs/1901.08525

1 Introduction

Linear programming is the very studied task of solving min
x / Ax≥b

cTx for given

A ∈ QM×N a matrix, b ∈ QM and c ∈ QN some vectors.
Recently, [1] introduces an algorithm with good theoretical properties for

homogeneous linear feasibility problems: for deciding if ∃?x ∈ QN / Ax =
0, x > 0 given A ∈ QM×N a full rank matrix. But, it is not known if one could
take advantage of [1] for generic linear programming.

This paper explores this way by using [1].

Notations

N,Q are the sets of integer and rational numbers. \ is the ensemble subtraction.
For all integers i, j, [i, j] will symbolize the integer range i.e. {i, i + 1, ..., j}
which is empty if i > j (there will be no ambiguity with the interval in R as
there is no real range in this paper).

For all integers i, j, I, J , QI is the set of I dimensional vectors on Q, and,
QI×J is the set of matrix with I rows and J columns, with values in Q, and, .i
designs the i component: a row for a matrix and a rational for vector or a row.
QI would be matched with QI×1 i.e. vectors are seen as columns, and, row of
a matrix are matched with Q1,J . For all sets S ⊂ N, AS , bS is the submatrix
or subvector obtained when keeping only components indexed by s ∈ S. T is
the transposition operation i.e. ATj,i = Ai,j . 0 and 1 are the 0 and 1 vector i.e.
vector contains only 0 or only 1, and I is the identity matrix.

If A ∈ QI×J , the null vector space of A (i.e. the kernel) is written Ker(A) =
{v ∈ QJ/Av = 0}, with the convention that Ker of empty A is all space.

1



Finally, it is written that complexity is O(f(size)) when there exists λ such
that for all size size, worse case complexity of the algorithm on all instances of
size size is less than λf(size). The same stands for Õ(f(size)) except that
it means that there exists both λ and κ such that complexity is less than
λf(size) log(f(size))κ.

2 A new algorithm for linear programming

2.1 Key idea

The starting point of this algorithm is Chubanov algorithm [1] which solves
efficiently ∃?x ∈ QN / Ax > 0 [2].

In this paper, the goal is to solve Ax ≥ b. The idea is to build a vector v
from each non optimal x such that moving along v leads to a point closer than
a solution. Such vector v could be solved by computing a set I such that AIx
can be improved. Indeed solving AIv > 0 is possible using [2].

Of course, at first glance, it could take infinite times to reach the optimal
solution by computing such v and updating x = x+ εv.

Yet, using the primal dual of the primal dual it seems that one could bound
the number of such moves using prior on the problem.

2.2 Pre processing

Let recall the classical primal dual trick to go from optimization problem into
a decision one.

The original goal of linear programming is to solve max
Arawx≤braw,x≥0

cTrawx.

Then, it is well known that the dual problem is min
AT

rawy≥craw,y≥0
bTrawy. Now,

the primal dual is formed by combining all constraints: Arawx ≤ braw, and,
x ≥ 0, and, ATrawy ≥ craw, and crawx = brawy, and finally, y ≥ 0. So, the
problem max

Arawx≤braw,x≥0
crawx can be folded into ∃?x / Abigxbig ≥ bbig with

Abig =


−Araw 0
I 0
0 ATraw
0 I

craw −braw
−craw braw

 and bbig =


−braw

0
craw

0
0
0

.

This primal dual problem has a solution i.f.f. the original polytope is neither
empty or unbounded.

So the algorithm can assume without restricting the generality (as this pre
processing is always possible) to want to solve ∃?x / Ax ≥ b.

Currently, this problem ∃?x / Abigx ≥ bbig can be transformed by adding a variable z into min
Abigx+z≥bbig

z.

This last problem has the disadvantage of having twice the size of the original one, but, always admits admissible

point (eventually z = max
m

bbig,m). Also, additional constraint z ≥ 0 can or can not be added. When added, the

2



objective value becomes bounded. Now, the required pre processing of the offered algorithm is to take the primal dual

∃?x / Adoublex ≥ bdouble of the first primal dual min
Abigx+z≥bbig,z≥0

z (i.e. doing to min
Abigx+z≥bbig,z≥0

z what

was done on max
Arawx≤braw,x≥0

cTrawx). As the problem min
Abigx+z≥bbig,z≥0

z is neither empty or unbounded,

then, it primal dual ∃?x / Adoublex ≥ bdouble will always admit a solution x∗ such that Adoublex∗ ≥ bdouble.

So, if required the algorithm can even assume without restricting the generality (as this pre processing is always

possible) to want to solve ∃?x / Adoublex ≥ bdouble with the prior that such solution exists.

Algorithm 1 Massive Chubanov algorithm

input: b ∈ QM , A ∈ QM×N
returns: returns x∗ such that Ax∗ ≥ b, or, a certificate it is impossible
fails: on degenerated situations

1: while True do
2: F = {m ∈ [1,M ] / Amx < bm}
3: if F = ∅ then
4: return x
5: Call Chubanov to find v such that AF v > 0
6: if there is no such v then
7: return the certificate (x∗ − x would have worked)

8: α = max
f∈F

bf−Afx
Afv

9: while True do
10: β = min

m / Amv<0

bf−Amx
Amv

11: if β > α then
12: x = x+ α+β

2 v
13: break
14: if β < α then
15: E = {m ∈ [1,M ] / Amv < 0 and

bf−Amx
Amv

= β}
16: Call Chubanov to find w such that AF∪Ew > 0
17: if there is no such w then
18: return the certificate (x∗ − (x+ α+β

2 v) would have worked)

19: v = w
20: α = max

f∈F
bf−Afx
Afv

21: continue
22: if β == α then
23: fails on this degenerated situation

2.3 Max min

In order to understand easily the algorithm, one can consider that our objective
is to solve max

x∈QN
min

m∈[1,M ]
Amx− bm with A ∈ QM×N and b ∈ QN .

Currently, our objective is just to exit when min
m∈[1,M ]

Amx − bm goes above

0. But, seen the problem as a max min can be useful.

3



Typically, in arxiv.org/abs/1901.08525, x is updated by looking for v such
that ADv = 1 withD the set of index reaching the min min

m∈[1,M ]
Amx−bm (sliding

moves), and, when ADv = 1 is not possible (simple projection), ADv > 0 is
computed instead using Chubanov algorithm.

This allows to have locally the strongest improvement of the min. However,
drawback is that number of steps can be large.

Now, in this paper, the idea is to remark that it is possible to replace D by
the set of all unsatisfied constraints F = {m ∈ [1,M ] / Amx < bm}. Indeed, if
the problem is feasible i.e. if exists x∗ such that Ax∗ ≥ b, then, AF (x∗ − x) >
bF − bF > 0.

So, if Chubanov returns a certificate of emptyness, then, one known that the
original problem is either empty or unbounded. In other case, the algorithm
can go on.

In addition, if Aix = bi, and that Chubanov returns that AF∪{i}v > 0 has
no solution. Then, it means that Aix

∗ = bi because otherwise Aix
∗ > bi, and,

Chubanov should have returned something on AF∪{i} (the inverse is not true
but this is not a problem for our algorithm).

2.4 Step

So the central step is to compute F = {m ∈ [1,M ] / Amx < bm} and v such that
AF v > 0. Then, either moving along F makes a constraint exiting F (before
constraints from [1,M ]\F enters into F ). Then, the step finishes successfully
because F has decreased.

In the other case, let consider the first constraint i that becomes negative.
First, if it is possible to have AF∪{i}w > 0. Then, one could proceed with w
instead of v.

If not it means that there is no v such that AF∪{i}v > 0. But, there exists
λ such that AF∪{i}(x+ λv) < bF∪{i} as this constraint become negative before
the reducing F . But, if the system was soluble than AF∪{i}(x

∗ − (x+ λv)) > 0
- this is a contradiction.

So, by moving along v

• either F strictly decreases

• either F strictly increase - but

– either, it means the system has no solution because otherwise one
would have AF∪{i}(x

∗ − (x+ λv)) > 0

– either, i could be added to F

So, the only issue is when one constraint enters F exactly when one exits
F . Yet, in this degenerated case, either one can be sure that one of these
two constraints is saturated in optimal solution. This can be mitigated by
disturbing v if the constraint that enters and the constraint that leaves are not
equal (otherwise, this is an equality constraint).

4



2.5 Pseudo code

The pseudo code for linear program is presented in algorithm 1.
In reality only the first i can be pushed with F - because F ∪ {i}

should have a solution, but F ∪ {i, j} may not. However, it seems
possible to oscillate between i and j

3 Complexity

Algorithm offered in previous section does not solve linear program as it fails
on degenerated situation (and as the loop 9-21 seems to be well defined only
the first time).

However, when the algorithm terminates without failing, then, it terminates
with a very good complexity:

• while loop from line 9 to 22 can only happens M times before returning
into the main loop

• main loop forces one constraint from F to exit F (or fails on degenerated
situation), so this loop can only happens M times

• so finally, complexity (to solve or fail) is M2Υ where Υ is the complexity
to compute χ such that Γχ > 0 (which has been showed very interesting
thank to Chubanov algorithm [2])

Now, failing quickly is not very interesting... However, failure may be miti-
gated as condition line 21 can be discarded by adding noise in v (this is possible
as AF v > 0 not just AF v ≥ 0.

The only situation where adding noise will never work is if the constraint
that enter is the opposite of the constraint that exits i.e. if there is equality
constraints

So, this algorithm could become a real algorithm if updating the loop 9-21 for
constraint which can push successively but non simultaneously and if equality
constraints are handled carefully, and, if one could find a non stochastic way to
perturbed v such that α == β is impossible (except for equality constraints).
Currently, v + εAe for e ∈ E seems a good way as AeAi may be different than
AeAe for example if constraint are normalized. Yet, it is not clear if normalizing
constraint while dealing with equality constraint is always possible...

However, this algorithm seems very interesting compared to other Chubanov
based algorithm like arxiv.org/abs/1901.08525 which seems structurally forced
to deal with many iterations...

References

[1] Sergei Chubanov. A polynomial projection algorithm for linear feasibility
problems. Mathematical Programming, 153(2):687–713, 2015.

5



[2] Kees Roos. An improved version of chubanov’s method for solving a homoge-
neous feasibility problem. Optimization Methods and Software, 33(1):26–44,
2018.

6


