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Abstract

This paper presents an algorithm for linear programming based on
Chubanov algorithm for homogeneous linear feasibility.

Despite there is little hope that this algorithm is polynomial for generic
linear programming, it is theoretically the current best algorithm to solve
linear programs with very large binary size but small number of vertices.

1 Introduction

Linear programming is the very studied task of solving min
x / Ax≥b

cTx for given

A ∈ QM×N a matrix, b ∈ QM and c ∈ QN some vectors.
Let L be the binary size required to write the given input (i.e. A, b, c), then,

this problem can be solved in polynomial times (i.e. in a number of binary
operations bounded by a Lγ with a fixed γ) since [9, 6, 8], with interior point
method [10] being currently the state of the art.

Yet, there is no known algorithm proven to have a strong polynomial com-
plexity i.e. able to solve the problem in a number of binary operations bounded
by L × (MN)γ . And, [1] shows that major interior point algorithms are not
strong polynomial. Today, only, some families of linear programs can be solved
in strongly polynomial times:

• linear program with 0/1 matrix A [12] (by specific algorithm)

• linear program with at most two variables per inequality [7] (by specific
algorithm)

• Markov chain [11] (by simplex algorithm [4])

• system having binary solution [2] (by specific algorithm)

• homogeneous linear feasibility i.e. ∃?x ∈ QN / Ax = 0, x > 0 given
A ∈ QM×N a full rank matrix [3] by Chubanov algorithm.
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As no known algorithm is strongly polynomial, there is an interest to design
an algorithm to solve linear programs with very large binary size using prior on
the geometry of the problem (this claim is formalized in next section). Then,
section 3 presents an algorithm based on Chubanov algorithm [3] for linear
programming. Despite there is little hope that this algorithm is polynomial
in generic case, it solves theoretically the issue of linear programs with very
large binary size when number of vertices is small. This algorithm shares some
feature with simplex but exits vertex in strongly polynomial time. These claims
are discussed in section 4.

Notations

N,Q are the sets of integer and rational numbers. \ is the ensemble subtraction.
For all integers i, j, [i, j] will symbolize the integer range i.e. {i, i + 1, ..., j}
which is empty if i > j (there will be no ambiguity with the interval in R as
there is no real range in this paper).

For all integers i, j, I, J , QI is the set of I dimensional vectors on Q, and,
QI×J is the set of matrix with I rows and J columns, with values in Q, and, .i
designs the i component: a row for a matrix and a rational for vector or a row.
QI would be matched with QI×1 i.e. vectors are seen as columns, and, row of
a matrix are matched with Q1,J . For all sets S ⊂ N, AS , bS is the submatrix
or subvector obtained when keeping only components indexed by s ∈ S. T is
the transposition operation i.e. ATj,i = Ai,j . 0 and 1 are the 0 and 1 vector i.e.
vector contains only 0 or only 1, and I is the identity matrix.

If A ∈ QI×J , the null vector space of A (i.e. the kernel) is written Ker(A) =
{v ∈ QJ/Av = 0}, with the convention that Ker of empty A is all space.

2 Limit of state of the art

There is no known algorithm to solve linear programming in strongly polynomial
time, and, major family of interior point are proven unable to do so [1]. Thus,
there is a practical and theoretical issue for the state of the art to deal with
linear programs with very large integer. Let formalize theoretically this issue.

Let first recall the classical primal dual trick to go from optimization problem
into a decision one: Let assume original goal is to solve max

Arawx≤braw,x≥0
cTrawx. It

is well known that the dual problem is min
AT

rawy≥craw,y≥0
bTrawy. Now, the primal

dual is formed by combining all constraints: Arawx ≤ braw, and, x ≥ 0, and,
ATrawy ≥ craw, and crawx = brawy, and finally, y ≥ 0.

So, the problem max
Arawx≤braw,x≥0

crawx can be folded into Abigxbig ≥ bbig with
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Abig =


−Araw 0
I 0
0 ATraw
0 I

craw −braw
−craw braw

 and bbig =


−braw

0
craw

0
0
0

.

Then, this problem Abigx ≥ bbig can be transformed by adding a variable z
into Abigx + z ≥ bbig, z ≥ 0, then, there is an equivalence between feasibility
∃?x / Abigx ≥ bbig and minimization of z with constraints Abigx + z ≥ bbig,
z ≥ 0.

Now, let introduce the large integer linear programming problem:

Definition 2.1 (large integer linear programming). The large integer linear
programming problem is to decide if ∃x ∈ QN / Ax ≥ b, cTx = 0 or NM ≥
log(L) given A ∈ QM×N , b ∈ QM and c ∈ QN with Ac > 0 and AM = c and
bM = 0.

For all instances for which NM ≥ log(L), the output is trivially true. So, all
algorithms could be derived to solve these instances trivially. So, the interesting
instances are those with NM ≤ log(L). Any strongly polynomial algorithm will
have an almost linear complexity i.e. Θ(L) = O(L × logγ(L)) with a constant
γ, but, any non strongly polynomial algorithm will be super linear i.e. with a
Lγ complexity with γ > 1.

The interesting point is that no algorithm are known almost linear to solve
large integer linear programming and major state of the art algorithm are known
not to be (counter examples from [1] have unbounded L, eventually, NM ≤
log(L)).

Now, one could consider simplex with classical pivoting rule [4] as a candi-
date for large integer linear programming as simplex complexity depend on the
number of pivots which could be bounded depending on N and M and not L.
However, it is not almost linear because it could need an exponential (in N,M)
number of integer operations to terminate. Precisely, let introduce the concept
of vertex:

Definition 2.2 (vertex). Given A ∈ QM×N , b ∈ QM and c ∈ QN with Ac > 0
and AM = c and bM = 0, a set of index D ⊂ [1,M ] is called a vertex if and
only if ∃x ∈ QN such that ADx = bD and A[1,M ]\Dx > b[1,M ]\D, and, there is
no v ∈ QN such that ADv = 0, cT v < 0.

In non singular case, a vertex is just a point x such that ADx = bD with
AD square and non singular, plus, A[1,M ]\Dx > b[1,M ]\D (so, obviously, there is
no v ∈ QN such that ADv = 0, cT v < 0). But, in degenerated case, ADx = bD
may define a sub vectorial space included in a iso-c hyperplane.

Let write Γ(A, b, c) the number of vertices given A, b, c (at most
bounded by 2M).

Now, the idea is that vertex based algorithm are efficient if number of vertices
is small.
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Definition 2.3 (few vertex large integer linear programming). The few vertex
large integer linear programming problem is to decide if ∃x ∈ QN / Ax ≥
b, cTx = 0 or NM ≥ log(L) or Γ(A, b, c) ≥ log(L) given A ∈ QM×N , b ∈ QM
and c ∈ QN with Ac > 0 and AM = c and bM = 0.

Obviously, this problem is unrealistic and not interesting in practice. But
from theoretical point of view, this problem is well defined.

Now, simplex algorithm (for example) may become interesting for this prob-
lem compared to interior point because during the exploration either there is
less than log(L) vertices and the simplex will output a solution after having
explored these only log(L) vertices, or, there is more vertices but the algorithm
could stop anyway after the log(L) first explored vertices. So complexity will be
Θ(L× log(L)×Υ) with Υ being the complexity of the algorithm to go from a
vertex to an other. Yet, the problem with the simplex (with all known pivoting
rules) is that it can require exponential time to exit a vertex, so, Υ is not just
bounded by (NM)γ .

However, an algorithm similar to the simplex, but, with the feature of exit-
ing a vertex with strongly polynomial complexity will be especially interesting
from the few vertex large integer linear programming (obviously this problem
is designed in this purpose). Fortunately, such algorithm, build from Chubanov
algorithm, is presented on this paper in next section.

3 The slide and jump algorithm

3.1 Key idea

The starting point of this algorithm is Chubanov algorithm [3] which solves
homogeneous linear feasibility (∃?x ∈ QN / Ax = 0, x > 0 when A ∈ QM×N
has full rank) and/or it dual ∃?x ∈ QN / Ax > 0 in strongly polynomial time.

Then, it is easy to get a small improvement from a not optimal admissible
solution for linear program by solving a dual homogeneous linear feasibility
problem. Indeed, if x verifying Ax ≥ b has not minimal cx under assumption
that Ac > 0, then it is possible (see proof in subsection 3.3) to find v such that(

AD
−cT

)
v > 0 with D the current saturated constraints (i.e. D such that

ADx = bD).
Now, it could take infinite time to reach the optimal solution by computing

such v and updating x = x+εv. Yet, if x is not on a vertex, it is always possible
to decrease cTx just by moving in the kernel of current saturated constraints. So,
the algorithm does sliding moves to reach a vertex from a non vertex point, and,
then, a jumping move to go from a vertex to an interior point. The good feature
is that sliding moves allow to explore completely a particular combinatorial
situation (D) while jumping moves allow to exit such structure. The termination
will be guarantee by the impossibly to see a vertex D twice, and, the correctness,
by capacity to jump to next D until optimal solution is reached.
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3.2 Pseudo code

Pseudo code for linear program is presented in algorithm 1: algorithm assumes
the input linear program is c ∈ QN , b ∈ QM , A ∈ QM×N with Ac > 0,
Ax ≥ b⇒ cTx ≥ 0, and Axstart ≥ b (e.g. xstart = λc).

These assumptions do not restrict generality because all linear
programs can be pushed in this shape using classical primal dual
trick.

Algorithm 1 Slide and jump algorithm

Require: c ∈ QN , b ∈ QM , A ∈ QM×N with Ac > 0, Ax ≥ b⇒ cTx ≥ 0, and
Axstart ≥ b (e.g. xstart = λc) this does not restrict generality
Ensure: return x: Ax ≥ b, cx is minimal

1: while True do
2: D = {m ∈ [1,M ] / Amx = bm}
3: compute u the orthogonal projection of −c on Ker(AD)
4: if u = 0 then

5: call subsolver ∃?v /
(

AD
−cT

)
v ≥ 1

6: if v not exists then return x
7: chose δ with 0 < δ < h = min

m∈[1,M ]/Amv<0

Amx−bm
−Amv

(e.g. δ = h
4 )

8: x = x+ δv
9: else

10: g = min
m∈[1,M ] / Amu<0

Amx−bm
−Amu

11: x = x+ gu

3.3 Correctness and termination

This subsection presents a proof that this slide and jump algorithm is well
defined, terminates, and produces an exact optimal solution of linear program.

Lemma 3.1. Algorithm is well defined

Proof. Problematic steps are step 3 (non standard operation) and step 10 (set
should not be empty). All other steps are standard operations.

step 10:
By assumption cx is bounded by 0 i.e. ∀x ∈ QN , Ax ≥ b⇒ cx ≥ 0. If there

was ω such that cω < 0 and Aω ≥ 0, then, one could produce an unbounded
admissible point x + λω as A(x + λω) ≥ Ax ≥ b and c(x + λω) →

λ→∞
−∞. So,

if cω < 0 then ∃m ∈ [1,M ] / Amω < 0.
step 3:
Step 3 is the projection on a vectorial space i.e. it consists to solve arg min

ADu=0
(c+

u)T (c+u). This step can be done by Gram Schmidt algorithm. This procedure
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can not fail (returns −c on empty input), and, always returns a vector with a
strictly positive scalar product with −c or 0.

Lemma 3.2. Algorithm keeps the current point in the admissible space

Proof. Steps 8 and 11 move the current point.
Step 8:
Seeing the test in step 6, ADv > 0 so for all m ∈ D, Am(x + λv) > bm.

Now, for all m /∈ D, Amx > bm, so ∃δ > 0 such that A(x+ δv) > b (the offered
δ works but anyway it could be less).

Step 11:
First, ∀m / Amu ≥ 0, Am(x+ λu) ≥ b.
Then, seeing the definition of u from step 3, ifm ∈ D, Amu = 0 and ifm /∈ D,

Amx > bm. So ∀m ∈ [1,M ], Amu < 0 ⇒ m /∈ D ⇒ Amx > bm, and so g > 0.
Now, for m / Amu < 0, g is a minimum, so Amx−bm

−Amu
≥ g. When multiplying

by a negative: Amx−bm
−Amu

Amu ≤ gAmu. And, so ∀m ∈ [1,M ], / Amu < 0:

Amx+ gAmu− bm ≥ Amx+ Amx−bm
−Amu

Amu− bm = 0.

Lemma 3.3. algorithm outputs optimal exact solution

Proof. The proof consists to assume the algorithm returns non optimal admis-
sible point x, while optimal solution was x∗ (cx > cx∗). Then, it is possible to
built x̂ (by adding εc) which are in the interior of the admissible space and still
better than x for c. But, it means that x̂−x is both better for the objective and
for saturated constraints. So, the subsolver should have returned something,
and so, there is a contradiction.

Precisely, let consider φ = x∗ − x + cT (x−x∗)
2
√
cT c

c, then, ADφ = AD(x∗ −

x + cT (x−x∗)
2 c) = AD(x∗ + cT (x−x∗)

2 c) ≥ cT (x−x∗)
2 ADc > 0 and c(φ − x) =

− c
T (x−x∗)

2 < 0.

Lemma 3.4. algorithm can not loop more then M +1 times without calling the
subsolver (equivalently reaching a vertex)

Proof. g is exactly build such that the k corresponding to the minimum enters
in D. Let consider k /∈ D such that Akx−bk

−Aku
= g. So, Ak(x + gv) − bk =

Akx+ Akx−bk
−Akv

Akv − bk = 0.

So, D strictly increases (for inclusion, as set) each time the algorithm reaches
step 11, but, D is bounded by [1,M ], so, test 4 can not return true more than
M consecutive times.

Lemma 3.5. All moves strictly decrease the objective function.

Proof. Steps 8 and 11 move the current point.
step 11: By construction cTu < 0, and, g > 0. So, cost decreases when

moving along u.
step 8: cT v < 0 so moving a little along v decreases the cost.
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Lemma 3.6. A value for set D observed in step 5 can not be observed again in
step 2.

Proof. This lemma is proven by contradiction: if D is seen again, one can prove
that exploration of D should have been continued (i.e. the test step 3 should
have been false) instead of calling the subsolver on step 5.

Let consider x2−x1 with x1 corresponding to the observation of D in step 5
and x2 to any ulterior observation. As all moves strictly decreases cTx, it means
cT (x2−x1) < 0, but, by definition ofD, ADx2 = ADx1 = bD soAD(x2−x1) = 0.
So, projection of −c on Ker(AD) is not null (at least it could be x2 − x1), so,
algorithm should not have passed the test step 3.

Lemma 3.7 (Slide and jump). The slide and jump algorithm solves linear pro-
grams because iteration between two vertices is strongly polynomial, and, vertices
are never reached twice.

Proof. From all previous lemmas, observing that D is bounded (so looping with-
out reaching a vertex is impossible), and that, number of subsets from [1,M ] is
finite an never see twice (i.e number vertices is bounded and vertex are never
explored twice), algorithm terminates. And, independently, algorithm is well
defined, works in admissible space and can not output something else than an
optimal solution. So both correction and termination are proven.

4 Discussion

4.1 Theoretical view

The main claim of this paper is the following:

Theorem 4.1. The slide and jump algorithm solves in almost linear time the
few vertex large integer linear programming.

Proof. Complexity of the slide and jump algorithm to decide a few vertex large
integer linear programming instance is bounded by L×logµ(L)×log(L)(NM)γ ≤
L × log1+µ+γ(L) where (NM)γ is the number of integer operation to go from
a vertex to an other, and, µ the exponent such that integer operation can be
done in O(L logµ(L)) binary operations. Indeed, such step consists in calling
Chubanov algorithm (strongly polynomial) plus projecting at most M times the
vector −c on a sub space defined by at most M vectors. So such step is strongly
polynomial, and, hence solved in a number of integer operation bounded by
some (NM)γ . And, such step is done at most log(L) times.

This result may have almost none practical implication as the few vertex
large integer linear programming is a very unrealistic problem. Yet, from
theoretic point of view, the offered algorithm is almost linear on this
problem while all known algorithms are super linear on it:

• interior point are naturally super linear (in L)
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• simplex may require exponential (in NM) number of operations to exit a
vertex

• direct enumeration of all sets D may be exponential (in NM): enumerat-
ing set is easy but enumerating vertices is hard, as set can be unsatisfiable,
or, incomplete (i.e. moving into D is possible)

• only best algorithm would be un algorithm able to enumerate only vertices,
and, not just sets of index - no such algorithm is known today

4.2 Perspective

4.2.1 Complexity

There is little hope that slide and jump algorithm is strongly polynomial for
standard linear program. Indeed, depending on the implementation of inner
subsolver (to solve ADv ≥ 0, cT v < 0), slide and jump can behave more or
less like a simplex. The most distant behaviour is if ADv > 0, as, it is even
possible that two consecutive vertices have no constraint in common (but it
depends not just on how x exit the vertex, but also, how x collects constraints
to reach a vertex). But, the closest behaviour is when the produced vector v
verifies AD\{d}v = 0 i.e. moves follow an edge to directly go from a vertex to
an adjacent vertex - like a simplex with the corresponding pivoting rule.

So, slide and jump could be just a particular simplex with the important
feature that exiting a vertex is strongly polynomial. So, without additional
implementation detail, there is no reason for slide and jump to have a better
complexity than simplex (except for exiting vertex) which is exponential for all
known pivoting rules.

Yet, complexity of the simplex (polynomial Hirsch conjecture) is still opened.
So, not behaving like simplex is not especially interesting as it. What will be
interesting is a polynomial termination (even if most moves follow edges), but,
this question is out of the scope of this paper. Harder point is that link between
consecutive vertices in slide and jump does not depend only on the exiting
condition (jumping moves), but, also on how constraint are collected (sliding
moves).

4.2.2 Non singular case

To advance on this complexity question, one can consider a non singular vertex:
AD (written A here) is square and non singular. The goal is to find Av ≥
0, cT v < 0 (with Ac > 0).

As the vertex is non singular, one can consider A−1 and φ1, ..., φN the vector

such that (Aφn)i =

{
1 if i = n
0 otherwise

(i.e. the transposed of the row of A−1).

Let Ω = {n ∈ [1, N ] / cTφn >= 0} and Υ = {n ∈ [1, N ] / cTφn < 0}.
Υ is important because it will never again be included in any vertices. In-

deed, there is no ψ such that AΥψ = 0, AΩψ ≥ 0, and, cTψ < 0. If it was, by
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removing the corresponding vector from Ω, one could form a vector such that
Aω = 0 and cTω < 0 (this is impossible both because it is a vertex and because
A is non singular).

The basic idea of the simplex (with greedy descent pivot rule) is to move
following φk with cTφk = min

n∈Υ
cTφn.

Now, if one is interested to push slide and jump in the simplex framework,
it seems that the underlying pivoting rule should be to move along

∑
n∈Υ

φn

(corresponding to solve v = min
0≤Aν≤1

cT ν in singular case - but it is not relevant

to solve such linear problem just to exit a vertex...). Typically, if Υ is just
a pair i, j, greedy descent pivot rule will select either i either j while it seems
interesting to move on the bisector of both. These way, when hitting a constraint
k, k will give a direction which may lead to hit i xor j. But the good point is
that if i is the one meet after k, then, at least the vertex j, k has been avoided.

Now, this exiting rule probably already be studied (even if depending on the
sliding move), and, is probably also exponential. The only real new is that the
slide and jump is able to deal with singular vertex.

4.2.3 Implementation

The question about if this algorithm is relevant in practice is harder. First, it
requires exact arithmetic (because relevancy is when L is large). Then, mainly, it
depends on the efficiency of the Chubanov implementation, and, on the average
number of encountered vertices.

Small numerical experiments are provided to evaluate this last point (see
source code in appendix), but, as there is no public implementation of Chubanov
algorithm, these experiments are somehow limited. To bypass this issue offered
source code implements subsolver using projection on −c on kernel of AS with
S a random subset of D in the spirit of a Kaczmarz-Motzkin algorithm [5]
(This is equivalent as adding εc provides v such that ADv > 0 - currently the
algorithm does not require functionally that ADv > 0 and cT v < 0, but, only
that ADv ≥ 0 and cT v < 0 - or to prove there is not). Of course, using Chubanov
algorithm should be better: the current implementation does not even guarantee
termination. This would be changed as soon as an implementation of Chubanov
will be made public.

Also, direct running time is not very relevant as the offered code is mono
thread, python base and exact arithmetic base. This way, it is somewhat slow,
and thus, restricted to small instances. Yet, it still provides some interesting
hint about the algorithm.

Let stress that, in the offered code, either problem are feasible, or, the primal
dual of the primal dual is computed. This way, optimal solution always exists
and always has 0 cost. This allows a much simpler check of termination (just
checking is Ax ≥ b and cTx = 0) that using Chubanov algorithm to wait a
certificate of impossibility. This is, in fact, required as the current simulation
of Chubanov algorithm only admits feasible instance. Yet, as computing the
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primal dual of the primal dual is always possible this does not restrict generality
or validity of the offered experiments.

Main point is that, in numerical experiments, slide and jump algorithm
solves the basic tests:

• it solves the Klee Minty cube (up to dimension 50) by exploring very low
number of vertices

• it solves random instances by exploring low number of vertices

Obviously, there is no big challenge in solving either Klee Minty cubes (even if
the slide and jump is not designed for, these instances are easy except for naive
simplex) or random instances. But, these are the minimal tests to be candidate
of being relevant, and, the point is that the slide and jump at least solves them.

This result highlights that this algorithm should not immediately
be dumped, and, invites to perform more complete experiments on
slide and jump numerical behaviour.
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Some source code

from f u t u r e import p r i n t f un c t i o n

#######################################################################
########################### MAIN ALGORITHM ############################
#######################################################################

from f r a c t i o n s import Fract ion

import random

import datetime

############### BASIC LINEAR ALGEBRA FUNCTIONS ###############

def comb ina i s on l i n ea i r e (u , l , v ) :
re turn [ u [ n]+ l ∗v [ n ] f o r n in range ( l en (u ) ) ]

de f p r odu i t s c a l a i r e v e c t e u r ( l , v ) :
re turn [ l ∗e f o r e in v ]

de f opposedvector (v ) :
re turn [−e f o r e in v ]

de f p r o du i t s c a l a i r e (u , v ) :
re turn sum ( [ u [ n ]∗ v [ n ] f o r n in range ( l en (u ) ) ] )

de f s a tu r a t ed con s t r a i n t s (A, b , x ) :
re turn [m f o r m in range ( l en (A) ) i f p r o du i t s c a l a i r e (A[m] , x)==b [m] ]

de f p r o j e c t i on (u , BOG) :
pu = [ Fract ion ( ) ]∗ l en (u)
f o r v in BOG:

l = p r odu i t s c a l a i r e (u , v )/ p r o du i t s c a l a i r e (v , v )
pu=comb ina i s on l i n ea i r e (pu , l , v )

return pu

def r e s t e p r o j e c t i o n (u ,BOG) :
return comb ina i s on l i n ea i r e (u , Fract ion (−1) , p r o j e c t i on (u ,BOG))

def gramschimdBOG(H,BOG) :
BOG = BOG. copy ( )
whi le True :

H = [ r e s t e p r o j e c t i o n (h ,BOG) f o r h in H]
H = [ h f o r h in H i f p r o du i t s c a l a i r e (h , h) != Fract ion ( ) ]
i f H! = [ ] :

BOG. append (H. pop ( ) )
e l s e :

re turn BOG

#returns v such that Av=0 and (v+a ) ( v+a ) i s minimal
de f p r o j e c t i o n on k e r (A, a ,BOG) :

BOG = gramschimdBOG(A,BOG)
i f l en (BOG)==0:

return opposedvector ( a ) ,BOG
e l s e :

re turn r e s t e p r o j e c t i o n ( opposedvector ( a ) ,BOG) ,BOG

############### ALGORITHM FOR LP ###############

#ASSUME ex i s t v : Av>0, av<0
#return v such that Av>=0, av<0
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## COULD BE IMPLEMENTED AS CHUBANOV ALGORITHM ##
## BUT CURRENTLY TERMINATION IS NOT GUARANTEE ##
def no guarant e e t e rmina t i on subso lve r (A, a ) :

counter=0
whi le True :

index = [ i f o r i in range ( l en (A) ) ]
random . s h u f f l e ( index )
subse t I = index [ 0 : random . randint (0 , l en ( index ) ) ]

subset = [A[ i ] f o r i in subse t I ]
v ,BOG = pro j e c t i on on k e r ( subset , a , [ ] )

AV = [ p r odu i t s c a l a i r e (A[ i ] , v ) f o r i in range ( l en (A) ) ]
FORBID = [A[ i ] f o r i in range ( l en (A) ) i f AV[ i ]<Fract ion ( ) ]
whi le FORBID!= [ ] :

subset += FORBID
v ,BOG = pro j e c t i on on k e r ( subset , c ,BOG)
AV = [ p r odu i t s c a l a i r e (A[ i ] , v ) f o r i in range ( l en (A) ) ]
FORBID = [A[ i ] f o r i in range ( l en (A) ) i f AV[ i ]<Fract ion ( ) ]

counter+=1
value = p r odu i t s c a l a i r e (v , a )
i f value<Fract ion ( ) :

p r in t (”nb t r i a l in f a l s e Chubanov” , counter )
return v

#ASSUME Ax>=b , xc>0, Ac>0, Ay>=b with cy=0
#l e t d in D <=> A dx=b d
#return v such that A Dv>=0 and cv<0
def jump(A, b , c , x ) :

D = [ i f o r i in range ( l en (A) ) i f p r o du i t s c a l a i r e (A[ i ] , x)==b [ i ] ]
b lock = [A[ i ] f o r i in D]
return no guarant e e t e rmina t i on subso lve r ( block , c )

#re turns l such that A (x+lv ) >= b , l maximal
## FAIL ON UNBOUNDED SITUATION ##
## FAIL IF NO POSITIVE L EXIST ##
def maximalmoves (A, b , x , v ) :

AV = [ p r odu i t s c a l a i r e (A[m] , v ) f o r m in range ( l en (A) ) ]
AXb = [ p r odu i t s c a l a i r e (A[m] , x)−b [m] f o r m in range ( l en (A) ) ]

S = [m fo r m in range ( l en (A) ) i f AV[m]<Fract ion ( ) ]
i f S==[]:

p r in t (”maximalmoves : S==[]”)
qu i t ( )

R = [−AXb[m]/AV[m] f o r m in S ]
l = min (R)
i f l==Fract ion ( ) :

p r in t (”maximalmoves : l ==0”)
qu i t ( )

return l

#ASSUME Ax>=b
#ASSUME Ax>=b => cx>=0
#returns y such that cy<=cx , Ay>=b and p r o j e c t i o n on k e r (A D , c)=0
# with d in D <=> A Dy=b D
def s l i d e (A, b , c , x ) :

p r in t (” ente r ing s l i d e ” , datetime . datetime . now ( ) )
BOG = [ ]
whi le True :

p r in t (” $ ” , end=””, f l u s h=True )
D = sa tu r a t ed con s t r a i n t s (A, b , x )

v ,BOG = pro j e c t i on on k e r ( [A[m] f o r m in D] , c ,BOG)
i f p r o du i t s c a l a i r e (v , v)==Fract ion ( ) :

p r in t (” e x i t i n g s l i d e ” , datetime . datetime . now ( ) )
return x

l = maximalmoves (A, b , x , v )
x = comb ina i s on l i n ea i r e (x , l , v )

#ASSUME Ac >0, Ax>=b => cx>=0
#return x such that Ax>=b and cx minimal
de f s l ideandjump (A, b , c ) :

x = [ Fract ion ( ) ]∗ l en (A[ 0 ] )
x [−1] = Fract ion (max(b)+1) ∗ Fract ion (5 ,3 )
counter = 0

whi le True :
p r in t (” s l i d i n g move”)
x = s l i d e (A, b , c , x )
D = sa tu r a t ed con s t r a i n t s (A, b , x )
p r in t (D)

i f p r o du i t s c a l a i r e (x , c)==Fract ion ( ) :
p r in t (” found optimal ”)
return x , counter

12



pr in t (” chubanov jump”)
v = jump(A, b , c , x )
l = maximalmoves (A, b , x , v )/4
x = comb ina i s on l i n ea i r e (x , l , v )
counter+=1

#######################################################################
########################### PRE PROCESSING ############################
#######################################################################

def normal ize (rawA , rawb , rawxoptimal ) :
#input rawA rawx >= rawb
#return A, b , c such that min{cx / Ax>=b} i f equ iva l en t
#+ A i s normalized , c i s normalized , cx i s 0 bounded , Ac = 3/4 vector (1)

M = len (rawA)
N = len (rawA [ 0 ] )
A = [ [ Fract ion ( ) f o r n in range (N+3)] f o r m in range (M+4)]
b = [ Fract ion ( ) ]∗ (M+4)
c = [ Fract ion ( ) ]∗ (N+3)
c [−1] = Fract ion (1)

normRawA = [ Fract ion ( ) ]∗M
normRawAtrick = [ Fract ion ( ) ]∗M
fo r m in range (M) :

normRawA[m] = p r odu i t s c a l a i r e (rawA [m] , rawA [m] )
normRawAtrick [m] = normRawA[m]/ Fract ion (2)+ Fract ion (1)

f o r m in range (M) :
f o r n in range (N) :

A[m] [ n ] = rawA [m] [ n ]∗ Fract ion (4 ,5 )/ normRawAtrick [m]
A[m] [−3] = normRawA[m]∗ Fract ion (4 ,5∗2)/ normRawAtrick [m]
A[m] [−2] = Fract ion (4 ,5∗2)/ normRawAtrick [m]
A[m] [−1] = Fract ion (3 ,5 )
b [m] = rawb [m]∗ Fract ion (4 ,5 )/ normRawAtrick [m]

A[−4][−3] = Fract ion (4 ,5 )
A[−4][−1] = Fract ion (3 ,5 )
A[−3][−3] = −Fract ion (4 ,5 )
A[−3][−1] = Fract ion (3 ,5 )
A[−2][−2] = Fract ion (4 ,5 )
A[−2][−1] = Fract ion (3 ,5 )
A[−1][−2] = −Fract ion (4 ,5 )
A[−1][−1] = Fract ion (3 ,5 )

xoptimal = [ Fract ion ( ) ]∗ (N+3)
f o r n in range (N) :

xoptimal [ n ] = rawxoptimal [ n ]

re turn A, b , c , xoptimal

de f pr imaldual (rawA , rawb , rawc ) :
#primal : max {rawc rawx / rawA rawx<= rawb , rawx>=0}
#dual : min {rawb rawy / transpose (rawA) rawy>= rawc , rawy>=0}
#primal dual : {rawx / rawA rawx<=rawb , rawx>=0,
# transpose (rawA) rawy >=rawc , rawy>=0, rawc rawx=rawb rawy}
#unfolded into A x >= b

M = len (rawA)
N = len (rawA [ 0 ] )
A = [ [ Fract ion ( ) f o r n in range (N+M) ] f o r m in range (M+N+N+M+2)]
b = [ Fract ion ( ) ]∗ (M+N+N+M+2)

o f f s e tY = N
o f f s e t = 0
f o r m in range (M) :

f o r n in range (N) :
A[m+o f f s e t ] [ n ] = −rawA [m] [ n ]

b [m+o f f s e t ] = −rawb [m]

o f f s e t += M
fo r n in range (N) :

A[ n+o f f s e t ] [ n ] = Fract ion (1)

o f f s e t += N
fo r n in range (N) :

f o r m in range (M) :
A[ n+o f f s e t ] [m+o f f s e tY ] = rawA [m] [ n ]

b [ n+o f f s e t ] = rawc [ n ]

o f f s e t += N
fo r m in range (M) :

A[m+o f f s e t ] [m+of f s e tY ] = Fract ion (1)

f o r n in range (N) :
A[−2] [ n ] = rawc [ n ]

f o r m in range (M) :
A[−2] [m+of f s e tY ] = −rawb [m]

f o r n in range (N) :
A[−1] [ n ] = −rawc [ n ]

f o r m in range (M) :
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A[−1] [m+o f f s e tY ] = rawb [m]

return A, b

#######################################################################
########################### TOY EXPERIMENT ###########################
#######################################################################

def cubeproblemPrimal (N) :
twopower =[ Fract ion ( ) ]∗N
twopower [0 ]= Fract ion (2)
f o r n in range (1 ,N) :

twopower [ n ] = Fract ion (2)∗ twopower [ n−1]

b = [ Fract ion ( ) ]∗N
b [ 0 ] = Fract ion (5)
f o r n in range (1 ,N) :

b [ n ] = Fract ion (5) ∗ b [ n−1]

c = twopower [ : : −1 ]

A = [ [ Fract ion ( ) f o r n in range (N) ] f o r m in range (N) ]
f o r n in range (N) :

f o r k in range (n ) :
A[ n ] [ k ] = twopower [ n−k ]

A[ n ] [ n ] = Fract ion (1)

return A, b , c

de f cubeproblem (N) :
Araw , braw , craw = cubeproblemPrimal (N)
A, b = primaldual (Araw , braw , craw )

xoptimal = [ Fract ion ( ) ]∗ ( 2∗N)
xoptimal [−1]=Fract ion (2)
xoptimal [N−1] = braw [−1]

return A, b , xoptimal

de f randomVector (N) :
return [ Fract ion ( random . randint (−100 ,100)) f o r n in range (N) ]

de f randomNegVector (N) :
return [ Fract ion ( random . randint (−100 ,−1)) f o r n in range (N) ]

de f randomMatrix (M,N) :
return [ randomVector (N) f o r m in range (M) ]

de f randomproblem (N,M) :
xoptimal = randomVector (N)

Aequal = randomMatrix (M,N)
bequal = [ p r odu i t s c a l a i r e ( Aequal [m] , xoptimal ) f o r m in range (M) ]

Agreater = randomMatrix (M,N)
l e f t = randomNegVector (M)
bgretmp = [ p r odu i t s c a l a i r e ( Agreater [m] , xoptimal ) f o r m in range (M) ]
bgreate r = [ bgretmp [m] + l e f t [m] f o r m in range (M) ]

return Aequal+Agreater , bequal+bgreater , xoptimal

##############################################################
############################ MAIN ############################
##############################################################

pr in t(”########### random ###########”)
rawA , rawb , rawxoptimal = randomproblem (10 ,30)
A, b , c , xoptimal = normal ize (rawA , rawb , rawxoptimal )

x , = sl ideandjump (A, b , c )
i f any ( [ p r o du i t s c a l a i r e (A[m] , x)<b [m] f o r m in range ( l en (A) ) ] ) :

p r in t (”???????”)
i f p r o du i t s c a l a i r e ( c , x)!= Fract ion ( ) :

p r in t (”???????”)

p r in t(”########### cube ###########”)

f o r N in [ 15 , 20 , 25 , 30 , 40 , 50 , 60 ] :
rawA , rawb , rawxoptimal = cubeproblem (N)
A, b , c , xoptimal = normal ize (rawA , rawb , rawxoptimal )

x , counter = sl ideandjump (A, b , c )
i f any ( [ p r o du i t s c a l a i r e (A[m] , x)<b [m] f o r m in range ( l en (A) ) ] ) :

p r in t (”???????”)
i f p r o du i t s c a l a i r e ( c , x)!= Fract ion ( ) :

p r in t (”???????”)

p r in t(”=============> cube : ” ,N,” l eads to ” , counter , ” jumps ”)
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