
HAL Id: hal-00722920
https://hal.science/hal-00722920v18

Preprint submitted on 16 Aug 2019 (v18), last revised 16 Jan 2023 (v38)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Revisiting simplex method in the light of Chubanov
algorithm.

Adrien Chan-Hon-Tong

To cite this version:
Adrien Chan-Hon-Tong. Revisiting simplex method in the light of Chubanov algorithm.. 2019. �hal-
00722920v18�

https://hal.science/hal-00722920v18
https://hal.archives-ouvertes.fr

Revisiting simplex method in the light of

Chubanov algorithm.

Adrien CHAN-HON-TONG

August 16, 2019

Abstract

Simplex core is to move from vertices to vertices following edges.
This short paper argues that it could be relevant to modify simplex

with a specific preprocessing, and, the strongly polynomial time Chubanov
algorithm for homogeneous linear feasibility.

The preprocessing links moving far away from constraints and mini-
mizing the objective value. This way, one could move from vertices to
vertices following faces of undertermined dimension. Then, Chubanov al-
gorithm can be used to solve the homogeneous linear feasibility problem
corresponding to the computation of such move.

The main feature of this algorithm is to handle both singular and non
singular vertices in a strongly polynomial number of operations contrary
to raw simplex method which may takes exponential time to exit a de-
generated vertex.

Despite, there is little hope that complexity is strongly polynomial in
worse case (as core of the algorithm is close to simplex core), the offered
algorithm may outperforms interior point state of the art if binary size
is very large compared to number of vertices, and, marginally, opens the
question about if moving along faces may lead to a faster convergence
than moving along edges.

1 Introduction

Linear programming is the very studied task of solving min
x∈QN / Ax≥b

cTx with

A ∈ QM×N a matrix, b ∈ QM and c ∈ QN some vectors. This problem is
equivalent to solve ∃?x ∈ QN / Ax ≥ b with A and b some bigger matrix
(classical primal dual trick).

This problem can be solved in polynomial times since [9, 6, 8] i.e. in a number
of binary operations bounded by a Lγ where L is binary size required to write
the matrix A and γ a constant. Today, state of the art algorithm to solve linear
program are interior point algorithms (e.g. [10]). Yet, [1] shows that major
interior point algorithms do not solve linear program in strong polynomial time
i.e. in a number of rational operations bounded by max(M,N)γ where M,N are

1

the sizes of A (independently from the binary size of values of A). Only, some
families of linear program can be solved in strongly polynomial times today:

• linear program with 0/1 matrix A [12] (by specific algorithm)

• linear program with at most two variables per inequality [7] (by specific
algorithm)

• Markov chain [11] (by simplex algorithm)

• system having binary solution [2] (by specific algorithm)

• homogeneous linear feasibility i.e. ∃?x / Ax = 0, x > 0 (by Chubanov
algorithm) [3]

Interestingly, despite having exponential worse case complexity, the simplex
algorithm [4] is not affected by the binary size as it handles set of contraint
indexes, and, not raw values. This is why, revisiting simplex algorithm in the
light of Chubanov algorithm could be relevant.

Precisely, this short paper offers two increments to form a simplex like algo-
rithm with the good features of handling singular vertices efficiently (i.e. in a
strongly polynomial number of operations) contrary to simplex, and, of moving
along faces instead of edges.

Even if, complexity of the new algorithm is not established, there is little
hope it is not exponential. Yet, good feature of the offered algorithm could
be interesting. Currently, this algorithm seems the current best shot to solve
linear programming instances with very large binary size, but, with a number of
vertices bounded by a strongly polynomial number (especially when all vertices
are singular).

Notations

N,Q are the sets of integer and rational numbers. \ is the ensemble subtraction.
For all integers i, j, [i, j] will symbolize the integer range i.e. {i, i + 1, ..., j}
which is empty if i > j (there will be no ambiguity with the interval in R as
there is no real range in this paper).

For all integers i, j, I, J , QI is the set of I dimensional vectors on Q, and,
QI×J is the set of matrix with I rows and J columns, with values in Q, and, .i
designs the i component: a row for a matrix and a rational for vector or a row.
QI would be matched with QI×1 i.e. vectors are seen as columns, and, row of
a matrix are matched with Q1,J . For all sets S ⊂ N, AS , bS is the submatrix
or subvector obtained when keeping only components indexed by s ∈ S. T is
the transposition operation i.e. ATj,i = Ai,j . 0 and 1 are the 0 and 1 vector i.e.
vector contains only 0 or only 1, and I is the identity matrix.

If A ∈ QI×J , the null vector space of A (i.e. the kernel) is written Ker(A) =
{v ∈ QJ/Av = 0}, with the convention that Ker of empty A is all space.

UI is the set of normalized vectors from QI i.e. UI = {v ∈ QI , vT v = 1}.
UI,J is the set of matrix from QI×J whose rows are in UJ (rows not necessarily

2

columns). All notations are quite classical except U to indicate normalization
of vectors and/or matrix rows.

1.1 Core idea

Let c be the objective vector (our goal is to minimize cTx while ensuringAx ≥ b),
and, let consider a vertices: a sub matrix of A (let call it A) A ∈ QM×N such
that there is no φ ∈ QN , Aφ = 0 and cTφ < 0. The main step of the algorithm
is to find v such that Av ≥ 0 and cT v < 0. Then, the algorithm will move the
current point along v either finding an unbounded situation, or, hitting some
new constraints typically reaching a new vertices.

If A is square and non singular, one can consider A−1 and φ1, ..., φN the

vector such that (Aφn)i =

{
1 if i = n
0 otherwise

(i.e. the transposed of the row of

A−1).
Let Ω = {n ∈ [1, N] / cTφn >= 0} and Υ = {n ∈ [1, N] / cTφn < 0}.
Υ is important because it will never again be included in any vertices. In-

deed, there is no ψ such that AΥψ = 0, AΩψ ≥ 0, and, cTψ < 0. If it was, by
removing the corresponding vector from Ω, one could form a vector such that
Aω = 0 and cTω < 0 (this is impossible both because it is a vertex and because
A is non singular).

• The basic idea of the simplex (steppest descent) is to move following φk
with cTφk = min

n∈Υ
cTφn.

• The greedy optimal vector v = min
Aν≥0

(c+ ν)T (c+ ν) is an optimal combi-

nation of vectors from both Ω and Υ

• Solving v = min
0≤Aν≤1

cT ν correspond to move along
∑
n∈Υ

φn

• Other ideas could be to use optimal combination from only vectors of Υ,
or, other.

Unfortunately, none of these ideas seems to lead to a strong polynomial time
algorithm (even assuming that these v can be efficiently combinated). Even, the
idea of using all vectors from Υ because it split symetrically the vertices into
one set kept and one set never see again.

The idea of the slide and jump (which is probably not polynomial either)
is basically to use all vectors. This can be done using Chubanov algorithm:
requiring Aw ≥ 1 (this is the dual of Ax = 0, x ≥ 1 from Chubanov algorithm).

Of course, at this point nothink prevent that some of the constraint will
no be included in the next vertex (after leaving a vertex by a face, one need to
collect other constraints - this is direct with simplex as moving along edge allows
to move directly from vertex to vertex) - even if the collecting of contraints could
probably be updated to try to forbid old contraint to enter in the next vertex.

Yet, the main point is that like simplex, the algorithm moves from vertex to
vertex but vertex are not adjacent - move is done in the interior of the polytop.

3

2 The slide and jump algorithm

2.1 Pseudo code

Algorithm 1 presents the pseudo code of the offered algorithm.
Let stress that the algorithm assumes the input linear program is c ∈ QN ,

b ∈ QM , A ∈ QM×N with Ac > 0, Ax ≥ b ⇒ cTx ≥ 0, and Axstart ≥ b (e.g.
xstart = λc).

These assumptions do not restrict generality because all linear
programs can be pushed in this shape using classical primal dual
trick.

Algorithm 1 Slide and jump algorithm

Require: c ∈ QN , b ∈ QM , A ∈ QM×N with Ac > 0, Ax ≥ b⇒ cTx ≥ 0, and
Axstart ≥ b (e.g. xstart = λc) this does not restrict generality
Ensure: return x: Ax ≥ b, cx is minimal

1: while True do
2: D = {m ∈ [1,M] / Amx = bm}
3: compute u the orthogonal projection of −c on Ker(AD)
4: if u = 0 then

5: call subsolver ∃?v /
(

AD
−cT

)
v ≥ 1

6: if v not exists then return x
7: chose δ with 0 < δ < h = min

m∈[1,M]/Amv<0

Amx−bm
−Amv

(e.g. δ = h
4)

8: x = x+ δv
9: else

10: g = min
m∈[1,M] / Amu<0

Amx−bm
−Amu

11: x = x+ gu

2.2 Correctness and termination

This subsection presents a proof that this slide and jump algorithm is well
defined, terminates, and produces an exact optimal solution of linear program.

Lemma 2.1. Algorithm is well defined

Proof. Problematic steps are step 3 (non standard operation) and step 10 (set
should not be empty). All other steps are standard operations.

step 10:
By assumption cx is bounded by 0 i.e. ∀x ∈ QN , Ax ≥ b⇒ cx ≥ 0. If there

was ω such that cω < 0 and Aω ≥ 0, then, one could produce an unbounded
admissible point x + λω as A(x + λω) ≥ Ax ≥ b and c(x + λω) →

λ→∞
−∞. So,

if cω < 0 then ∃m ∈ [1,M] / Amω < 0.
step 3:

4

Step 3 is the projection on a vectorial space i.e. it consists to solve arg min
ADu=0

(c+

u)T (c + u). This step can be done by Gram Schmidt algorithm, and, is more
detailed in appendix. This procedure can not fail (returns −c on empty input),
and, always returns a vector with a strictly positive scalar product with −c or
0.

Lemma 2.2. Algorithm keeps the current point in the admissible space

Proof. Steps 8 and 11 move the current point.
Step 8:
Seeing the test in step 6, ADv > 0 so for all m ∈ D, Am(x + λv) > bm.

Now, for all m /∈ D, Amx > bm, so ∃δ > 0 such that A(x+ δv) > b (the offered
δ works but anyway it could be less).

Step 11:
First, ∀m / Amu ≥ 0, Am(x+ λu) ≥ b.
Then, seeing the definition of u from step 3, ifm ∈ D, Amu = 0 and ifm /∈ D,

Amx > bm. So ∀m ∈ [1,M], Amu < 0 ⇒ m /∈ D ⇒ Amx > bm, and so g > 0.
Now, for m / Amu < 0, g is a minimum, so Amx−bm

−Amu
≥ g. When multiplying

by a negative: Amx−bm
−Amu

Amu ≤ gAmu. And, so ∀m ∈ [1,M], / Amu < 0:

Amx+ gAmu− bm ≥ Amx+ Amx−bm
−Amu

Amu− bm = 0.

Lemma 2.3. algorithm outputs optimal exact solution

Proof. The proof consists to assume the algorithm returns non optimal admis-
sible point x, while optimal solution was x∗ (cx > cx∗). Then, it is possible to
built x̂ (by adding εc) which are in the interior of the admissible space and still
better than x. But, it means that x̂− x is both better for the objective and for
saturated constraints. So, the subsolver should have returned something, and
so, there is a contradiction.

Precisely, let consider φ = x∗ − x + cT (x−x∗)
2
√
cT c

c, then, ADφ = AD(x∗ −

x + cT (x−x∗)
2 c) = AD(x∗ + cT (x−x∗)

2 c) ≥ cT (x−x∗)
2 ADc > 0 and c(φ − x) =

− c
T (x−x∗)

2 < 0.

Lemma 2.4. algorithm can not loop more then M +1 times without calling the
subsolver

Proof. g is exactly build such that the k corresponding to the minimum enters
in D. Let consider k /∈ D such that Akx−bk

−Aku
= g. So, Ak(x + gv) − bk =

Akx+ Akx−bk
−Akv

Akv − bk = 0.
So, D strictly increases each time the algorithm reaches step 11, but, D is

bounded by [1,M], so, test 4 can not return true more than M consecutive
times.

Lemma 2.5. All moves strictly decrease the objective function.

5

Proof. Steps 8 and 11 move the current point.
step 11: By construction cTu < 0, and, g > 0. So, cost decreases when

moving along u.
step 8: cT v < 0 so moving a little along v decreases the cost.

Lemma 2.6. A value for set D observed in step 5 can not be observed again in
step 2.

Proof. This lemma is proven by contradiction: if D is seen again, one can prove
that exploration of D should have been continued (i.e. the test step 3 should
have been false) instead of calling the subsolver on step 5.

Let consider x2−x1 with x1 corresponding to the observation of D in step 5
and x2 to any ulterior observation. As all moves strictly decreases cTx, it means
cT (x2−x1) < 0, but, by definition ofD, ADx2 = ADx1 = bD soAD(x2−x1) = 0.
So, projection of −c on Ker(AD) is not null (at least it could be x2 − x1), so,
algorithm should not have passed the test step 3.

More precisely, an underlying lemma is that the projection of a vector on a
kernel should have a strictly positive scalar product with this vector if possible.

Lemma 2.7 (Slide and jump). The slide and jump algorithm solves linear
programs.

Let call vertices the points x (with Ax ≥ b) saturating the set D such that the
orthogonal projection of −c on Ker(AD) is null. Then, the iteration between
two vertices is strongly polynomial, and, vertices are never reached twice.

Proof. From all previous lemmas, observing that D is bounded (so looping with-
out call to subsolver is impossible), and that, number of subsets from [1,M] is
finite (so number of call to subsolver is bounded because subsolver is never called
twice on the same value), algorithm terminates. And, independently, algorithm
is well defined, works in admissible space and can not output something else
than an optimal solution. So both correction and termination are proven.

3 Discussion

3.1 Hypothetical use case

Let state one of the main feature of this algorithm: despite being possibly
exponential (like simplex), the offered algorithm is currently the best
theoretical way to solve linear programs with very large binary size,
but with strongly polynomially bounded number of vertices if large
ratio of these vertices being singular.

Indeed, simplex algorithm is exponential for two reasons: it may take ex-
ponential time to exit a vertex, and, it may meet an exponential number of
vertices. As opposite, the slide and jump is possibly exponential only because
it may meet an exponential number of vertices. But, it handles each vertices
(singular or not) in a strongly polynomial number of operations.

6

So, simplex algorithm may take exponential time to deal with an instance of
linear program with polynomially bounded number of vertices if most of them
are singular, while, slide and jump will be strongly polynomial in this case.

Now, if the problem has very large binary size, current interior point could
be inefficient even if number of vertices is bounded. In this case, using slide and
jump is relevant. To joke a little, if one consider a problem where the input
is a matrix A and a vector b, and, the expected output is x such that Ax ≥ b
with A the matrix Ai,j = 3Ai,j . Then, current interior point methods are not
polynomial algorithm to solve this problem (neither simplex or slide and jump
- except for slide and jump if number of vertices is polynomially bounded).

3.2 Numerical experiment

Now, main limitations of this algorithm is the need to handle infinite precision
number to keep a connection between set of constraint indexes and point in the
polytope, and, necessity to have a subsolver implementing Chubanov algorithm.

These limitations are important pratical issues. So, this short paper cur-
rently offers only limited numerical experiments with infinite precision arith-
metic, and, fake implementation of Chubanov algorithm - in the spirit of a
Kaczmarz-Motzkin algorithm [5] (code source offered in appendix).

In these numerical experiments, this slide and jump implementation solves
the Klee Minty cube (up to dimension 50) and random instances by exploring
very low number of vertices (typically less than 20 for cube in dimension 50 on
10 runs). Let stress that a large set of solvers are not able to deal with Klee
Minty cube in dimension 50 with some number reaching 250.

Currently, these experiments invite to improve this algorithm to make it
efficient, and so, to allow a real comparition with the state of the art: it is
currently not interesting, but, it passes minimal requirements to not be dumped.

References

[1] Xavier Allamigeon, Pascal Benchimol, Stéphane Gaubert, and Michael
Joswig. Log-barrier interior point methods are not strongly polynomial.
SIAM Journal on Applied Algebra and Geometry, 2(1):140–178, 2018.

[2] Sergei Chubanov. A strongly polynomial algorithm for linear systems hav-
ing a binary solution. Mathematical programming, 134(2):533–570, 2012.

[3] Sergei Chubanov. A polynomial projection algorithm for linear feasibility
problems. Mathematical Programming, 153(2):687–713, 2015.

[4] George B et. al. Dantzig. The generalized simplex method for minimiz-
ing a linear form under linear inequality restraints. In Pacific Journal of
MathematicsAmerican Journal of Operations Research, 1955.

7

[5] Jesus A De Loera, Jamie Haddock, and Deanna Needell. A sampling
kaczmarz–motzkin algorithm for linear feasibility. SIAM Journal on Sci-
entific Computing, 39(5):S66–S87, 2017.

[6] Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid
method and its consequences in combinatorial optimization. Combinator-
ica, 1(2):169–197, 1981.

[7] Dorit S Hochbaum and Joseph Naor. Simple and fast algorithms for linear
and integer programs with two variables per inequality. SIAM Journal on
Computing, 23(6):1179–1192, 1994.

[8] Narendra Karmarkar. A new polynomial-time algorithm for linear program-
ming. In Proceedings of the sixteenth annual ACM symposium on Theory
of computing, pages 302–311. ACM, 1984.

[9] Leonid Khachiyan. A polynomial algorithm for linear programming. Dok-
lady Akademii Nauk SSSR, 1979.

[10] Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algo-
rithms in convex programming, volume 13. Siam, 1994.

[11] Ian Post and Yinyu Ye. The simplex method is strongly polynomial for
deterministic markov decision processes. Mathematics of Operations Re-
search, 40(4):859–868, 2015.

[12] Eva Tardos. A strongly polynomial algorithm to solve combinatorial linear
programs. Operations Research, 34(2):250–256, 1986.

Source code of numerical experiment

from f u t u r e import p r i n t f un c t i o n

###
########################### MAIN ALGORITHM ############################
###

from f r a c t i o n s import Fract ion

import random

import datetime

############### BASIC LINEAR ALGEBRA FUNCTIONS ###############

def comb ina i s on l i n ea i r e (u , l , v) :
re turn [u [n]+ l ∗v [n] f o r n in range (l en (u))]

de f p r odu i t s c a l a i r e v e c t e u r (l , v) :
re turn [l ∗e f o r e in v]

de f opposedvector (v) :
re turn [−e f o r e in v]

de f p r o du i t s c a l a i r e (u , v) :
re turn sum ([u [n]∗ v [n] f o r n in range (l en (u))])

de f s a tu r a t ed con s t r a i n t s (A, b , x) :
re turn [m f o r m in range (l en (A)) i f p r o du i t s c a l a i r e (A[m] , x)==b [m]]

de f p r o j e c t i on (u , BOG) :
pu = [Fract ion ()]∗ l en (u)
f o r v in BOG:

l = p r odu i t s c a l a i r e (u , v)/ p r o du i t s c a l a i r e (v , v)

8

pu=comb ina i s on l i n ea i r e (pu , l , v)
return pu

def r e s t e p r o j e c t i o n (u ,BOG) :
return comb ina i s on l i n ea i r e (u , Fract ion (−1) , p r o j e c t i on (u ,BOG))

def gramschimdBOG(H,BOG) :
BOG = BOG. copy ()
whi le True :

H = [r e s t e p r o j e c t i o n (h ,BOG) f o r h in H]
H = [h f o r h in H i f p r o du i t s c a l a i r e (h , h) != Fract ion ()]
i f H! = [] :

BOG. append (H. pop ())
e l s e :

re turn BOG

#returns v such that Av=0 and (v+a) (v+a) i s minimal
de f p r o j e c t i o n on k e r (A, a ,BOG) :

BOG = gramschimdBOG(A,BOG)
i f l en (BOG)==0:

return opposedvector (a) ,BOG
e l s e :

re turn r e s t e p r o j e c t i o n (opposedvector (a) ,BOG) ,BOG

############### ALGORITHM FOR LP ###############

#ASSUME ex i s t v : Av>0, av<0
#return v such that Av>=0, av<0
COULD BE IMPLEMENTED AS CHUBANOV ALGORITHM
BUT CURRENTLY TERMINATION IS NOT GUARANTEE
def no guarant e e t e rmina t i on subso lve r (A, a) :

counter=0
whi le True :

index = [i f o r i in range (l en (A))]
random . s h u f f l e (index)
subse t I = index [0 : random . randint (0 , l en (index))]

subset = [A[i] f o r i in subse t I]
v ,BOG = pro j e c t i on on k e r (subset , a , [])

AV = [p r odu i t s c a l a i r e (A[i] , v) f o r i in range (l en (A))]
FORBID = [A[i] f o r i in range (l en (A)) i f AV[i]<Fract ion ()]
whi le FORBID!= [] :

subset += FORBID
v ,BOG = pro j e c t i on on k e r (subset , c ,BOG)
AV = [p r odu i t s c a l a i r e (A[i] , v) f o r i in range (l en (A))]
FORBID = [A[i] f o r i in range (l en (A)) i f AV[i]<Fract ion ()]

counter+=1
value = p r odu i t s c a l a i r e (v , a)
i f value<Fract ion () :

p r in t (”nb t r i a l in f a l s e Chubanov” , counter)
return v

#ASSUME Ax>=b , xc>0, Ac>0, Ay>=b with cy=0
#l e t d in D <=> A dx=b d
#return v such that A Dv>=0 and cv<0
def jump(A, b , c , x) :

D = [i f o r i in range (l en (A)) i f p r o du i t s c a l a i r e (A[i] , x)==b [i]]
b lock = [A[i] f o r i in D]
return no guarant e e t e rmina t i on subso lve r (block , c)

#re turns l such that A (x+lv) >= b , l maximal
FAIL ON UNBOUNDED SITUATION
FAIL IF NO POSITIVE L EXIST
def maximalmoves (A, b , x , v) :

AV = [p r odu i t s c a l a i r e (A[m] , v) f o r m in range (l en (A))]
AXb = [p r odu i t s c a l a i r e (A[m] , x)−b [m] f o r m in range (l en (A))]

S = [m fo r m in range (l en (A)) i f AV[m]<Fract ion ()]
i f S==[]:

p r in t (”maximalmoves : S==[]”)
qu i t ()

R = [−AXb[m]/AV[m] f o r m in S]
l = min (R)
i f l==Fract ion () :

p r in t (”maximalmoves : l ==0”)
qu i t ()

return l

#ASSUME Ax>=b
#ASSUME Ax>=b => cx>=0
#returns y such that cy<=cx , Ay>=b and p r o j e c t i o n on k e r (A D , c)=0
with d in D <=> A Dy=b D
def s l i d e (A, b , c , x) :

p r in t (” ente r ing s l i d e ” , datetime . datetime . now ())
BOG = []

9

whi le True :
p r in t (” $ ” , end=””, f l u s h=True)
D = sa tu r a t ed con s t r a i n t s (A, b , x)

v ,BOG = pro j e c t i on on k e r ([A[m] f o r m in D] , c ,BOG)
i f p r o du i t s c a l a i r e (v , v)==Fract ion () :

p r in t (” e x i t i n g s l i d e ” , datetime . datetime . now ())
return x

l = maximalmoves (A, b , x , v)
x = comb ina i s on l i n ea i r e (x , l , v)

#ASSUME Ac >0, Ax>=b => cx>=0
#return x such that Ax>=b and cx minimal
de f s l ideandjump (A, b , c) :

x = [Fract ion ()]∗ l en (A[0])
x [−1] = Fract ion (max(b)+1) ∗ Fract ion (5 ,3)
counter = 0

whi le True :
p r in t (” s l i d i n g move”)
x = s l i d e (A, b , c , x)
D = sa tu r a t ed con s t r a i n t s (A, b , x)
p r in t (D)

i f p r o du i t s c a l a i r e (x , c)==Fract ion () :
p r in t (” found optimal ”)
return x , counter

p r in t (” chubanov jump”)
v = jump(A, b , c , x)
l = maximalmoves (A, b , x , v)/4
x = comb ina i s on l i n ea i r e (x , l , v)
counter+=1

###
########################### PRE PROCESSING ############################
###

def normal ize (rawA , rawb , rawxoptimal) :
#input rawA rawx >= rawb
#return A, b , c such that min{cx / Ax>=b} i f equ iva l en t
#+ A i s normalized , c i s normalized , cx i s 0 bounded , Ac = 3/4 vector (1)

M = len (rawA)
N = len (rawA [0])
A = [[Fract ion () f o r n in range (N+3)] f o r m in range (M+4)]
b = [Fract ion ()]∗ (M+4)
c = [Fract ion ()]∗ (N+3)
c [−1] = Fract ion (1)

normRawA = [Fract ion ()]∗M
normRawAtrick = [Fract ion ()]∗M
fo r m in range (M) :

normRawA[m] = p r odu i t s c a l a i r e (rawA [m] , rawA [m])
normRawAtrick [m] = normRawA[m]/ Fract ion (2)+ Fract ion (1)

f o r m in range (M) :
f o r n in range (N) :

A[m] [n] = rawA [m] [n]∗ Fract ion (4 ,5)/ normRawAtrick [m]
A[m] [−3] = normRawA[m]∗ Fract ion (4 ,5∗2)/ normRawAtrick [m]
A[m] [−2] = Fract ion (4 ,5∗2)/ normRawAtrick [m]
A[m] [−1] = Fract ion (3 ,5)
b [m] = rawb [m]∗ Fract ion (4 ,5)/ normRawAtrick [m]

A[−4][−3] = Fract ion (4 ,5)
A[−4][−1] = Fract ion (3 ,5)
A[−3][−3] = −Fract ion (4 ,5)
A[−3][−1] = Fract ion (3 ,5)
A[−2][−2] = Fract ion (4 ,5)
A[−2][−1] = Fract ion (3 ,5)
A[−1][−2] = −Fract ion (4 ,5)
A[−1][−1] = Fract ion (3 ,5)

xoptimal = [Fract ion ()]∗ (N+3)
f o r n in range (N) :

xoptimal [n] = rawxoptimal [n]

re turn A, b , c , xoptimal

de f pr imaldual (rawA , rawb , rawc) :
#primal : max {rawc rawx / rawA rawx<= rawb , rawx>=0}
#dual : min {rawb rawy / transpose (rawA) rawy>= rawc , rawy>=0}
#primal dual : {rawx / rawA rawx<=rawb , rawx>=0,
transpose (rawA) rawy >=rawc , rawy>=0, rawc rawx=rawb rawy}
#unfolded into A x >= b

M = len (rawA)
N = len (rawA [0])
A = [[Fract ion () f o r n in range (N+M)] f o r m in range (M+N+N+M+2)]
b = [Fract ion ()]∗ (M+N+N+M+2)

10

o f f s e tY = N
o f f s e t = 0
f o r m in range (M) :

f o r n in range (N) :
A[m+o f f s e t] [n] = −rawA [m] [n]

b [m+o f f s e t] = −rawb [m]

o f f s e t += M
fo r n in range (N) :

A[n+o f f s e t] [n] = Fract ion (1)

o f f s e t += N
fo r n in range (N) :

f o r m in range (M) :
A[n+o f f s e t] [m+o f f s e tY] = rawA [m] [n]

b [n+o f f s e t] = rawc [n]

o f f s e t += N
fo r m in range (M) :

A[m+o f f s e t] [m+of f s e tY] = Fract ion (1)

f o r n in range (N) :
A[−2] [n] = rawc [n]

f o r m in range (M) :
A[−2] [m+of f s e tY] = −rawb [m]

f o r n in range (N) :
A[−1] [n] = −rawc [n]

f o r m in range (M) :
A[−1] [m+of f s e tY] = rawb [m]

return A, b

###
########################### TOY EXPERIMENT ###########################
###

def cubeproblemPrimal (N) :
twopower =[Fract ion ()]∗N
twopower [0]= Fract ion (2)
f o r n in range (1 ,N) :

twopower [n] = Fract ion (2)∗ twopower [n−1]

b = [Fract ion ()]∗N
b [0] = Fract ion (5)
f o r n in range (1 ,N) :

b [n] = Fract ion (5) ∗ b [n−1]

c = twopower [: : −1]

A = [[Fract ion () f o r n in range (N)] f o r m in range (N)]
f o r n in range (N) :

f o r k in range (n) :
A[n] [k] = twopower [n−k]

A[n] [n] = Fract ion (1)

return A, b , c

de f cubeproblem (N) :
Araw , braw , craw = cubeproblemPrimal (N)
A, b = primaldual (Araw , braw , craw)

xoptimal = [Fract ion ()]∗ (2∗N)
xoptimal [−1]=Fract ion (2)
xoptimal [N−1] = braw [−1]

return A, b , xoptimal

de f randomVector (N) :
return [Fract ion (random . randint (−100 ,100)) f o r n in range (N)]

de f randomNegVector (N) :
return [Fract ion (random . randint (−100 ,−1)) f o r n in range (N)]

de f randomMatrix (M,N) :
return [randomVector (N) f o r m in range (M)]

de f randomproblem (N,M) :
xoptimal = randomVector (N)

Aequal = randomMatrix (M,N)
bequal = [p r o du i t s c a l a i r e (Aequal [m] , xoptimal) f o r m in range (M)]

Agreater = randomMatrix (M,N)
l e f t = randomNegVector (M)
bgretmp = [p r odu i t s c a l a i r e (Agreater [m] , xoptimal) f o r m in range (M)]
bgreate r = [bgretmp [m] + l e f t [m] f o r m in range (M)]

return Aequal+Agreater , bequal+bgreater , xoptimal

##
############################ MAIN ############################

11

##

pr in t(”########### random ###########”)
rawA , rawb , rawxoptimal = randomproblem (10 ,30)
A, b , c , xoptimal = normal ize (rawA , rawb , rawxoptimal)

x , = sl ideandjump (A, b , c)
i f any ([p r o du i t s c a l a i r e (A[m] , x)<b [m] f o r m in range (l en (A))]) :

p r in t (”???????”)
i f p r o du i t s c a l a i r e (c , x)!= Fract ion () :

p r in t (”???????”)

p r in t(”########### cube ###########”)

f o r N in [15 , 20 , 25 , 30 , 40 , 50 , 60] :
rawA , rawb , rawxoptimal = cubeproblem (N)
A, b , c , xoptimal = normal ize (rawA , rawb , rawxoptimal)

x , counter = sl ideandjump (A, b , c)
i f any ([p r o du i t s c a l a i r e (A[m] , x)<b [m] f o r m in range (l en (A))]) :

p r in t (”???????”)
i f p r o du i t s c a l a i r e (c , x)!= Fract ion () :

p r in t (”???????”)

p r in t(”=============> cube : ” ,N,” l eads to ” , counter , ” jumps ”)

12

