
HAL Id: hal-00722920
https://hal.science/hal-00722920v16

Preprint submitted on 5 Jul 2019 (v16), last revised 16 Jan 2023 (v38)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Linking linear feasibility and linear program.
Adrien Chan-Hon-Tong

To cite this version:

Adrien Chan-Hon-Tong. Linking linear feasibility and linear program.. 2019. �hal-00722920v16�

https://hal.science/hal-00722920v16
https://hal.archives-ouvertes.fr

Linking linear feasibility and linear program.

Adrien CHAN-HON-TONG

July 5, 2019

Abstract

This paper presents an algorithm based on linear feasibility queries
(Ax = 0, x > 0) which solves linear programming (min

x / Ax≥b
cx). This

paper presents also some ideas that seem interesting to bound the com-
plexity of the algorithm.

1 Introduction

Linear programming is the very studied task of solving min
x / Ax≥b

cTx with A a

matrix, b and c some vectors. This problem can be solved in polynomial times
since [7, 4, 6] i.e. in a number of binary operations bounded by a Lγ where L is
binary size required to write the matrix A and γ a constant. Today, state of the
art algorithm to solve linear program are interior point algorithms (e.g. [8]).
Yet, [1] shows that major interior point algorithms do not solve linear program
in strong polynomial time i.e. in a number of rational operations bounded by
max(M,N)γ where M,N are the sizes of A (independently from the binary size
of values of A). Only, some families of linear program can be solved in strongly
polynomial times today:

• combinatorial linear program [10] (by specific algorithm)

• linear program with at most two variables per inequality [5] (by specific
algorithm)

• markov chain [9] (by simplex)

• system having binary solution [2] (by specific algorithm)

Independently, [3] recently shows that linear feasibility i.e. Ax = 0, x > 0
can be solved in strongly polynomial time. This is a very interesting result
seeing [1]. So, the question of solving linear program as a strong polynomial
sequence of linear feasibility queries is relevant.

This paper focus on this last point, and, presents algorithms which solve
linear programming by solving a sequence of linear feasibility problems.

1

Notations

N,Q are the sets of integer and rational numbers. \ is the ensemble subtraction.
For all integers i, j, [i, j] will symbolize the integer range i.e. {i, ..., j} which is
empty if i > j (there will be no ambiguity with the interval in R as there is no
real range in this paper).

For all integers i, j, I, J , QI is the set of I dimensional vectors on Q, and,
QI×J is the set of matrix with I rows and J columns, with values in Q, and, .i
designs the i component: a row for a matrix and a rational for vector or a row.
QI would be matched with QI×1 i.e. vectors are seen as columns, and, row of
a matrix are matched with Q1,J . For all sets S ⊂ N, AS , bS is the submatrix
or subvector obtained when keeping only components indexed by s ∈ S. T is
the transposition operation i.e. ATj,i = Ai,j . 0 and 1 are the 0 and 1 vector i.e.
vector contains only 0 or only 1, and I is the identity matrix.

UI is the set of normalized vectors from QI i.e. UI = {v ∈ QI , vT v = 1}.
UI,J is the set of matrix from QI×J whose rows are in UJ (rows not necessarily
columns).

If A ∈ QI×J , the null vector space of A (i.e. the kernel) is written Ker(A) =
{v ∈ QJ/Av = 0}, with the convention that Ker of empty A is all space.

All notations are quite classical except U to indicate normalization of vectors
and/or matrix rows.

2 First version of slide and jump algorithm

2.1 Key idea

The starting point of this paper is [3] which offers an algorithm to solve linear
feasibility (∃?x ∈ QN / Ax = 0, x > 0 when A ∈ QM×N has full rank) in
strongly polynomial time.

First, with this algorithm, one can solve with the same complexity linear
separability problem (∃?y ∈ QNAy > 0 for any A ∈ QM×N) in strongly poly-
nomial time (see proof just above).

Then, it is easy to get a small improvement from a not optimal admissi-
ble solution for linear program by solving a derived linear separability prob-
lem. Indeed, if x verifying Ax ≥ b has not minimal cx under assumption that
Ac = 3

51, then it is possible (see proof in subsection 2.3) to find u such that(
AD
−cT

)
u > 0 with D the current saturated constraints i.e. D such that

ADw = bD.
Now, it could take infinite time to reach the optimal solution by computing

such u and updating x = x + εu. These moves can be see as jump because its
always lead to some improvement independently from current saturated con-
straint. But jumping is not enough. So, the algorithm also considers sliding
moves. It considers moves which aim to keep the structure between x and the
constraints. Such moves can be computed by solving the easy optimization

2

problem derived by freezing this structure, for example, solving min
w / ADv=0

cT v

keeps D unchanged. This last problem can be trivially solved because it is
just a projection on a vectorial space (can be done with gram schmidt basis
transform).

Before presenting the algorithms, let first consider the lemma linking linear
feasibility and linear separability:

Lemma 2.1. If it is possible to solve ∃?x ∈ QI / Ax = 0, x > 0 when A ∈ QJ,I
has rank J with less than O(max(I, J)γ) operations on Q, then it is possible to
solve ∃?y ∈ N / Ay > 0 for any A ∈ QM×N with less than O(max(N,M)γ)
operations on Q.

Proof. Let A ∈ QM×N a matrix without any assumption. Let consider the
matrix A =

(
A −A −I

)
∈ QM×2N+M i.e. formed with A concat with −A

concat with −I the opposite of identity matrix.
First, this matrix has rank M due to the identity block. So by assumption,

one can apply the solver to know ∃?x ∈ Q2N+M / Ax = 0, x > 0 which
will produce an output in less than O((2N + M)γ) ≤ O(3γ max(N,M)γ) =
O(max(N,M)γ) on Q. This output is either a solution or a certificate that no
solution exists.

If solver finds a solution x ∈ Q2N+M . Let split the solution: x =

 x1

x2

x3

with (x1, x2, x3) ∈ QN × QN × QN . By assumption, A

 x1

x2

x3

 = 0 and

x1, x2, x3 > 0. Yet, as A =
(
A −A −I

)
, it means that Ax1−Ax2− Ix3 =

0. As Ix3 = x3 and x3 > 0, it leads that A(x1 − x2) = x3 > 0. So x1 − x2 is
a solution of the desired problem found in less than O(max(N,M)γ) operation
on Q.

Then, let assume that there is y such that Ay > 0, and, let consider x1 =
max(y,0) + 1, x2 = max(−y,0) + 1, and, x3 = Ay. Then, x1, x2, x3 > 0, and

x1 − x2 = y. So, A

 x1

x2

x3

 = Ay − Ay = 0. So, there is a solution of the

derived problem, solver will find one. And, so, if solver does not find solution,
then, there is not.

Also, a quite trivial but required lemma:

Lemma 2.2. Solving ∃?xQN / Ax > 0 or ∃?xQN / Ax ≥ 1 is equivalent.

Proof. Any solution of the second problem are solution of the first, and any
solution w of the first can be normalised in (1

min
m

Amw
)w to form a solution of

the second.

3

2.2 First version of the algorithm

In the first version of the algorithm, only saturated constraints D are consid-
ered during sliding move. The point is that sliding moves allow the algorithm
to explore completely a particular combinatorial situation (D) while jumping
moves allow to exit such structure. The termination will be guarantee by the
impossibly to see D twice, and, the correctness, by capacity to jump to next D
until optimal solution is reached.

Algorithm 1 Slide and jump for linear program

Require: c ∈ QN , b ∈ QM , A ∈ QM×N with Ac > 0, Ax ≥ b⇒ cTx ≥ 0, and
Axstart ≥ b (e.g. xstart = λc) this does not restrict generality
Ensure: return x: Ax ≥ b, cx is minimal

1: while True do
2: D = {m ∈ [1,M] / Amx = bm}
3: compute u the orthogonal projection of −c on Ker(AD)
4: if u = 0 then

5: call subsolver ∃?v /
(

AD
−cT

)
v ≥ 1

6: if v not exists then return x
7: chose δ with 0 < δ < h = min

m∈[1,M]/Amv<0

Amx−bm
−Amv

(e.g. δ = h
4)

8: x = x+ δv
9: else

10: g = min
m∈[1,M] / Amu<0

Amx−bm
−Amu

11: x = x+ gu

Pseudo code for linear program is presented in algorithm 1: algorithm as-
sumes the input linear program is c ∈ QN , b ∈ QM , A ∈ QM×N with Ac > 0,
Ax ≥ b⇒ cTx ≥ 0, and Axstart ≥ b (e.g. xstart = λc).

These assumptions do not restrict generality because all linear
programs can be pushed in this shape using classical primal dual
trick (see appendix).

2.3 Correctness and termination

This subsection presents a proof that this slide and jump algorithm is well
defined, terminates, and produces an exact optimal solution for both linear
program.

Lemma 2.3. Algorithm is well defined

Proof. Problematic steps are step 3 (non standard operation) and step 10 (set
should not be empty). All other steps are standard operations.

step 10:
By assumption cx is bounded by 0 i.e. ∀x ∈ QN , Ax ≥ b⇒ cx ≥ 0. If there

was ω such that cω < 0 and Aω ≥ 0, then, one could produce an unbounded

4

admissible point x + λω as A(x + λω) ≥ Ax ≥ b and c(x + λω) →
λ→∞

−∞. So,

if cω < 0 then ∃m ∈ [1,M] / Amω < 0.
step 3:
Step 3 is the projection on a vectorial space i.e. it consists to solve arg min

ADu=0
(c+

u)T (c + u). This step can be done by gram schmidt orthogonalisation, and, is
more detailed in appendix. This procedure can not fail (returns −c on empty
input), and, always returns a vector with a strictly positive scalar product with
−c or 0.

Lemma 2.4. Algorithm keeps the current point in the admissible space

Proof. Steps 8 and 11 move the current point.
Step 8:
Seeing the test in step 6, ADv > 0 so for all m ∈ D, Am(x + λv) > bm.

Now, for all m /∈ D, Amx > bm, so ∃δ > 0 such that A(x+ δv) > b (the offered
δ works but anyway it could be less).

Step 11:
First, ∀m / Amu ≥ 0, Am(x+ λu) ≥ b.
Then, seeing the definition of u from step 3, ifm ∈ D, Amu = 0 and ifm /∈ D,

Amx > bm. So ∀m ∈ [1,M], Amu < 0 ⇒ m /∈ D ⇒ Amx > bm, and so g > 0.
Now, for m / Amu < 0, g is a minimum, so Amx−bm

−Amu
≥ g. When multiplying

by a negative: Amx−bm
−Amu

Amu ≤ gAmu. And, so ∀m ∈ [1,M], / Amu < 0:

Amx+ gAmu− bm ≥ Amx+ Amx−bm
−Amu

Amu− bm = 0.

Lemma 2.5. algorithm outputs optimal exact solution

Proof. The proof consists to assume the algorithm returns non optimal admis-
sible point x, while optimal solution was x∗ (cx > cx∗). Then, it is possible to
built x̂ (by adding εc) which are in the interior of the admissible space and still
better than x. But, it means that x̂− x is both better for the objective and for
saturated constraints. So, the subsolver should have returned something, and
so, there is a contradiction.

Precisely, let consider φ = x∗ − x + cT (x−x∗)
2
√
cT c

c, then, ADφ = AD(x∗ −

x + cT (x−x∗)
2 c) = AD(x∗ + cT (x−x∗)

2 c) ≥ cT (x−x∗)
2 ADc > 0 and c(φ − x) =

− c
T (x−x∗)

2 < 0.

Lemma 2.6. algorithm can not loop more then M +1 times without calling the
subsolver

Proof. g is exactly build such that the k corresponding to the minimum enters
in D. Let consider k /∈ D such that Akx−bk

−Aku
= g. So, Ak(x + gv) − bk =

Akx+ Akx−bk
−Akv

Akv − bk = 0.
So, D strictly increases each time the algorithm reaches step 11, but, D is

bounded by [1,M], so, test 4 can not return true more than M consecutive
times.

5

Lemma 2.7. All moves strictly decrease the objective function.

Proof. Steps 8 and 11 move the current point.
step 11: By construction cTu < 0, and, g > 0. So, cost decreases when

moving along u.
step 8: cT v < 0 so moving a little along v decreases the cost.

Lemma 2.8. A value for set D observed in step 5 can not be observed again in
step 2.

Proof. This lemma is proven by contradiction: if D is seen again, one can prove
that exploration of D should have been continued (i.e. the test step 3 should
have been false) instead of calling the subsolver on step 5.

Let consider x2−x1 with x1 corresponding to the observation of D in step 5
and x2 to any ulterior observation. As all moves strictly decreases cTx, it means
cT (x2−x1) < 0, but, by definition ofD, ADx2 = ADx1 = bD soAD(x2−x1) = 0.
So, projection of −c on Ker(AD) is not null (at least it could be x2 − x1), so,
algorithm should not have passed the test step 3.

More precisely, an underlying lemma is that the projection of a vector on a
kernel should have a strictly positive scalar product with this vector if possible.
This is a linear algebra result recalled in appendix.

From all previous lemmas, observing that D is bounded (so looping without
call to subsolver is impossible), and that, number of subsets from [1,M] is finite
(so number of call to subsolver is bounded because subsolver is never called
twice on the same value), algorithm terminates. And, independently, algorithm
is well defined, works in admissible space and can not output something else
than an optimal solution. So both correction and termination are proven.

Theorem 2.9. The slide and jump algorithm solves linear program.

3 Extended version of slide and jump algorithm

3.1 complexity of first slide and jump algorithm

First version of the slide and jump algorithm solves linear program because D
the set of saturated constraint can not be seen after a call of chubanov algorithm
on it. Yet, there is 2M − 1 possible sets.

Of course, not all the sets are possible (some sets are not feasible). And, of
course, not all sets will be explored.

For example, in numerical experiment, slide and jump algorithm solves the
Klee Minty cube (see appendix) by exploring a very low number of vertex. For
example, it explores only 4 vertices for the cube with N = M = 20, whereas,
simplex would explore 1048576 vertices on this particular instance. Obviously,
it is unfair to compare number of explorated vertices between two algorithms on
the worse case of the second (even if it has not being designed for this particular

6

instance). Yet, it still shows that the slide and jump algorithm can explore a
low number of vertices even if there is a lot.

But, this algorithm may still not be polynomial in worse case. This is why
some extensions presented now try to decrease it complexity.

3.2 Additional requirements

From now, all algorithms will assume that the linear program taken as input
min

x∈QN , / Ax≥b
cTx has the following property: A ∈ UM,N , b ∈ QM , c ∈ UN ,

Ac = 3
51, xstart being a trivial admissible point e.g. (5

3 max
m∈[1,M]

bm)c, and, cTx

being bounded by 0.
Again, these assumptions do not restrict generality because all

linear programs can be pushed in this shape using classical primal
dual trick (see appendix).

The interest of having normalized row is to remove ambiguity due to the
scaling, and, so to have a proper geometric view of the constraints. In particular,
from any admissible point x, one view x as a ball with radius d the distance to the
closest constraints. Then, there is an equivalence between the closest constraints
and the constraints that will become saturated is one makes x moving along
−c (precisely x − 5d

3 c). But, most importantly, from any admissible point x
saturating D, and any m ∈ D, one can derive a point y such that Amy = bm
and A[1,M]\{m}y > b[1,M]\{m}. Indeed, it is sufficient to consider: x+ 5

3c− A
T
d

(see a more formal proof bellow).

3.3 Checking constraint rejection

A good case for algorithm convergence is if at some time, the current point goes
bellow the minimal point attached with one constraint. Indeed, in this case,
this constraint will never be seen again.

As the number of slide move is bounded byM between two linear separability
queries, the focus to improve complexity of slide and jump is to bound the
number of calls of linear separability queries. These calls are matched with D.
Each time a constraint is rejected all possible combinations for a set D which
included this constraints are also rejected. Typically, if one constraint is rejected
at each query, the number of query is bounded by M . Obviously this is a very
strong assumption, but, in this case, the algorithm is strongly polynomial !

So computing the still possible combination of D can be an interesting fea-
ture for such solver. Basically, let x be point such that Ax ≥ b, and m ∈ [1,M],
if there is no y such that Amy = bm, A[1,M]\{m}y ≥ b[1,M]\{m} and cy < cx,
then constraint m will never be included in the set of saturated constraint D
after this point x in the algorithm. However, checking if such y exists is as hard
as solving the original problem.

Yet, one can perform weaker check.

7

Lemma 3.1. If m ∈ D such that u = 0 in algorithm 1 and there is no ω such
that Amw = 0, AD\{m}ω ≥ 1, then m will never be seen again in D.

Proof. First, it is easy to check if exists ω such that Amw = 0, AD\{m}ω ≥ 1.
Indeed, this can be done by combining linear feasibility and linear separability

problem. Let consider the matrix

(
Am −Am 0

AD\{m} −AD\{m} −I

)
, and, let call

Chubanov algorithm on it (rank is full as soon as Am is not null due to the first
row + the identity bloc). It will lead to ω verifying the desired property if one
exists.

Now, if there is m such that no such ω exists, then, it means that m will never
be included in the set of saturated constraint D after this point in the algorithm.
If it was, let y the next point with m ∈ D, let consider ω = y − x + 5

3c − A
T
m.

By definition of D, Amy = Amx = bm so Amω = 0 (because Amc = 3
5 and

AmA
T
m = 1), but, for all i ∈ D\{m} both Ai(y − x) ≥ 0 and Ai(

5
3c−A

T
m) > 0.

This would be a contradiction.

Of course, there can exist one ω for all m, and, independently, there can
exist a lower point for all constraints in D (it may exist ω but not point bellow,
and, it could exist ω because there is point bellow).

So, this check is not very useful, but, at least, it highlights some property of
the algorithm, and, it is strongly polynomial.

3.4 Example of constraint rejection

Also, this situation may not be that unrealistic. Let consider x associated with
D and u 6= 0, let consider m the constraint being hit by x when moving along
u, and, let assume that Ker(AD∪{m}) = 0.

First, one can remark that moving straightforwardly on m is not possible:
projection of −c on m is ω = −c+ 3

5A
T
m but Aiω < 0 for i 6= m. This highlights

the fact that du to the assumption (normalized c, row, and Ac = 3
51) constraints

tend to forbid to move along each other.
For example, if N = 3 with these assumptions (meaning that the under-

lying problem is a simple 2D problem), there is always a constraint that it
rejected (this will not be more formally proven here). Let consider 3 planes

(2
√

2
5 , 2

√
2

5 , 3
5), (2

√
2

5 ,− 2
√

2
5 , 3

5), (4
3 , 0,

3
5), there is not point attached to the last

one bellow 0.
Of course, this is not true in higher dimension, and, if multiple constraints

are added in the same time:
(2
√

2
5 , 2

√
2

5 , 0, 3
5), (2

√
2

5 ,− 2
√

2
5 , 0, 3

5), (12
25 , 0,

16
25 ,

3
5), (0, 0, 4

5 ,
3
5), (0, 0,− 4

5 ,
3
5)

moving along x is still possible as the 3rd dimension allows the 3rd constraint to
have lower ratio x,c, this way, having all constraints saturated is not possible,
but, having the 1st and the 3rd or the 2nd and the 3rd is possible.

8

3.5 Sliding with maximal set

This last observation invites to consider an extension of the slide and jump
algorithm where instead of just computing the projection of −c on Ker(AD),
one compute instead the projection of −c on a maximal sets of constraints sorted
by the distance to x, and, in particular in order to try to keep the symmetry
between constraints.

To unfold this idea in geometry, with normalization, slide and jump consists
to make a ball following the gravity path to the lower point, and, this extension
is about to do the same with a kind of ellipse.

The idea is first to sort all constraints according to their distance to x. This
result in a partitionD0, D1, ..., DK of [1,M] with: ∀i, j ∈ Dk, Aix−bi = Ajx−bj ,
and, ∀I < J, i, j ∈ DI , DJ , Aix− bi < Ajx− bj with D being D0∪D1 (D0 being
the last added constraints in D).

Now, instead of considering u to be the projection of −c on Ker(AD), the
idea is to consider the projection of −c on matrix φk and ψk with:

φk =

ψk−1

ATik,2
−ATik,1

...
ATik,r

−ATik,1

 ψk =

(
φk
ATik,1

)

So first priority is to keep distance within D0 equal (φ0), and, then unchanged
(ψ1). Then, priority is to keep distance within D1 equal (φ1) and then un-
changed (ψ1). Then, the priority is to keep distance within D2 equal... When it
is not possible to handle more constraint, u is returned and used to do a sliding
move, or, if ¬ADu ≥ 0 a jumping move is done instead.

Currently, the move along u can be done either until some plan enter in D or
until the partition change. Code offered in appendix use the first, but, second
seems best.

Currently, computing u each time partition change seems a more straight-
forward implementation of the idea. Yet, just changing the computation of u
but keeping all other instruction unchanged allows to state the this updated
version also solves linear program as the complete proof also stand here.

Experimental behaviour is bad as computing u becomes much less efficient.
Yet, this does not really matter: computing u is still polynomial, so, only mat-
ter the bound on the number of call. Unfortunately, even with this update,
the algorithm is not proven polynomial. The main difference with the original
version is that if i, j, k were in D, then only k then i but not j, and, then j but
not i, it raises the question about why algorithm does not keep i, j as a block.

4 Perspective

This short paper offers an algorithm which solves linear program by using
Chubanov linear feasibility algorithm. The offered algorithm is unfortunately

9

not proven polynomial. But, some ideas are presented as possible way to make
this algorithm a strongly polynomial solver for linear programming.

References

[1] Xavier Allamigeon, Pascal Benchimol, Stéphane Gaubert, and Michael
Joswig. Log-barrier interior point methods are not strongly polynomial.
SIAM Journal on Applied Algebra and Geometry, 2(1):140–178, 2018.

[2] Sergei Chubanov. A strongly polynomial algorithm for linear systems hav-
ing a binary solution. Mathematical programming, 134(2):533–570, 2012.

[3] Sergei Chubanov. A polynomial projection algorithm for linear feasibility
problems. Mathematical Programming, 153(2):687–713, 2015.

[4] Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid
method and its consequences in combinatorial optimization. Combinator-
ica, 1(2):169–197, 1981.

[5] Dorit S Hochbaum and Joseph Naor. Simple and fast algorithms for linear
and integer programs with two variables per inequality. SIAM Journal on
Computing, 23(6):1179–1192, 1994.

[6] Narendra Karmarkar. A new polynomial-time algorithm for linear program-
ming. In Proceedings of the sixteenth annual ACM symposium on Theory
of computing, pages 302–311. ACM, 1984.

[7] Leonid Khachiyan. A polynomial algorithm for linear programming. Dok-
lady Akademii Nauk SSSR, 1979.

[8] Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algo-
rithms in convex programming, volume 13. Siam, 1994.

[9] Ian Post and Yinyu Ye. The simplex method is strongly polynomial for
deterministic markov decision processes. Mathematics of Operations Re-
search, 40(4):859–868, 2015.

[10] Eva Tardos. A strongly polynomial algorithm to solve combinatorial linear
programs. Operations Research, 34(2):250–256, 1986.

Appendix

Normalizing linear program

If the linear program given as input is min
Ax≥b

cx and verifies A ∈ UM,N , b ∈ QM ,

c ∈ UN and Ac = γ1 with γ > 0, and, cx being bounded by 0, then the offered
algorithm of section 2 can be directly used.

Otherwise, the linear program has to be normalized with the following
scheme:

10

1. If the linear program is as an optimisation problem (e.g. max
Ax≤b,x≥0

cx), it

should first be converted into a inequality system A′x ≥ b′. This could be
done by combining primal and dual.

2. After that (or directly is input was an inequality system), an other nor-
malisation is performed to reach required property (here with γ = 3

5)

3. the important point is that from any linear program, pre processing can
form an equivalent linear program meeting these requirements

Primal dual

The conversion of an linear program to be optimized into a linear inequality
system is quite classical. A brief recall is provided bellow.

Let assume original goal is to solve max
Arawx≤braw,x≥0

crawx. It is well known

that the dual problem is min
AT

rawy≥craw,y≥0
brawy. Now, the primal dual is formed

by combining all constraints: Arawx ≤ braw, and, x ≥ 0, and, ATrawy ≥ craw,
and crawx = brawy, and finally, y ≥ 0.

So, the problem max
Arawx≤braw,x≥0

crawx can be folded into Abigxbig ≥ bbig with

Abig =

−Araw 0
I 0
0 ATraw
0 I

craw −braw
−craw braw

 and bbig =

−braw

0
craw

0
0
0

.

Normalized primal dual error minimization

This normalisation step takes a linear program Γχ ≥ β as input, and, produces
an equivalent linear program min

Ax≥b
cx with A ∈ UM,N , b ∈ QM , c ∈ UN , and,

Ac = 3
51, and, cx being bounded by 0.

It is sufficient to consider:

A =

4

5(
Γ1Γ1

2 +1)
Γ1

4

5(
Γ1Γ1

2 +1)

Γ1Γ1

2
4

5(
Γ1Γ1

2 +1)

3
5

...
4

5(
ΓMΓM

2 +1)
ΓM

4

5(
ΓMΓM

2 +1)

ΓMΓM

2
4

5(
ΓMΓM

2 +1)

3
5

0 4
5 0 3

5
0 − 4

5 0 3
5

0 0 4
5

3
5

0 0 − 4
5

3
5

11

and

b =

4

5(
Γ1Γ1

2 +1)
β1

...
4

5(
ΓMΓM

2 +1)
βM

0
0
0
0

, c =

0
...
0
0
1

First, the produced linear program is in the desired form: min
Ax≥b

cx with

A ∈ UJ,I , b ∈ QM , c ∈ UN , and, Ac = 3
51.

Trivially, Ac = 3
51 by construction, and, all rows of A are normalized ei-

ther directly because (4
5)2 + (3

5)2 = 1, or, because of that, and the fact that,

(1
ΓmΓm

2 +1
)2ΓmΓm + (1

ΓmΓm
2 +1

)2 (ΓmΓm)2

4 + (1
ΓmΓm

2 +1
)2 is (1

ΓmΓm
2 +1

)2× (ΓmΓm +

(ΓmΓm)2

4 + 1) which is (1
ΓmΓm

2 +1
)2 × (ΓmΓm

2 + 1)2 which is 1 !

Then, the 4 last constraint prevent xN+3 to be negative so cx is well bounded
by 0. Indeed, if xN+2 + xN+3 ≥ 0 and −xN+2 + xN+3 ≥ 0, then xN+3 ≥ 0),
and, when xN+3 = 0 these constraints force xN+1 = xN+2 = 0 because the
three constraints xN+2 + xN+3 ≥ 0, −xN+2 + xN+3 ≥ 0, and xN+3 = 0 can be
reduced to xN+2 ≥ 0 and −xN+2 ≥ 0 which force xN+2 = 0.

Now, the goal is to minimize cx = xN+3. So, either the minimum is
xN+3 = 0 or either there is no such solution. In the case Ax ≥ b, xN+3 = 0, it
holds xN+1 = xN+2 = xN+3 = 0, and, x1, ..., xN = χ with 4

5(ΓmΓm
2 +1)

Γmχ ≥
4

5(ΓmΓm
2 +1)

βm. But this last inequality can be reduced to Γmχ ≥ βm. So, if

the solution of the derived linear program is x with Ax ≥ b, xN+3 = 0, then
x1, ..., xN = χ is a solution of the original set of inequality.

And, inversely, if there is a solution χ, then, x = χ, 0, 0, 0 is a solution of the
optimisation problem (because xN+3 is bounded by 0).

So, this derived linear program is equivalent to the inequality set.

For any linear program, it is possible to create a derived form
meeting the requirement of the offered algorithm.

All this normalization is entirely done in Q i.e. no square root are
needed.

Projection on vectorial space

Let c ∈ QN and A ∈ QM×N , let consider the problem: min
p∈QN ,Ap=0

(c−p)T (c−p).

Let ν1, ...νK be a basis of {p ∈ RN , Ap = 0}, completed by νK+1, ..., νN into
a basis RN . By applying Gram Shimd, one forms e1, ..., eK , ..., eN a orthonormal
basis of RN such that e1, ..., eK is a basis of {p ∈ RN , Ap = 0}.

12

Now, as e1, ..., eN is an orthonormal basis of RN , c =
∑

k∈[1,N]

eTk cek. And, as

e1, ..., eN is an orthonormal basis of {p ∈ RN , Ap = 0}, it means that ∀p,Ap =
0 ⇒ p =

∑
k∈[1,K]

eTk pek. In particular, ∀p,Ap = 0 ⇒ (c − p)T (c − p) ≥∑
k∈[K+1,N]

(eTk c)
2. Independently, q =

∑
k∈[1,K]

eTk cek verifies both that Aq = 0

and that (c− q)T (c− q) =
∑

k∈[1,N]\[1,K]

(eTk c)
2.

So q is the solution of min
p∈QN ,Ap=0

(c−p)T (c−p). Thus, solving min
p∈QN ,Ap=0

(c−

p)T (c− p) is easy, and, can be used in algorithm 1.

Some source code

from f u t u r e import p r i n t f u n c t i o n

###
########################### MAIN ALGORITHM ############################
###

from f r a c t i o n s import Fract ion

############### BASIC LINEAR ALGEBRA FUNCTIONS ###############

def comb ina i s on l i n ea i r e (u , l , v) :
re turn [u [n]+ l ∗v [n] f o r n in range (l en (u))]

de f p r o d u i t s c a l a i r e v e c t e u r (l , v) :
re turn [l ∗e f o r e in v]

de f opposedvector (v) :
re turn [−e f o r e in v]

de f p r o d u i t s c a l a i r e (u , v) :
re turn sum ([u [n]∗ v [n] f o r n in range (l en (u))])

de f s a tu r a t ed con s t r a i n t s (A, b , x) :
re turn [m f o r m in range (l en (A)) i f p r o d u i t s c a l a i r e (A[m] , x)==b [m]]

de f p r o j e c t i on (u , BOG) :
pu = [Fract ion ()]∗ l en (u)
f o r v in BOG:

pu=comb ina i s on l i n ea i r e (pu , p r o d u i t s c a l a i r e (u , v)/ p r o d u i t s c a l a i r e (v , v) , v)
return pu

def r e s t e p r o j e c t i o n (u ,BOG) :
return comb ina i s on l i n ea i r e (u , Fract ion (−1) , p r o j e c t i on (u ,BOG))

def gramschimdBOG(H) :
BOG = []
whi le True :

H = [r e s t e p r o j e c t i o n (h ,BOG) f o r h in H]
H = [h f o r h in H i f p r o d u i t s c a l a i r e (h , h) != Fract ion ()]
i f H! = [] :

BOG. append (H. pop ())
e l s e :

re turn BOG

############### LINEAR ALGEBRA MODULES ###############

#returns v such that Av=0 and (v−c) (v−c) i s minimal
de f p r o j e c t i o n on k e r (A, c) :

BOG = gramschimdBOG(A)
i f l en (BOG)==0:

return c
e l s e :

re turn r e s t e p r o j e c t i o n (c ,BOG)

#returns x such that Ax=b
#OR RETURNS NONE IF IMPOSSIBLE
def s o l v e l i n e a r e q u a l i t y (A, b) :

A = [a . copy () f o r a in A]
f o r m in range (l en (A)) :

A[m] . append(−b [m])

c = [Fract ion (0)]∗ l en (A[0])

13

c [−1] = Fract ion (1)

v = pro j e c t i on on k e r (A, c)
i f v[−1]==Fract ion () :

re turn None
e l s e :

re turn p r o d u i t s c a l a i r e v e c t e u r (Fract ion (1)/ v [−1] , v [0 : −1])

#re turns l >0 such that f o r a l l e>0, not A (x+(l+e)v) >= b
#MAY FAIL ON UNBOUNDED OR UNEXISTING SOLUTION
def maximalmoves (A, b , x , v) :

S = [m fo r m in range (l en (A)) i f p r o d u i t s c a l a i r e (v ,A[m])< Fract ion ()]
i f S==[]:

p r in t (” maximalmoves : S==[]”)
qu i t ()

a l l l = [−(p r o d u i t s c a l a i r e (A[m] , x)−b [m]) / p r o d u i t s c a l a i r e (v ,A[m]) f o r m in S]
l = min (a l l l)
i f l==Fract ion () :

p r in t (” maximalmoves : l ==0”)
qu i t ()

return l

#takes x as input with Ax>=b
#returns y such that cy<cx , Ay>=b and e x i s t s D such that A Dy=b D
and p ro j e c t i o n on k e r (A D , opposedvector (c))=0
#ASSUME CX IS BOUNDED
def s l i d e 1 (A, b , c , x) :

whi le True :
p r in t (” $ ” , end=””, f l u s h=True)
D = sa tu r a t ed con s t r a i n t s (A, b , x)

v = pro j e c t i on on k e r ([A[m] f o r m in D] , opposedvector (c))
i f p r o d u i t s c a l a i r e (v , v)==Fract ion () :

p r in t (” ”)
return x

l = maximalmoves (A, b , x , v)
x = comb ina i s on l i n ea i r e (x , l , v)

de f gramschimdBOG hotstart (H, previousBOG) :
BOG = previousBOG
whi le True :

H = [r e s t e p r o j e c t i o n (h ,BOG) f o r h in H]
H = [h f o r h in H i f p r o d u i t s c a l a i r e (h , h) != Fract ion ()]
i f H! = [] :

BOG. append (H. pop ())
e l s e :

re turn BOG
def p r o j e c t i o n o n k e r h o t s t a r t (A, c , previousBOG) :

BOG = gramschimdBOG hotstart (A, previousBOG)
i f BOG==[]:

re turn c ,BOG
e l s e :

re turn r e s t e p r o j e c t i o n (c ,BOG) ,BOG

def s l i d e 2 (A, b , c , x) :
lastAdded = []
whi le True :

p r in t (” $ ” , end=””, f l u s h=True)

#compute ranking o f a l l c on s t r a i n t s
a l l d i s t = se t ([p r o d u i t s c a l a i r e (A[m] , x)−b [m] f o r m in range (l en (A))])
D = sa tu r a t ed con s t r a i n t s (A, b , x)
R = [lastAdded , [m f o r m in D i f m not in lastAdded]]
f o r d in a l l d i s t :

i f d!= Fract ion ():#d==0 already processed with lastAdded and D
tmp = [m fo r m in range (l en (A)) i f p r o d u i t s c a l a i r e (A[m] , x)−b [m]==d]
R. append (tmp)

#check a vector which s a t i s f i e s a maximum number o f c on s t r a i n t
v = [Fract ion (0)]∗ l en (x)
block = []
previousBOG = []
f o r l in R:

p r in t (”∗” , end=””, f l u s h=True)
block += [comb ina i s on l i n ea i r e (A[m] , Fract ion (−1) ,A[l [0]]) f o r m in l]
w, tmp = p r o j e c t i o n o n k e r h o t s t a r t (block , opposedvector (c) , previousBOG)
previousBOG = tmp . copy ()
i f p r o d u i t s c a l a i r e (w,w)!= Fract ion () :

v = w. copy ()
e l s e :

break

block = block +[A[m] f o r m in l]
w, tmp = p r o j e c t i o n o n k e r h o t s t a r t (block , opposedvector (c) , previousBOG)
previousBOG = tmp . copy ()
i f p r o d u i t s c a l a i r e (w,w)!= Fract ion () :

v = w. copy ()

14

e l s e :
break

i f p r o d u i t s c a l a i r e (v , v)==Fract ion () :
p r in t (” ”)
return x

i f not (a l l ([p r o d u i t s c a l a i r e (A[m] , v)>=Fract ion () f o r m in D])) :
p r in t (”˜”)
return x

l = maximalmoves (A, b , x , v)
x = comb ina i s on l i n ea i r e (x , l , v)
Dafter = sa tu r a t ed con s t r a i n t s (A, b , x)
lastAdded = [d f o r d in Dafter i f d not in D]

############### ALGORITHM FOR LP ###############

KNOWN OPTIMAL SOLUTION = None

#return v such that A Dv>0, cv<0
#with D index such that A Dx=b D
#OR RETURNS NONE IF IMPOSSIBLE
def BAD chubanov implementation (A, b , c , x) :

i f KNOWN OPTIMAL SOLUTION i s None :
D = sa tu r a t ed con s t r a i n t s (A, b , x)

a l l s u b s e t = [[]]
f o r d in D:

a l l s u b s e t b i s = [S . copy () f o r S in a l l s u b s e t]
f o r S in a l l s u b s e t b i s :

a l l s u b s e t . append (S+[d])
a l l s u b s e t = a l l s u b s e t [: : −1]
a l l s u b s e t . pop ()

f o r S in a l l s u b s e t :
p r in t (” . ” , end=””)
subA = [A[m] . copy () f o r m in S i f m>=0]+[opposedvector (c)]
v = s o l v e l i n e a r e q u a l i t y (subA , [Fract ion (1)]∗ (l en (S)+1))
i f v i s None :

cont inue
i f a l l ([p r o d u i t s c a l a i r e (A[m] , v) > Fract ion () f o r m in D]) :

p r in t (” ”)
return v

pr in t (” ”)
return None

pr in t (” us ing known optimal s o l u t i on in s t ead o f a r e a l query ”)
v = comb ina i s on l i n ea i r e (KNOWN OPTIMAL SOLUTION, Fract ion (−1) , x)
alpha = p r o d u i t s c a l a i r e (v , c)
w = comb ina i s on l i n ea i r e (v,−Fract ion (99)∗ alpha / Fract ion (100) , c)
return w

#return x such that Ax>=b and cx minimal
#under assumption that Ac = 3/5 1 − cx i s bounded by 0
def s l ideandjump1 (A, b , c) :

x = [Fract ion ()]∗ l en (A[0])
x [−1] = Fract ion (max(b)+1) ∗ Fract ion (5 ,3)

whi le True :
p r in t (” s l i d i n g move”)
x = s l i d e 1 (A, b , c , x)
D = sa tu r a t ed con s t r a i n t s (A, b , x)
p r in t (D)

i f p r o d u i t s c a l a i r e (x , c)==Fract ion () :
p r in t (” found optimal ”)
return x

pr in t (” chubanov jump”)
v = BAD chubanov implementation (A, b , c , x)
i f v==None :

p r in t (” found optimal ”)
return x

l = maximalmoves (A, b , x , v)
x = comb ina i s on l i n ea i r e (x , l / Fract ion (4) , v)

de f s l ideandjump2 (A, b , c) :
x = [Fract ion ()]∗ l en (A[0])
x [−1] = Fract ion (max(b)+1) ∗ Fract ion (5 ,3)

whi le True :
p r in t (” s l i d i n g move”)
x = s l i d e 2 (A, b , c , x)
D = sa tu r a t ed con s t r a i n t s (A, b , x)
p r in t (D)

i f p r o d u i t s c a l a i r e (x , c)==Fract ion () :

15

pr in t (” found optimal ”)
return x

pr in t (” chubanov jump”)
v = BAD chubanov implementation (A, b , c , x)
i f v==None :

p r in t (” found optimal ”)
return x

l = maximalmoves (A, b , x , v)
x = comb ina i s on l i n ea i r e (x , l / Fract ion (4) , v)

###
########################### PRE PROCESSING ############################
###

def a l l o ca t emat r i x (M,N) :
emptyrow = [Fract ion () f o r n in range (N)]
return [emptyrow . copy () f o r m in range (M)]

de f normal ize (rawA , rawb , rawxoptimal) :
#input rawA rawx >= rawb
#return A, b , c such that min{cx / Ax>=b} i f equ iva l en t
#+ A i s normalized , c i s normalized , cx i s 0 bounded , Ac = 3/4 vector (1)

M = len (rawA)
N = len (rawA [0])
A = a l l o ca t emat r i x (M+4,N+3)
b = [Fract ion ()]∗ (M+4)
c = [Fract ion ()]∗ (N+3)
c [−1] = Fract ion (1)

normRawA = [Fract ion ()]∗M
normRawAtrick = [Fract ion ()]∗M
fo r m in range (M) :

normRawA[m] = p r o d u i t s c a l a i r e (A[m] ,A[m])
normRawAtrick [m] = normRawA[m]/ Fract ion (2)+ Fract ion (1)

f o r m in range (M) :
f o r n in range (N) :

A[m] [n] = rawA [m] [n]∗ Fract ion (4 ,5)/ normRawAtrick [m]
A[m] [−3] = normRawA[m]∗ Fract ion (4 ,5∗2)/ normRawAtrick [m]
A[m] [−2] = Fract ion (4 ,5∗2)/ normRawAtrick [m]
A[m] [−1] = Fract ion (3 ,5)
b [m] = rawb [m]∗ Fract ion (4 ,5)/ normRawAtrick [m]

A[−4][−3] = Fract ion (4 ,5)
A[−4][−1] = Fract ion (3 ,5)
A[−3][−3] = −Fract ion (4 ,5)
A[−3][−1] = Fract ion (3 ,5)
A[−2][−2] = Fract ion (4 ,5)
A[−2][−1] = Fract ion (3 ,5)
A[−1][−2] = −Fract ion (4 ,5)
A[−1][−1] = Fract ion (3 ,5)

xoptimal = [Fract ion ()]∗ (N+3)
f o r n in range (N) :

xoptimal [n] = rawxoptimal [n]

re turn A, b , c , xoptimal

de f pr imaldual (rawA , rawb , rawc) :
#primal : max {rawc rawx / rawA rawx<= rawb , rawx>=0}
#dual : min {rawb rawy / transpose (rawA) rawy>= rawc , rawy>=0}
#primal dual : {rawx / rawA rawx<=rawb , rawx>=0,
transpose (rawA) rawy >=rawc , rawy>=0, rawc rawx=rawb rawy}
#unfolded into A x >= b

M = len (rawA)
N = len (rawA [0])
A = a l l o ca t emat r i x (M+N+N+M+2,N+M)
b = [Fract ion ()]∗ (M+N+N+M+2)

o f f s e tY = N
o f f s e t = 0
f o r m in range (M) :

f o r n in range (N) :
A[m+o f f s e t] [n] = −rawA [m] [n]

b [m+o f f s e t] = −rawb [m]

o f f s e t += M
fo r n in range (N) :

A[n+o f f s e t] [n] = Fract ion (1)

o f f s e t += N
fo r n in range (N) :

f o r m in range (M) :
A[n+o f f s e t] [m+o f f s e tY] = rawA [m] [n]

b [n+o f f s e t] = rawc [n]

o f f s e t += N
fo r m in range (M) :

A[m+o f f s e t] [m+of f s e tY] = Fract ion (1)

16

f o r n in range (N) :
A[−2] [n] = rawc [n]

f o r m in range (M) :
A[−2] [m+o f f s e tY] = −rawb [m]

f o r n in range (N) :
A[−1] [n] = −rawc [n]

f o r m in range (M) :
A[−1] [m+o f f s e tY] = rawb [m]

return A, b

###
########################### TOY EXPERIMENT ###########################
###

def cubeproblemPrimal (N) :
twopower =[Fract ion ()]∗N
twopower [0]= Fract ion (2)
f o r n in range (1 ,N) :

twopower [n] = Fract ion (2)∗ twopower [n−1]

b = [Fract ion ()]∗N
b [0] = Fract ion (5)
f o r n in range (1 ,N) :

b [n] = Fract ion (5) ∗ b [n−1]

c = twopower [: : −1]

A = a l l o ca t emat r i x (N,N)
f o r n in range (N) :

f o r k in range (n) :
A[n] [k] = twopower [n−k]

A[n] [n] = Fract ion (1)

return A, b , c

de f cubeproblem (N) :
Araw , braw , craw = cubeproblemPrimal (N)
A, b = primaldual (Araw , braw , craw)

xoptimal = [Fract ion ()]∗ (2∗N)
xoptimal [−1]= Fract ion (2)
xoptimal [N−1] = braw [−1]

return A, b , xoptimal

import random

def randomVector (N) :
return [Fract ion (random . randint (−100 ,100)) f o r n in range (N)]

de f randomNegVector (N) :
return [Fract ion (random . randint (−100 ,−1)) f o r n in range (N)]

de f randomMatrix (M,N) :
return [randomVector (N) f o r m in range (M)]

de f randomproblem (N,M) :
xoptimal = randomVector (N)

Aequal = randomMatrix (M,N)
bequal = [p r o d u i t s c a l a i r e (Aequal [m] , xoptimal) f o r m in range (M)]

Agreater = randomMatrix (M,N)
l e f t = randomNegVector (M)
bgreatertmp = [p r o d u i t s c a l a i r e (Agreater [m] , xoptimal) f o r m in range (M)]
bgreate r = [bgreatertmp [m] + l e f t [m] f o r m in range (M)]

return Aequal+Agreater , bequal+bgreater , xoptimal

##
############################ MAIN ############################
##

pr in t(”########### random ###########”)
rawA , rawb , rawxoptimal = randomproblem (10 ,30)

A, b , c , xoptimal = normal ize (rawA , rawb , rawxoptimal)
#pr in t (A, b , c , xoptimal)

KNOWN OPTIMAL SOLUTION = xoptimal
x = sl ideandjump1 (A, b , c)
p r in t (a l l ([p r o d u i t s c a l a i r e (A[m] , x)>=b [m] f o r m in range (l en (A))]))
p r in t (p r o d u i t s c a l a i r e (c , x))
x = sl ideandjump2 (A, b , c)
p r in t (a l l ([p r o d u i t s c a l a i r e (A[m] , x)>=b [m] f o r m in range (l en (A))]))
p r in t (p r o d u i t s c a l a i r e (c , x))

17

pr in t(”########### cube ###########”)
rawA , rawb , rawxoptimal = cubeproblem (20)

A, b , c , xoptimal = normal ize (rawA , rawb , rawxoptimal)
#pr in t (A, b , c , xoptimal)

KNOWN OPTIMAL SOLUTION = xoptimal
x = sl ideandjump1 (A, b , c)
p r in t (a l l ([p r o d u i t s c a l a i r e (A[m] , x)>=b [m] f o r m in range (l en (A))]))
p r in t (p r o d u i t s c a l a i r e (c , x))
x = sl ideandjump2 (A, b , c)
p r in t (a l l ([p r o d u i t s c a l a i r e (A[m] , x)>=b [m] f o r m in range (l en (A))]))
p r in t (p r o d u i t s c a l a i r e (c , x))

18

