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Adrien CHAN-HON-TONG
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Abstract

This short paper presents an algorithm based on simple projections
and linear feasibility (Ax = 0, x > 0) queries which solves linear pro-
gramming ( min

x / Ax≥b
cx), and, support vector machine ( min

w / Aw≥1
wTw).

The interest of this algorithm is to be strongly polynomial on families
of instances of linear program and support vector machine, characterized
by similar convex hull properties.

Thus, this algorithm could be interesting as a link between all these
four notions: linear feasibility, linear programming, support vector ma-
chine and convex hull.

1 Introduction

Linear programming is the very studied task of solving min
x / Ax≥b

cTx with A

a matrix, b and c some vectors. This problem can be solved in polynomial
times since [15, 8, 13] i.e. in a number of binary operations bounded by a
constant power of the binary size required to write the matrix A. State of the
art algorithm to solve linear program are today interior point algorithms (e.g.
[19]). In addition, several family of linear program can be solved in strongly
polynomial times i.e. i.e. in a number of rational operations bounded by a
constant power of the size of A:

• combinatorial linear program [22]

• linear program with at most two variables per inequality [11]

• markov chain [21]

• system having binary solution [4]

Support vector machine [6] used to be a central tool of machine learning
(before deep learning [16]), and, consist to solve min

w / Aw≥1
wTw. Complexity
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of support vector machine seems to be polynomial as a special case of semi
definite programming complexity [9], although semi definite complexity under
degeneracy is not that clear [10] (when solving is about producing an exact
solution plus a certificate). Approximate solutions for support vector machine
exist like [12] (theoretically proven) or [14, 3] (efficient implementations), but,
for exact solution, no better algorithm than semi definite ones seems exist.

Independently, [5] recently shows that linear feasibility i.e. Ax = 0, x > 0
can be solved in strongly polynomial time. This result is especially interesting,
because [2] shows that major interior point family of algorithm does not solve
linear program in strong polynomial time. So, the question of solving linear
program as a strong polynomial sequence of linear feasibility queries is relevant.

This short paper focus on this last point, and, presents, in section 2, an algo-
rithm which solves linear programming and support vector machine by solving
a sequence of linear feasibility problem. Discussion of section 3 shows that fam-
ilies of linear programming and support vector machine problems can be solved
in strong polynomial time under assumptions linked to convex hull properties
(algorithm can be extended to convex programming by not this property).

Thus, this short paper provides at least an interesting links between linear
feasibility, linear programming, support vector machine and some convex hull
properties.

Notations

N,Q are the sets of integer and rational numbers. \ is the ensemble subtraction.
∀n ∈ N\{0}, R(n) is the range of integer from 1 to n i.e. R(n) = {k ∈ N, 1 ≤
k ≤ n} = {1, ..., n}.
∀I, J ∈ N\{0}, QI is the set of I dimensional vector of Q, and, QI,J is the set

of matrix with I rows and J columns, with values in Q. QI would be matched
with QI,1 i.e. vector are seen as a column vector.
∀i ∈ N\{0}, .i designs the i component: a rational for vector or a row for

a matrix. Rows are seen as row vector i.e. if ∀A ∈ QI,J , Ai ∈ Q1,J . Also T

is the transposition operation i.e. ∀I, J ∈ N\{0}, ∀A ∈ QI,J , AT ∈ QJ,I with
∀(i, j) ∈ R(I) × R(J), ATj,i = Ai,j . For all set S ⊂ N, AS , bS is the submatrix
or subvector obtained when keeping only rows or components s ∈ S.

0 and 1 are the 0 and 1 vector i.e. vector contains only 0 or only 1, and I is
the identity matrix.

UI is the set of normalized vector from QI i.e. such that vT v = 1 i.e.
UI = {v ∈ QI , vT v = 1}. UI,J is the set of matrix fromMI,J whose rows (after
transposition) are in UJ (only the rows, not necessarily the columns).

Also, if A ∈ QI,J , then, the null vector space of A (i.e. the kernel) is written
Ker(A) = {v ∈ QJ/Av = 0}.

All notations are quite classical except R(n) for the range of integer from 1 to
n, QI,J is the set of matrix with I rows and J columns (more often written

MI,J(Q) and U to indicate normalization of vector and/or matrix.
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2 Slide and jump algorithm

2.1 Key idea

The starting point of this paper is [5] which offers an algorithm to solve linear
feasibility (∃?x ∈ QN / Ax = 0, x > 0 when A ∈ QM,N has full rank) in
strongly polynomial time.

First, with this algorithm, one can easily solve linear separability problem
(∃?y ∈ QNAy > 0 for any A ∈ QM,N ) in strongly polynomial time (see just
above).

Then, with the ability to call a strong polynomial time subsolver dedicated
to linear separability, it is easy to get a small improvement from a not optimal
admissible solution either for linear program or support vector machine (more
generally derivable convex programming). Indeed, let consider support vector
machine as an example, if w verifying Aw ≥ 1 has not minimal norm, then it

is possible to find u such that

(
AD
−wT

)
u > 0 with D the current support

vectors i.e. D such that ADw = 1 (more generally, one can consider saturated
constraints and gradient). Now, it could take infinite time to reach the optimal
solution by computing such u and updating w = w + εu. These moves can be
see as jump because its always lead to some improvement independently from
current saturated constraint. But jumping is not enough.

So, the algorithm also considers sliding moves: it considers the current
most problematic constraints D (typically saturated ones), and, solves the
easy optimization problem derived by freezing this set, for example, it solves

min
w / ADw=1

wTw. This problem can be trivially solved because it is just a pro-

jection on a vectorial space (can be done with gram schmidt basis transform).
The point is that sliding moves allow the algorithm to explore completely a

particular combinatorial situation (D) while jumping moves allow to exit such
structure. The termination will be guarantee by the impossibly to see D twice,
and, the correctness, by capacity to jump to next D until optimal solution is
reached.

In addition, the main contribution of this short paper is to show that this
slide and jump idea can solve linear program and support vector machine in
strongly polynomial in restricted cases characterized by the same kind of convex
hull properties.

Finally, in some way, this algorithm is close to [17] but

• it solves linear program and support vector machine

• it is interior point like for linear program

• it uses linear feasibility queries to exit hard vertex (jumping move) instead
of dealing with combination of constraints: so it replaces a not clearly
polynomial sub algorithm from [17] by a strongly polynomial one (thank
to Chubanov algorithm [5] for linear feasibility)
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• this algorithm comes with a simple characterization of families of instances
on which it is strongly polynomial (including the dimension lower than 3)

Before presenting the algorithm, let first consider the already presented
lemma:

Lemma 2.1. If it is possible to solve ∃?xQN / Ax = 0, x > 0 when A ∈ QM,N

has full rank, then it is possible to solve ∃?y ∈ N / Ay > 0 for any A ∈ QM,N

with same kind of complexity.

Proof. From A ∈ QI,J , it is sufficient to consider the matrix A ∈ QI,J×3 formed
by A concatenate with −A concatenate with −I (which has full rank due to the
identity bloc). Solution can be extracted from difference of J × 2 first variables
of derived problem, J last variable ensure positivity: Aφ − Aψ − Iϕ = 0 with
ϕ > 0 so A(ψ − φ) > 0. This is more formally proven in appendix.

2.2 Pseudo code

For linear program, the slide and jump algorithm assumes the input linear
program is min

x∈QN , / Ax≥b
cTx with A ∈ UM,N , b ∈ QM , c ∈ UN , Ac = 3

51, xstart

being a trivial admissible point e.g. (1+ 5
3 max
m∈R(M)

bm)c, and, cTx being bounded

by 0.
These assumptions do not restrict generality because all linear programs can

be pushed in this shape (see appendix). Currently, algorithm can work with
non normalized matrix A and vector c, but, strongly polynomial behaviour is
highlighted by normalization.

Pseudo code for linear program is presented in algorithm 1.
For support vector machine, the slide and jump algorithm assumes the input

problem is min
w∈QN , / Aw≥1

wTw with A ∈ UM,N . As, a single call to the subsolver

allows to know if Aw ≥ 1 admits a solution (∃w / Aw > 0 ⇔ ∃w / Aw ≥ 1
because it is sufficient to scale the vector by the min of Amw), algorithm can
assume to start from an admissible w.

Again, algorithm can work with non normalized vectors, but, strongly poly-
nomial behaviour is highlighted by normalization. Independently, normalizing
input is relevant from machine learning point of view as this gives equivalent
importance to all vectors.

Pseudo code for support vector machine is presented in algorithm 2.

2.3 Correctness and termination

This subsection presents a proof that this slide and jump algorithm is well
defined, terminates, and produces an exact optimal solution for both linear
program and support vector machine.

Lemma 2.2. Algorithms are well defined

4



Algorithm 1 Slide and jump for linear program

Require: c ∈ QN , b ∈ QM , A ∈ QM,N with Ac = 3
51 and cTx being bounded

by 0, algorithm starts from x = (1 + 5
3 max
m∈R(M)

bm)c

Ensure: Ax ≥ b, cx is minimal

1: d = min
m∈R(M)

Amx− bm
2: D = {m ∈ R(M) / Amx− bm = d}
3: compute u the orthogonal projection of −c on Ker(AD)
4: if cu < 0, ADu = 0 then
5: g = min

m∈R(M) / Amu<0

Amx−bm−d
−Amu

6: x = x+ gu
7: GO TO 1

8: call subsolver ∃?v /
(

AD
−cT

)
v > 0

9: z = x− 5d
3 c

10: if v not exists then
11: return z and the certificate
12: v = 1

min
m∈D

Amv
v

13: h = min
m∈R(M)/Amv<0

Amz−bm
−Amv

14: x = z + h
4 v

15: GO TO 1
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Algorithm 2 Slide and jump for support vector machine

Require: A ∈ QM,N , algorithm starts after initializing w by calling subsolver
on A
Ensure: Aw ≥ 1, wTw is minimal

1: w = 1
min

m∈R(M)
Amw

w

2: D = {m ∈ R(M) / Amw = 1}
3: compute u be the orthogonal projection of −w on Ker(AD)
4: if wu < 0, ADu = 0 then
5: if A(w + u) ≥ 1 then
6: w = w + u
7: else
8: g = min

m∈R(M)/Amu<0

Amw−1
−Amu

9: w = w + gu

10: GO TO 2

11: call subsolver ∃?v /
(

AD
−wT

)
v > 0

12: if v not exists then
13: return w and the certificate
14: if A(w − wv

vv v) ≥ 1 then
15: w = w − wv

vv v
16: else
17: v = 1

min
m∈D

Amv
v

18: h = min
m/Amw<0

Amw−1
−Amv

19: w = w + h
4 v

20: GO TO 1
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Proof. Global idea: In steps are 5, 13 for linear program and 8, 18 for support
vector machine, algorithms consider minimum on conditional subset of R(M).
Yet, these sets are non empty by construction for support vector machine, or,
because problem is bounded for linear program.

Tricky points: For linear program, by assumption cx is bounded by 0 i.e.
∀x ∈ QN , Ax ≥ b⇒ cx ≥ 0. If there was ω such that cω < 0 and Aω ≥ 0, then,
one could produce an unbounded admissible point x+λω as A(x+λω) ≥ Ax ≥ b
and c(x+ λω) →

λ→∞
−∞. So, if cω < 0 then ∃m ∈ R(M) / Amω < 0.

For support vector machine, assuming the current point is admissible, when
reaching step 8 (resp. 18), existsm such thatAm(w+u) < 1 (resp. Amw+wv

vv v <
1). Yet, Aw ≥ 1. So, Amu ≤ Am(w + u)− 1 < 0 (resp. the same for v).

Lemma 2.3. Algorithms keep the current point in the admissible space

Proof. Global idea: g > 0 because ∀m ∈ R(M), Amu < 0⇒ m /∈ D ⇒ Amw >
1orAmx > bm. Now, g is a minimum, so Amx−bm−d

−Amu
≥ g or Amw−1

−Amu
≥ g. When

multiplying by a negative: Amx−bm−d
−Amu

Amu ≤ gAmu or Amw−1
−Amu

Amu ≤ gAmu >

0. And, so ∀m ∈ R(M), Amu < 0: Amx+gAmu−bm ≥ Amx+Amx−bm−d
−Amu

Amu−
bm = d or Am(w + gu) ≥ Amw + Amw−1

−Amu
Amu = Amw + 1 − Amw = 1. And,

there is no problem for others m. So steps 6 or 9 are safe.
Tricky points: For v, it is necessary to ensure that D is still the set of

saturated constraint for z (for linear programming code). Yet, Amz > bm ⇔
m /∈ D because Am(x+ 3d

5 c)− bm = Amx− bm + d.
But steps 14 or 19 are obviously safe: for u, g is designed to force D to

increase. But, for v, any 0 < ε � 1 could be used: any x + εv allows to go
away from m ∈ D for any ε > 0 while ε � 1 allows to be sure not to meet
m /∈ D. h should be seen as en example of such ε because either m ∈ D and
Am(z+hv)−bm = hAmv > 0 or m /∈ D and Am(z+hv)−bm = 3

4 (Amz−bm) > 0.
But other h could be considered. In support vector machine code, Am(w+hv) ≥
3
4 (Amw − 1) > 0.

Lemma 2.4. algorithms output optimal exact solution

Proof. Global idea: Let assume the algorithm returns non optimal admissible
point z, w while optimal solution were z∗ and w∗ (cz > cz∗ and (w∗)T (w∗) <
wTw). It is possible to built ẑ (by adding εc) and ŵ (by scaling by 1 + ε) which
are in the interior of the admissible space and still better than z, w. But, it
means that ẑ − z or ŵ − w are both better for the objective and for saturated
constraints. So, the subsolver should have returned something.

Tricky points: For linear program, let consider φ = z∗ − z + cT (z−z∗)
2 c

(put cT c in denominator if not 1), then, ADφ = AD(z∗ − z + cT (z−z∗)
2 c) =

AD(z∗ + cT (z−z∗)
2 c) ≥ cT (z−z∗)

2 ADc > 0 and c(φ− z) = − c
T (z−z∗)

2 < 0.

For support vector machine, let ψ = (
√

wTw
4(w∗)T (w∗)

+ 1
2 )w∗−w (currently, ψ

is not in QN but it still exists). Then, ADψ = (
√

wTw
4(w∗)T (w∗)

+ 1
2 )ADw

∗−ADw =
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(
√

wTw
4(w∗)T (w∗)

+ 1
2 )ADw

∗−1 ≥ (
√

wTw
4(w∗)T (w∗)

+ 1
2 )1−1 ≥ 1

2 (
√

wTw
(w∗)T (w∗)

−1)1 > 0

(because w∗ is admissible and (w∗)T (w∗) < wTw). Independently, norm of

(
√

wTw
4(w∗)T (w∗)

+ 1
2 )w∗ is strictly less than

√
wTw

(w∗)T (w∗)
(w∗)T (w∗) =

√
wTw. So,

wT ((
√

wTw
4(w∗)T (w∗)

+ 1
2 )w∗) <

√
wTw

√
wTw = wTw (because αTβ ≤

√
αTα ≤√

βTβ). So wψ = (
√

wTw
4(w∗)T (w∗)

+ 1
2 )wTw∗ − wTw < wTw − wTw = 0.

Lemma 2.5. Both algorithms can not loop more then M + 1 times without
calling the subsolver

Proof. Global idea: g is exactly build such that the k corresponding to the
minimum enters in D. Let consider k /∈ D such that Akx−bk−d

−Aku
= g or Akx−1

−Aku
=

g. So, Ak(x + gv) − bk = Akx + Akx−bk−d
−Akv

Akv − bk = d or Ak(w + gu) =

Akw + Akw−1
−Aku

Aku = Akw + 1−Akw = 1.
So, D strictly increases each time the algorithm reaches step 6 or 9, but, D

is bounded by R(M), so, test 4 can not return true more than M consecutive
times.

Tricky points: For support vector machine, if program reaches step 6, w
will become w + u with u the orthogonal projection of −w on Ker(AD). But,
the projection of u is itself (by definition of a projection). So, the projection
of −(w + u) on Ker(AD) is u + (−u) = 0. So, if the program reaches step
6, then during the next loop, test step 4 is false and algorithm directly calls
subsolver.

Lemma 2.6. A value of set D can not be observed during the algorithm after
a call to the subsolver on this value.

Proof. Global idea: First, all moves strictly decreases cT z or wTw because by
construction uT c < 0 and vT c < 0 or uTw < 0 and vTw < 0 and g, h > 0. So,
if D is seen again, it means that exploration of D should have been continued
instead of calling the subsolver.

Tricky point: When reaching step 8 in linear program code or step 11 in
support vector machine one, it means that projection of −c or −w on Ker(AD)
does not lead to u such that ADu = 0 and cTu < 0 or wTu < 0. Now, let
assume to observe D again after having called subsolver.

For linear program, let consider z2 − z1 with z2 being z = x − 5
3c when

observing D again, and, z1 be z when observing D just before calling the sub-
solver. As all moves strictly decreases cT z, it means cT (z2 − z1) < 0, but, by
definition of D, ADz2 = ADz1 = 0 so AD(z2 − z1) = 0. So, algorithm should
not have passed the test step 4 when meeting z1, because z2 − z1 should have
been considered.

For support vector machine code, let consider w2 − w1. First, AD(w2 −
w1) = 0. Then, wT1 (w2 − w1) = wT1 w2 − w1w1 ≤

√
wT1 w

T
1

√
wT2 w

T
2 − w1w1 <√

wT1 w
T
1

√
wT1 w

T
1 −wT1 wT1 = 0. So, again, algorithm should not have passed the

test step 4 when meeting w1, because w2 − w1 should have been considered.
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More precisely, an underlying lemma is that the projection of a vector on a
kernel should have a strictly positive scalar product with this vector if possible.
This is a linear algebra result recalled in appendix.

From all previous lemmas, observing that D is bounded (so looping without
call to subsolver is impossible), and that, number of subset D from R(M) is
finite (so number of call to subsolver is bounded), algorithm terminates. And,
independently, algorithm is well defined, works in admissible space and can
not output something else than an optimal solution. So both correction and
termination are proven.

Theorem 2.7. The slide and jump algorithm solves both linear program and
support vector machine.

3 Discussion

3.1 Solving other problems

More generally, slide and jump algorithm can solve at least min
x / Ax≥b

f(x) for

f bounded, convex and derivable as soon as solving min
ADx≥bD

f(x) is possible,

computing gradient of f is possible, and, ∃y / Ay > b i.e. admissible space has an
interior. In appendix a generic algorithm is presented for convex programming.

Now, solving does not worth a lot if the algorithm is exponential. Indeed,
naively exploring all possible sets D is also an algorithm to solves convex pro-
gramming. Unfortunately, this short paper does not prove that the slide and
jump algorithm is not exponential: termination is proven stressing that D can
not be observed twice, but, there is an exponential number of D.

Yet, in specific case of linear programming and support vector machine in-
stances characterized by convex hull properties, the slide and jump algorithm
is strongly polynomial. This central point is presented in next subsection.

3.2 Special cases with strongly polynomial time termina-
tion

The families of instances on which slide and jump algorithm is proven strong
polynomial requires normalization of rows of the matrix A (see appendix) con-
trary to termination/correctness which do not. Also, for linear program, it
required a interior point like exploration that may not be completely necessary
for simple termination.

The normalization allows to characterize geometrically the fact of being into
D: k ∈ D implies that Am(x− dATk )− bm or Am(w−Ak) is null for m = k but
strictly positive otherwise. Indeed, Am(w − ATk ) = Amw − AmATk . If, m 6= k,
AmA

T
k < 1 (rows of A are normalized), so Am(w−ATk ) > 0. For linear program,

Am(x− dATk )− bm ≥ d− dAmATk > 0.
Now, let introduce some notations related to convex hull:

9



∀A ∈ QI,J , let write:
Conv(A) = {ATπ / π ∈ QI , π ≥ 0 ∧ 1Tπ = 1}
Conv+(A) = {λχ / χ ∈ Conv(A), λ ∈ Q, λ ≥ 1}

Conv(A) is the convex hull of rows ofA i.e. the set of linear combination with
scalar coefficients being in the simplex of QM of rows of A (after transposition).
And Conv+(A) is the set of vectors x that can be scaled by a number 1

λ with λ
higher than 1 such that 1

λx ∈ Conv(A).
The bridge that links convex hull and the complexity of slide and jump

algorithm is to observe that:

Lemma 3.1. a ∈ Conv(A)⇒ @ω ∈ QN / 0 ≤ aTω1 < Aω

Proof. if both ω exists and a = ATπ, then, ωTa = ωTATπ = (Aω)Tπ >
(ωTa1T )π = (ωTa)(1Tπ) = ωTa i.e. ωTa > aTω.

And, even,

Lemma 3.2. a ∈ Conv+(A)⇒ @ω ∈ QN / 0 ≤ aTω1 < Aω

Proof. a ∈ Conv+(A) means that ∃λ ≥ 1 such that 1
λa ∈ Conv(A). For

previous lemma, there is not ω such that 0 < 1
λa

Tω1 < Aω. Now, if there was
ω such that 0 < aTω1 < Aω, then obviously, 0 < 1

λa
Tω1 < aTω1 < Aω as

λ ≥ 1.

The global idea linking convexity and complexity is that being into an ul-
terior D is not compatible with being in Conv+ of current D. So let states
the theorem that makes slide and jump algorithm more interesting than a naive
exploration of all D:

Theorem 3.3. Let consider a support vector machine problem where D∗ the set
of optimal support vectors verifies that for all m ∈ R(M), Am ∈ Conv+(AD∗),
then, the slide and jump algorithm will solve this instance in strongly polynomial
time (at most M sliding move + one call to subsolver to initialize w, and, one
to check that the solution is optimal).

Proof. Let k /∈ D∗ such that Ak ∈ Conv+(AD∗), and, let assume that at some
point k enters into D 6= D∗.

Then, let consider ω = w −ATk . Akω = 1− 1 = 0 (Akw = 1 because k ∈ D,
and, ATkAk = 1 by assumption). But, ∀m ∈ D∗, Amω ≥ 1−AmATk > 1− 1 = 0
except if AmA

T
k = 1 which is impossible as k /∈ D∗. ω is a direct contradiction

with previous lemma.
So none of the k /∈ D∗ can be in D, so the algorithm will start with a subset

of D∗ and performs at most M + 1 sliding moves to collect all the set D∗, and,
terminates after calling the subsolver to get a certificate.

In other words, if the convex hull of all vectors is in the cone formed by the
convex hull of all support vectors. Then, slide and jump algorithm will solve
this instance very efficiently. Let stress that the convex hull of all vectors or the
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admissible space could be complex, only count the fact of being inside the cone
formed by the support vectors. So this convex hull assumption is not completely
trivial.

Let stress that this is always the case for N ≤ 2, because in 2D a set of
vectors in a half space are between the two extreme ones. Of course, this is
not true in higher dimension: for example, in 3D, let consider the 4 vectors

(±
√

(3)

3 ,±
√

(3)

3 ,

√
(3)

3 ), then (0,

√
(2)

2 ,

√
(2)

2 ) is not between the others.
A similar theorem exists for linear program.

Theorem 3.4. If for any, ADz = bD on which the subsolver is called, there

is k ∈ D such that Ak ∈ Conv+(
AD\{k}
−cT ), then k is never observed in any

ulterior D, and so, under the assumption that at least one index is rejected at
each call of the subsolver, then, the algorithm for linear program terminates
after at most M calls to the subsolver.

Proof. Let consider ADz = b on which the subsolver is called. Let assume

∃k ∈ D such that Ak ∈ Conv+(
AD\{k}
−cT ). Let suppose k is seen on an other

set D after having called the subsolver.
Let consider µ = x − dAk. Akµ = 0 by definition. And, −cTµ < 0 because

x is strictly bellow z (bellow from c point of view) and cTAk > 0. And, Amµ ≥
d− dATmAk > 0. This is a direct contradiction with the previous lemma.

Let stress that this is true in dimension 3 (it can be seen as a 2D support
vector machine problem after projection on an iso c hyperplane).

One could wonder if such theorem holds for generic convex programming.
Yet, this question may miss an important point: even if this theorem is just
about geometrical properties of vectors, the key point is that this geometrical
hypothesis somehow matches the algorithms behaviour.

For example, in support vector machine, exploration may tend to select sup-
port vectors more and more far from each other, and, so making the geometrical
hypothesis more and more relevant. Again, for linear program, on a vertex D
on which ADy = 1 is impossible, the underlying hope is that one constraint is
problematic to decrease the objective, and, that jumping may allow to quit this
constraint for ever.

So, this hypothesis in itself may scarcely be true but symbolizes cases in
which the exploration will be efficient. For this reason, there is little interest to
try to extend these strongly polynomial cases to generic convex programming.

3.3 Numerical experiments

Algorithm has been implemented for linear programming with a toy implemen-
tation of the linear feasibility queries (see source code in appendix - this imple-
mentation is python based, mono thread and uses exact arithmetic operation)
to perform empirical evaluation of previous statements.
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Algorithm has been tested on both random problems, and, classical Klee
Minty cube.

On Klee Minty cube, it behaves more efficiently than basic simplex. Yet,
cube are especially hard for simplex based algorithm because simplex explores
adjacent vertices which are designed to be confusing in Klee Minty cube. The
slide and jump algorithm also jumps from vertex to vertex (sliding eventually
leads to vertex). But these vertices may not be adjacent. So, it is not that sur-
prising that algorithm is better than simplex on simplex worst cases. Currently,
the convergence is only medium on this classical example, highlighting possible
limitation of the algorithm.

Contrariwise, algorithm behaves surprisingly efficiently on random problem
(for a python based mono thread, exact arithmetic implementation). Indeed, on
random case, algorithm explores a very low number of D. This last observation
may be linked with the situation in which the algorithm is strongly polynomial.

Typically, in a random instance of support vector machine, algorithm con-
siders min

w / Aw≥1
wTw. The convex hull of support vectors (i.e. ATm such that

Amw
∗ = 1) is in the hyper plane H = {u / uTw∗ = 1}, and more precisely

in H ∩ C with C = {u / uTu = 1}. Now, all 1
Akv

Ak are in H ∩ B with

B = {u / uTu ≤ 1}. Loosely speaking, H ∩ C is the excircle of the convex
hull of support vectors. And, the algorithm is strongly polynomial if all other
vectors being in H∩B ater scaling are in this convex hull. So, the situation is: a
set of vectors D∗, from which one can consider the excircle of the corresponding
convex hull. And, good cases are when all other vectors (after scaling) are in the
convex hull knowing that there are in the excircle. Inversely, annoying vectors
must be strictly between the convex hull and the corresponding excircle. And,
even, if all the vectors are not directly in the cone formed by support vectors,
the more the D covers a large sets of vectors, the more the convergence of the
algorithm toward D∗ will be fast. The same considerations are true for linear
program. This can be an explanation of the efficiently of the slide and jump
algorithm on random problem.

So, basically, the probability of being strongly polynomial in random case,
is somehow linked to the ratio of the volume of a convex hull by the volume of
the corresponding excircle. So, this probability is connected to the literature on
geometrical properties of random samples e.g. [7, 1, 18, 20].

Perspectives

This short paper presents an algorithm based on the idea of greedy optimisation
with frozen combinatorial structure, and, linear feasibility queries which allows
to refine the combinatorial structure. To give a metaphor, greedy moves slides
on linear constraints, and linear feasibility allows to jump on new ones.

This slide and jump idea is able to solve different type of problem linear pro-
gram and support vector machine with the interest of being strongly polynomial
for both linear program and support vector machine under similar convex hull

12



assumptions.
Thus, this short paper presents at least a link between linear feasibility,

linear program, support vector machine and convex hull.
In future work, average complexity or smoothed complexity should be con-

sidered for slide and jump algorithm for linear programming as numerical sim-
ulation shows a good behaviour on random problem, and, as complexity on
random samples can be somehow linked with literature on geometrical proper-
ties of random samples.
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Appendix

Linear feasibility and linear separability

[5] presents an algorithm to solve in strongly polynomial time the following
problem: ∃?x ∈ QN/Ax = 0, x > 0 under the assumption that A ∈ QM,N has
a rank of M .

Let A a matrix without any assumption. Let consider the matrix A =(
A −A −I

)
formed with A concat with −A concat with −I the opposite

of identity matrix.
First, this matrix has full rank M due to the identity block.
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Then, applying the Chubanov algorithm (or any linear feasibility solver) to
this matrix A will lead (if a solution exists) to x1, x2, x3 such that

(
A −A −I

) x1

x2

x3

 = 0

and

 x1

x2

x3

 > 0 So, let x = x1 − x2, it holds that Ax = Ix3 = x3 > 0. And,

if no solution exists, then Chubanov algorithm will provide a certificate.

Chubanov algorithm can be applied on a derived problem to solve
linear separability ∃?x ∈ QN/Ax > 0 with A ∈ QM,N

(under no assumption on A, especially on the rank).

Normalizing linear program

If the linear program given as input is min
Ax≥b

cx and verifies A ∈ UM,N , b ∈ QM ,

c ∈ UN and Ac = γ1 with γ > 0, and, cx being bounded by 0, then the offered
algorithm of section 2 can be directly used.

Otherwise, the linear program has to be normalized with the following
scheme:

1. If the linear program is as an optimisation problem (e.g. max
Ax≤b,x≥0

cx), it

should first be converted into a inequality system A′x ≥ b′. This could be
done by combining primal and dual.

2. After that (or directly is input was an inequality system), an other nor-
malisation is performed to reach required property (here with γ = 3

5 )

3. the important point is that from any linear program, pre processing can
form an equivalent linear program meeting these requirements

Primal dual

The conversion of an linear program to be optimized into a linear inequality
system is quite classical. A brief recall is provided bellow.

Let assume original goal is to solve max
Arawx≤braw,x≥0

crawx. It is well known

that the dual problem is min
AT

rawy≥craw,y≥0
brawy. Now, the primal dual is formed

by combining all constraints: Arawx ≤ braw, and, x ≥ 0, and, ATrawy ≥ craw,
and crawx = brawy, and finally, y ≥ 0.
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So, the problem max
Arawx≤braw,x≥0

crawx can be folded into Abigxbig ≥ bbig with

Abig =


−Araw 0
I 0
0 ATraw
0 I

craw −braw
−craw braw

 and bbig =


−braw

0
craw

0
0
0

.

Normalized primal dual error minimization

This normalisation step takes a linear program Γχ ≥ β as input, and, produces
an equivalent linear program min

Ax≥b
cx with A ∈ UM,N , b ∈ QM , c ∈ UN , and,

Ac = 3
51, and, cx being bounded by 0.

It is sufficient to consider:

A =



4

5(
Γ1Γ1

2 +1)
Γ1

4

5(
Γ1Γ1

2 +1)

Γ1Γ1

2
4

5(
Γ1Γ1

2 +1)

3
5

... ... ...
4

5(
ΓMΓM

2 +1)
ΓM

4

5(
ΓMΓM

2 +1)

ΓMΓM

2
4

5(
ΓMΓM

2 +1)

3
5

0 4
5 0 3

5
0 − 4

5 0 3
5

0 0 4
5

3
5

0 0 − 4
5

3
5


and

b =



4

5(
Γ1Γ1

2 +1)
β1

...
4

5(
ΓMΓM

2 +1)
βM

0
0
0
0


, c =


0
...
0
0
1



First, the produced linear program is in the desired form: min
Ax≥b

cx with

A ∈ UJ,I , b ∈ QM , c ∈ UN , and, Ac = 3
51.

Trivially, Ac = 3
51 by construction, and, all rows of A are normalized ei-

ther directly because ( 4
5 )2 + ( 3

5 )2 = 1, or, because of that, and the fact that,

( 1
ΓmΓm

2 +1
)2ΓmΓm + ( 1

ΓmΓm
2 +1

)2 (ΓmΓm)2

4 + ( 1
ΓmΓm

2 +1
)2 is ( 1

ΓmΓm
2 +1

)2× (ΓmΓm +

(ΓmΓm)2

4 + 1) which is ( 1
ΓmΓm

2 +1
)2 × (ΓmΓm

2 + 1)2 which is 1 !

Then, the 4 last constraint prevent xN+3 to be negative so cx is well bounded
by 0. Indeed, if xN+2 + xN+3 ≥ 0 and −xN+2 + xN+3 ≥ 0, then xN+3 ≥ 0),
and, when xN+3 = 0 these constraints force xN+1 = xN+2 = 0 because the
three constraints xN+2 + xN+3 ≥ 0, −xN+2 + xN+3 ≥ 0, and xN+3 = 0 can be
reduced to xN+2 ≥ 0 and −xN+2 ≥ 0 which force xN+2 = 0.
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Now, the goal is to minimize cx = xN+3. So, either the minimum is
xN+3 = 0 or either there is no such solution. In the case Ax ≥ b, xN+3 = 0, it
holds xN+1 = xN+2 = xN+3 = 0, and, x1, ..., xN = χ with 4

5( ΓmΓm
2 +1)

Γmχ ≥
4

5( ΓmΓm
2 +1)

βm. But this last inequality can be reduced to Γmχ ≥ βm. So, if

the solution of the derived linear program is x with Ax ≥ b, xN+3 = 0, then
x1, ..., xN = χ is a solution of the original set of inequality.

And, inversely, if there is a solution χ, then, x = χ, 0, 0, 0 is a solution of the
optimisation problem (because xN+3 is bounded by 0).

So, this derived linear program is equivalent to the inequality set.

For any linear program, it is possible to create a derived form
meeting the requirement of the offered algorithm.

All this normalization is entirely done in Q i.e. no square root are
needed.

Projection on vectorial space

Let c ∈ QN and A ∈ QM,N , let consider the problem: min
p∈QN ,Ap=0

(c−p)T (c−p).

Let ν1, ...νK be a basis of {p ∈ RN , Ap = 0}, completed by νK+1, ..., νN into
a basis RN . By applying Gram Shimd, one forms e1, ..., eK , ..., eN a orthonormal
basis of RN such that e1, ..., eK is a basis of {p ∈ RN , Ap = 0}.

Now, as e1, ..., eN is an orthonormal basis of RN , c =
∑

k∈R(N)

eTk cek. And, as

e1, ..., eN is an orthonormal basis of {p ∈ RN , Ap = 0}, it means that ∀p,Ap =
0 ⇒ p =

∑
k∈R(K)

eTk pek. In particular, ∀p,Ap = 0 ⇒ (c − p)T (c − p) ≥∑
k∈R(N)\R(K)

(eTk c)
2. Independently, q =

∑
k∈R(K)

eTk cek verifies both that Aq = 0

and that (c− q)T (c− q) =
∑

k∈R(N)\R(K)

(eTk c)
2.

So q is the solution of min
p∈QN ,Ap=0

(c− p)T (c− p).

Convex programming

Solving convex programming is possible using the following algorithm 3

Conic projection

A very regular form of the slide and jump algorithm can be presented on
the problem min

v / Av≥0
(a − v)T (a − v) with a ∈ QN , A ∈ QM,N such that

∃α ∈ QN / Aα > 0. This problem is not as studied as linear program or sup-
port vector margin, but, allows a very simple expression of the slide and jump
algorithm (see algorithm 4) as all min

ADv=0
(a−v)T (a−v) are both satisfiable and

bounded.
This algorithm 4 is simple to be proven:
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Algorithm 3 slide and jump algorithm for bounded convex programming

A ∈ QM,N such that ∃α ∈ QN , Aα > 0, f a derivable bounded convex function,
algorithm starts from v = 0:

1: D = {m ∈ R(M) / Amv = 0}
2: w = arg min

u / ADu=0

f(u)

3: if Aw ≥ 0 then

4: call the subsolver: ∃?u /
(

AD
−∇wf

)
u > 0

5: if no such u exists then
6: return w
7: else
8: find ε such that f(w − εu) < f(w) (possible as (∇wf)Tu < 0)

9: h = min
(
{ε} ∪ { Amw

−Amu
/ m ∈ R(M) ∧Amu < 0}

)
10: v = w + hu
11: GO TO 1
12: else
13: g = min

m∈R(M) / Am(w−v)<0

Amv
−Am(w−v)

14: v = (1− g)v + gw
15: GO TO 1

Algorithm 4 slide and jump algorithm for conic projection

a ∈ QN and A ∈ QM,N such that ∃α ∈ QN , Aα > 0, algorithm starts from
v = 0:

1: D = {m ∈ R(M) / Amv = 0}
2: w = arg min

u∈QN / ADu=0

(a− u)T (a− u)

3: if Aw ≥ 0 then

4: call the subsolver: ∃?u ∈ QN /

(
AD
a− w

)
u > 0

5: if no such u exists then
6: return w
7: else
8: h = min

(
{u

T (a−w)
uTu

} ∪ { Amw
−Amu

/ m ∈ R(M) ∧Amu < 0}
)

9: v = w + hu
10: GO TO 1
11: else
12: g = min

m∈R(M) / Am(w−v)<0

Amv
−Am(w−v)

13: v = (1− g)v + gw
14: GO TO 1
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1. Algorithm is well defined as all minimizations (step 2, 8, 12) are well
defined (min in step 12 is safe due to test 3 assuming v is admissible i.e.

Av ≥ 0, min can select at least uT (a−w)
uTu

in step 8, and, in step 2, this
is just a projection on a vectorial space), and, other operations are just
arithmetic or logical ones.

2. If Av ≥ 0, then g > 0 by construction

• if Am(w − v) ≥ 0, Am(v + g(w − v)) ≥ Amv ≥ 0

• if Am(w−v) < 0, Am(v+g(w−v)) ≥ Am(v+ Amv
−Am(w−v) (w−v)) ≥ 0

so step 13 maintains Av ≥ 0.

3. In step 9, Aw ≥ 0 (due to check step 3), so h > 0 by construction

• if Amu ≥ 0, Am(w + hu) ≥ Amw ≥ 0

• if Amu < 0, Am(w + hu) ≥ Am(w + Amw
−Amu

u) ≥ 0

so step 9 maintains Av ≥ 0.

4. From 2 and 3, it holds that algorithm maintains an admissible v

5. Cost function is strictly decreasing because

• (a − v)T (a − v) < (a − w)T (a − w) in step 12, as g > 0 (g < 1
otherwise test step 3 would have returned true), (a − v)T (a − v) <
(a− ((1− g)v + gw))T (a− ((1− g)v + gw)) < (a− w)T (a− w)

• uT (a − w) > 0 in step 9, so ε → (a − (w + εu))T (a − (w + εu)) is a

strictly decreasing function for ε ∈ [0, u
T (a−w)
uTu

] and so on [0, h]

6. D can not been seem twice in step 3: as cost is strictly decreasing, it would
imply there is a value strictly inferior to the min

7. So termination is proven

8. As w = arg min
u∈QN / ADu=0

(a − u)T (a − u) in steps 2, 3, 4 it means that

λ → (a − lambdaw)(a − lambdaw) admits a minimum in 1 - indeed, λw
satisfies all constraints satisfied by w so it could have been considered by
the optimization. So, it means that aTa− 2aTwlambda+wTwlambda2 is
minimal for λ = 1, so −aTw + wTwlambda is null for λ = 1

• wTw = aTw for all partial minimums considered by the algorithm

• so cost is aTa− aTw = aTa− wTw
• as cost is decreasing it means that wTw is increasing
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9. Now, if w is not optimal, let consider w∗ the optimal solution. Let form
ψ = w∗ + εα with a small ε such that Aψ > 0 but the cost of ψ is still
under the cost of w. Then, φ = psi − w. ADφ = ADψ ≥ ADα > 0, and,
(a − w)Tφ = (a − w)T (ψ − w) ≈ (a − w)T (w∗ − w) = aTw∗ − aTw −
wTw∗ +wTw = w∗Tw∗ −wTw−wTw∗ +wTw = w∗w∗ −wTw∗ (because
aTw = wTw and aTw∗ = w∗Tw∗), and, w∗Tw∗ − wTw∗ > 0 because
w∗Tw∗ > wTw (wTw is increasing)

10. so if w is not optimal, algorithm should not stop on step 5

Let remark that [17] corresponds to solving linear programming using conic
projection sub routine. Yet, the question is it better to solve linear program with
conic projection queries (itself solved by Chubanov queries) or directly applying
Chubanov queries to linear programming is not trivial.

Currently, conic projection has a very specific property: if ADv = 0, then,
all vectors u which can be written as a linear combination of vector ATm for
m ∈ D verify that uT v = 0 (as all vectors of the decomposition verify so). So,
for all D1, D2 disjoint, the vectorial spaces linked to D1, D2 only intersect in 0.
Unfortunately, in this short paper, no complexity property is proven using this
observation.

Why using only most problematic constraints ?

Currently, I believe slide and jump algorithm is exponential for linear program-
ming (in worse case), because, in high dimension, a constraint can enter and
leave D an unbounded number of times.

In addition, even if one provides subroutine which solves in strongly polyno-
mial time min

v / Av≥0
(a− v)T (a− v), I believe that naively using such subroutine

in a basic algorithm like 5 is also exponential !

Algorithm 5 Solving LP with conic projection

This algorithm is a most naive way to use subsolver dedicated to min
v / Av≥0

(a−

v)T (a− v) for solving linear program.
c ∈ QN , b ∈ QM , A ∈ QM,N with Ac = 3

51 and cTx being bounded by 0,
algorithm starts from x = (1 + 5

3 max
m∈R(M)

bm)c

1: D = {m ∈ R(M) / Amx = bm}
2: w = arg min

v / ADv≥0
(−c− v)T (−c− v)

3: if w 6= 0 then
4: g = min

m∈R(M) / Amw<0

Amx−bm
−Amw

5: x = x+ gu
6: GO TO 1
7: else
8: return x
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Indeed, in 3D, let think to a simple cuboide rotated such that a single vertex
is minimal, but, cutted by an hyperplan such that the opposite vertex (from
the bottom face) is not admissible, but, the still the minimal. From the diag-
onal point of the optimal, algorithm will make the point slide until it hit the
hyperplan, then, it will slide on the hyperplan, but, then it will leave it. So with
1 hyperplane in 3D, one can force 2 structural change in D. Unfortunately, it
seems that with k hyperplane in kD, one can force 2k change in D... Let notice,
that the current version which may D increases when possible, currently, tackles
this last problem easily, because the hyper plane will enter to D without making
leaving the others - resulting in a single change in D (yet, in other situations,
one could probably trap this algorithm).

Now, an interesting idea is to wonder, if it is not relevant to consider all
the constraints (not just the one in D) but with a priority corresponding to the
ranking of Amx − bm. In other words, the algorithm considers σ from 1, ...,K
into subset of R(M): σ(1) = D - if i, j ∈ σ(k) then Aix − bi = Ajx − bj and
if Aix − bi < Ajx − bj then i ∈ σ(k), j ∈ σ(k′) with k < k′. And the idea
is to look for the maximal k such that one can get an improvement on cx into
Ker(Aσ(R(k))).

If k = 0 i.e. no move can improve cx why keeping D, there is still the need
to jump. Yet, before reaching a point where D is blocking, the algorithm will
have explored a much more larger combination of constraint. Typically, such
can may even never happen...

Source code of numerical experiments

from f u t u r e import p r i n t f u n c t i o n

#######################################################################
########################### MAIN ALGORITHM ############################
#######################################################################

from f r a c t i o n s import Fract ion

############### REQUIRED BASIC LINEAR ALGEBRA FUNCTIONS ###############

def comb ina i s on l i n ea i r e (u , l , v ) :
w = [ ]
f o r i in range ( l en (u ) ) :

w. append (u [ i ]+ l ∗v [ i ] )
re turn w

def a l l o ca t eVec to r (N) :
output = [ ]
f o r n in range (N) :

output . append ( Fract ion ( ) )
return output

def p r o d u i t s c a l a i r e v e c t e u r ( l , v ) :
re turn comb ina i s on l i n ea i r e ( a l l o ca t eVec to r ( l en (v ) ) , l , v )

de f p r o d u i t s c a l a i r e (u , v ) :
w = Fract ion ( )
f o r i in range ( l en (u ) ) :

w+=u [ i ]∗ v [ i ]
r e turn w

def a l l o ca t eVec to r (N) :
output = [ ]
f o r n in range (N) :

output . append ( Fract ion ( ) )
return output

def p r o j e c t i on (u , BOG) :
pu = a l l o ca t eVec to r ( l en (BOG[ 0 ] ) )
f o r v in BOG:

pu=comb ina i s on l i n ea i r e (pu , p r o d u i t s c a l a i r e (u , v )/ p r o d u i t s c a l a i r e (v , v ) , v )
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return pu

def gramschimdBOG(H ) :
H = [ h . copy ( ) f o r h in H i f p r o d u i t s c a l a i r e (h , h) != Fract ion ( ) ]
BOG = [ ]
whi le l en (H)>0:

BOG. append (H. pop ( ) )
f o r i in range ( l en (H) ) :

H[ i ] = comb ina i s on l i n ea i r e (H[ i ] , Fract ion (−1) , p r o j e c t i on (H[ i ] ,BOG))
H = [ h f o r h in H i f p r o d u i t s c a l a i r e (h , h) != Fract ion ( ) ]

re turn BOG

############### ALGORITHM ###############

def so lvenormal i zed (A, b , c , xoptimal , x ) :
M = len (A)
N = len (A[ 0 ] )

whi le True :
p r in t (x )

d = p r o d u i t s c a l a i r e (A[ 0 ] , x)−b [ 0 ]
f o r m in range (M) :

i f p r o d u i t s c a l a i r e (A[m] , x)−b [m]<d :
d = p r o d u i t s c a l a i r e (A[m] , x)−b [m]

pr in t (d)

D = [ ]
f o r m in range ( l en (A) ) :

i f p r o d u i t s c a l a i r e (A[m] , x)−b [m]==d :
D. append (m)

pr in t (D)

i f p r o d u i t s c a l a i r e (x , c)==p r o d u i t s c a l a i r e ( xoptimal , c ) :
re turn None

cm = p r o d u i t s c a l a i r e v e c t e u r ( Fract ion (−1) , c )
projOnVect = pro j e c t i on (cm, gramschimdBOG ( [A[m] . copy ( ) f o r m in D] ) )
projOnKer = comb ina i s on l i n ea i r e (cm, Fract ion (−1) , projOnVect )
v = projOnKer
pr in t (v )

i f p r o d u i t s c a l a i r e (v , v)!= Fract ion ( ) :
candidate = [ ]
f o r m in range (M) :

i f p r o d u i t s c a l a i r e (v ,A[m])< Fract ion ( ) :
cu r r en td i r = p r o d u i t s c a l a i r e (A[m] , x)−b [m]
d e s i r e d d i r = d
move = −( cur rentd i r−d e s i r e d d i r )/ p r o d u i t s c a l a i r e (v ,A[m] )
candidate . append (move)

move = min( candidate )
x = comb ina i s on l i n ea i r e (x , move , v )
p r in t(”### b i s e c t o r move ###”)
cont inue

y =comb ina i s on l i n ea i r e (x , −d/ p r o d u i t s c a l a i r e (A[ 0 ] , c ) , c )

i f p r o d u i t s c a l a i r e (y , c)==Fract ion ( ) :
x = y
pr in t (” done ”)
cont inue

equic = p r o d u i t s c a l a i r e (y , c )∗ Fract ion (999 ,1000)
optANDc = comb ina i s on l i n ea i r e ( xoptimal , equic , c )
y09 = p r o d u i t s c a l a i r e v e c t e u r ( Fract ion (999 ,1000) , y )
simulateChubanov = comb ina i s on l i n ea i r e ( y09 , Fract ion (1 ,1000) , optANDc)
x = simulateChubanov
pr in t(”### chubanov jump ###”)
cont inue

#######################################################################
########################### PRE PROCESSING ############################
#######################################################################

def a l l o ca t eMat r i x (M,N) :
mymatrix = [ ]
f o r m in range (M) :

mymatrix . append ( a l l o c a t eVec to r (N) )
return mymatrix

de f normal ize (rawA , rawb , rawxoptimal ) :
#input rawA rawx >= rawb
#return A, b , c such that min{cx / Ax>=b} i f equ iva l en t
#+ A i s normalized , c i s normalized , cx i s 0 bounded , Ac = 3/4 vector (1)

M = len (rawA)
N = len (rawA [ 0 ] )
A = a l l o ca t eMat r i x (M+4,N+3)
b = a l l o ca t eVec to r (M+4)
c = a l l o ca t eVec to r (N+3)
c [−1] = Fract ion (1)
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normRawA = a l l o ca t eVec to r (M)
normRawAtrick = a l l o ca t eVec to r (M)
f o r m in range (M) :

normRawA[m] = p r o d u i t s c a l a i r e (A[m] ,A[m] )
normRawAtrick [m] = normRawA[m]/ Fract ion (2)+ Fract ion (1)

f o r m in range (M) :
f o r n in range (N) :

A[m] [ n ] = rawA [m] [ n ]∗ Fract ion (4 ,5 )/ normRawAtrick [m]
A[m] [−3] = normRawA[m]∗ Fract ion (4 ,5∗2)/ normRawAtrick [m]
A[m] [−2] = Fract ion (4 ,5∗2)/ normRawAtrick [m]
A[m] [−1] = Fract ion (3 ,5 )
b [m] = rawb [m]∗ Fract ion (4 ,5 )/ normRawAtrick [m]

A[−4][−3] = Fract ion (4 ,5 )
A[−4][−1] = Fract ion (3 ,5 )
A[−3][−3] = −Fract ion (4 ,5 )
A[−3][−1] = Fract ion (3 ,5 )
A[−2][−2] = Fract ion (4 ,5 )
A[−2][−1] = Fract ion (3 ,5 )
A[−1][−2] = −Fract ion (4 ,5 )
A[−1][−1] = Fract ion (3 ,5 )

xoptimal = a l l o ca t eVec to r (N+3)
f o r n in range (N) :

xoptimal [ n ] = rawxoptimal [ n ]

#check x s o l u t i on
i f p r o d u i t s c a l a i r e ( c , xoptimal )!= Fract ion ( ) :

p r in t (” p r o d u i t s c a l a i r e ( c , xoptimal )!= Fract ion ( ) ” )
qu i t ( )

f o r m in range (M) :
i f p r o d u i t s c a l a i r e (A[m] , xoptimal)<b [m] :

p r in t (” p r o d u i t s c a l a i r e (A[m] , xoptimal)<b [m] ” )
qu i t ( )

x = a l l o ca t eVec to r (N+3)
x [−1] = max(b)+1
x[−1] ∗= Fract ion (5 ,3 )
return A, b , c , xoptimal , x

#######################################################################
########################### TOY EXPERIMENT ###########################
#######################################################################

def cubeproblemPrimal (N) :
twopower = a l l o ca t eVec to r (N)
twopower [0 ]= Fract ion (2)
f o r n in range (1 ,N) :

twopower [ n ] = Fract ion (2)∗ twopower [ n−1]

b = a l l o ca t eVec to r (N)
b [ 0 ] = Fract ion (5)
f o r n in range (1 ,N) :

b [ n ] = Fract ion (5) ∗ b [ n−1]

c = twopower [ : : −1 ]

A = a l l o ca t eMat r i x (N,N)
f o r n in range (N) :

f o r k in range (n ) :
A[ n ] [ k ] = twopower [ n−k ]

A[ n ] [ n ] = Fract ion (1)

return A, b , c

de f pr imaldual (rawA , rawb , rawc ) :
#primal : max {rawc rawx / rawA rawx<= rawb , rawx>=0}
#dual : min {rawb rawy / transpose (rawA) rawy>= rawc , rawy>=0}
#primal dual : {rawx / rawA rawx<=rawb , rawx>=0, t ranspose (rawA) rawy >=rawc ,
# rawy>=0, rawc rawx=rawb rawy} unfolded in to A x >= b

M = len (rawA)
N = len (rawA [ 0 ] )
A = a l l o ca t eMat r i x (M+N+N+M+2,N+M)
b = a l l o ca t eVec to r (M+N+N+M+2)

o f f s e tY = N
o f f s e t = 0
f o r m in range (M) :

f o r n in range (N) :
A[m+o f f s e t ] [ n ] = −rawA [m] [ n ]

b [m+o f f s e t ] = −rawb [m]

o f f s e t += M
fo r n in range (N) :

A[ n+o f f s e t ] [ n ] = Fract ion (1)

o f f s e t += N
fo r n in range (N) :

f o r m in range (M) :
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A[ n+o f f s e t ] [m+o f f s e tY ] = rawA [m] [ n ]
b [ n+o f f s e t ] = rawc [ n ]

o f f s e t += N
fo r m in range (M) :

A[m+o f f s e t ] [m+of f s e tY ] = Fract ion (1)

f o r n in range (N) :
A[−2] [ n ] = rawc [ n ]

f o r m in range (M) :
A[−2] [m+o f f s e tY ] = −rawb [m]

f o r n in range (N) :
A[−1] [ n ] = −rawc [ n ]

f o r m in range (M) :
A[−1] [m+o f f s e tY ] = rawb [m]

return A, b

def cubeproblem (N) :
Araw , braw , craw = cubeproblemPrimal (N)
A, b = primaldual (Araw , braw , craw )

xoptimal = a l l o ca t eVec to r (2∗N)
xoptimal [−1]= Fract ion (2)
xoptimal [N−1] = braw [−1]

#check xoptimal i s r e a l l y optimal :
f o r m in range ( l en (A) ) :

i f p r o d u i t s c a l a i r e (A[m] , xoptimal)<b [m] :
p r in t (” not optimal ” ,m,A[m] , xoptimal , p r o d u i t s c a l a i r e (A[m] , xoptimal ) , b [m] )
qu i t ( )

return A, b , xoptimal

import random

def randomVector (N) :
output = [ ]
f o r n in range (N) :

output . append ( Fract ion ( random . randint (−100 ,100)))
return output

def randomMatrix (M,N) :
mymatrix = [ ]
f o r m in range (M) :

mymatrix . append ( randomVector (N) )
return mymatrix

de f randomproblem (N,M) :
xoptimal = randomVector (N)

Aequal = randomMatrix (M,N)
bequal = a l l o ca t eVec to r (M)
f o r m in range (M) :

bequal [m] = p r o d u i t s c a l a i r e ( Aequal [m] , xoptimal )

Agreater = randomMatrix (M,N)
bgreate r = a l l o ca t eVec to r (M)
f o r m in range (M) :

i f e q u a l = p r o d u i t s c a l a i r e ( Agreater [m] , xoptimal )
bgreate r [m] = i f equa l−Fract ion ( random . randint (1 ,100) )

return Aequal+Agreater , bequal+bgreater , xoptimal

##############################################################
############################ MAIN ############################
##############################################################

rawA , rawb , rawxoptimal = randomproblem (10 ,30)

p r in t (rawA , rawb , rawxoptimal )

A, b , c , xoptimal , x = normal ize (rawA , rawb , rawxoptimal )
p r in t (A, b , c , xoptimal , x )

so lvenormal i zed (A, b , c , xoptimal , x )

p r in t(”###############################################################”)

rawA , rawb , rawxoptimal = cubeproblem (10)

pr in t (rawA , rawb , rawxoptimal )

A, b , c , xoptimal , x = normal ize (rawA , rawb , rawxoptimal )
p r in t (A, b , c , xoptimal , x )

so lvenormal i zed (A, b , c , xoptimal , x )
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