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Abstract

This short paper presents an algorithm which aims to solve generic
linear program (Ax ≥ b or min

Ax≥b
cx) using simple projections and call to a

sub solver dedicated to linear feasibility (Ax = 0, x > 0), recently, proven
to be a strongly polynomial problem thank to Chubanov algorithm.

Then, a complexity analysis states that this algorithm is strongly poly-
nomial in not degenerated cases.

Despite surely containing faults, this complexity analysis and this lin-
ear feasibility based algorithm call for a discussion.

1 Introduction

Interior point algorithms (e.g. [3]) are mainly the state of the art of linear
program solver. But, it is not known if interior point algorithms solve linear
program in strong polynomial time, and, [1] shows that major interior point
family do not. Inversely, linear feasibility can now be solved in strong polynomial
time thank to Chubanov algorithm [2]. But, the question about the possibility
to extend this algorithm to generic linear program has not been very explored.

This short paper focus on this way, and, presents an algorithm designed to
solve linear programming by solving a sequence of linear feasibility (section 2).
A complexity analysis (section 3) is provided and concludes that the algorithm
solves linear program in polynomial time on Q (i.e. it solves linear program in
a polynomial numbers of unitary operations read, write, test, +,−,×, / in Q).

Du to the importance of this apparent conclusion, this paper surely contains
faults for which I apologize. Yet, it calls for discussion and proof consolidation.
Notation : As classically, N,Q are the sets of integer and rational numbers,
∀I, J ∈ N\{0}, QI is the set of I dimensional vector of Q, and, MJ,I(Q) is the
set of matrix with J rows and I columns, with values in Q. U(QI) is the set
of normalized vector from QI (i.e. such that vT v = 1). U(MJ,I(Q)) will be
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the set of matrix from MJ,I(Q) whose rows are in U(QI) (only the rows, not
necessarily the columns). Also, if A ∈ MJ,I(Q), then, the null vector space of
A (i.e. the kernel) is written Ker(A) = {v ∈ QI/Av = 0}.

Less classically, integer index range would be omitted when no confusion is
possible, and, ∀i (range omitted), xi is i component of the vector (or i row of
a matrix). AS , bS will be the sub matrix/vector obtained when keeping only
rows/components s ∈ S. Also, if p and q are two vectors of QI , transposition is
omitted in scalar product i.e. pq would be pT q =

∑
i

pi × qi.

2 Algorithm

The algorithm relies on a two key requirements described in section 4: any linear
program is casted into a special class of linear program, and algorithm can call
a sub solver used to solve linear feasibility problem. So the algorithm decribed
here is mainly an iterative way to select sub solver queries.

2.1 Pseudo code

Let assume the input linear program is min
Ax≥b

cx with A ∈ U(MM,N (Q)), b ∈ QM ,

c ∈ U(QN ), Ac = 3
51, xstart being a trivial admissible point e.g. (1+ 5

3max
m

bm)c,

and, cx being bounded by 0. The pseudo code the algorithm is:

1. compute d = min
m

Amx− bm

2. compute D = {m / Amx− bm = d} the set of constraints at distance d

3. let v be the orthogonal projection of −c on Ker(AD)

4. if cv < 0, ADv = 0 (basically if v 6= 0)

(a) compute g = min
m/Amv<0

Amx−bm−d
−Amv

(b) let x = x+ gv and GO TO 1

5. call sub solver ∃?w/
(
AD
−c

)
w > 0

6. let z = x− 5d
3 c

7. if w exists

(a) w = 1
min
m∈D

Amw
w (min

m∈D
Amw is now 1) and h = min

m/Amw<0

Amz−bm
−Amw

(b) let x = z + h
4w

(c) GO TO 1

8. return z and the certificate
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2.2 Termination

2.2.1 Basic properties

Steps 1, 2, 5, 6, 8 are well defined.
Step 3 is well defined because D (step 2) can not be empty.
Now, by assumption cx is bounded i.e. ∀x/Ax ≥ b, cx ≥ 0. So, if there is

y such that cy < 0 and ∀m,Amy ≥ 0, then, one could produce an unbounded
admissible point x+ λy as A(x+ λy) ≥ Ax ≥ b and c(x+ λy) →

λ→∞
−∞. So, in

step 4 and 7 {m/Amv < 0} can not be empty.
So, all steps are well defined (at this point, it can do stupid thing or looping

but at least, it is well defined).

The algorithm is well defined.

In step 4, let m such that Amv < 0, seeing test leading to step 4 it implies
that m /∈ D, and so that Amx− bm > d by definition of d,D. So g > 0.

So, Amx−bm−d
−Amv

≥ g > 0 And, so Amx−bm−d
−Amv

Amv ≤ gAmv (product by a

negative). So, Amx+ gAmv − bm ≥ Amx+ Amx−bm−d
−Amv

Amv − bm = d > 0.
Also, if Amv ≥ 0, than Am(x+ gv)− bm ≥ Amx− bm ≥ d > 0.
In step 7, let m such that Amw < 0, seeing test leading to step 7 it implies

that m /∈ D, which implies that Amx − bm > d, and so that Amz − bm > 0 as
z = x− 5d

3 c and by assumption Amc = 3
5 . So h > 0.

Again, Amz+ 1
4hAmw−bm ≥ Amz+ 1

4
Amz−bm
−Amw

Amw−bm = 3
4 (Amz−bm) > 0

Also, if Amw = 0, Am(x+hw)−bm = Amx−bm > 0. And, if Amz−bm = 0,
Amw > 0 so Am(x+ hw)− bm = hAmw > 0.

So steps 4 and 7 make x to be in the inner space x/Ax > b. Then, z is
admissible because x is admissible and z being built from d is admissible if x is.
Let stress that by assumption Ac = 3

51 - moving along c decreases equally the
distance to each constraint - remember that every row and c are normalized.

The algorithm works with inner points, and, if not looping, outputs
an admissible point.

Now, obviously, all moves strictly decreases cx (because by construction
vc < 0 and cw < 0 and g, h 6= 0 - minimization excluding index from D).
Let assume the algorithm returns a non optimal admissible point. Then, the
step 5 just before returning should have return something. Indeed, let consider
θ = x∗+ cz

2 c−z with x∗ being a solution (i.e. optimal). As, x∗ verifies Ax∗ ≥ b,
let define ρ = x∗ + cz

2 c. Then, ρ verifies Aρ > b but still cρ = cz
2 < cz (because

cz > cx∗ otherwise it would have been a solution). So, c(ρ − z) > 0 and
AD(ρ−z) = ADρ > bD (since ADz = 0 and ADρ > b). So, θ = x∗+ cz

2 c−z was

a possible solution for the sub solver (precisely of

(
AD
−c

)
w ≥ 0 see lemma

from section 4 to extract a solution for sub solver).

The algorithm, if not looping, returns a solution.
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2.2.2 Breaking the loop

First, each step 4 leads to strictly increase D (from ensemble point of view)
because g is defined such that a new m will enter to D. And, D is bounded by
{1, ...,M}. So algorithm can not loop forever in steps 1, 2, 3, 4.

It can not happen more than M consecutive loops with steps 1, 2, 3,
4 only.

Now imagine algorithm reaches two time the step 5 with twice the same
value for D (in point x1 and x2). Then, let consider the point z1 and z2 from
step 4. Then, it holds both cz2 < cz1 and ADz2 = ADz1 = 0. So, step 3 should
at least have returned z2− z1, and, the algorithm should not have pass the step
4 when meeting x1.

Underlying idea is that algorithm explores the ker(AD) to increase D, then
when D is big enough, the algorithm moves bellow a corner of AD. As D was
big enough at this step, it means that projection on ker(AD) is null (ker(AD)
may be not null) and that D will never be reached again.

D can not be twice the same when entering step 5.

Yet, number of D is bounded by 2M . So it can not have more than 2M step
5 and no more than M consecutive loops 1, 2, 3, 4 + GO TO 1. So, it can not
happen more than M2M iterations.

The algorithm terminates.

3 Complexity analysis

3.1 Forgotten constraints

Let consider p(y, S) the result of

1. compute d = min
m∈S

Amy − bm

2. compute D = {m ∈ S / Amy − bm = d}

3. let v be the orthogonal projection of −c on Ker(AD)

4. if v = 0 returns ”null”, y,D

5. if {m ∈ S/Amv < 0} = ∅ return ”unbounded”, y,D, v

6. compute g = min
m∈S/Amv<0

Amy−bm−d
−Amv

7. let y = y + gv

8. GO TO 1
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p(y, S) represents the first part of the algorithm applied on the sub matrix
AS from y.

Let assume the main algorithm meets x, D in step 7.b and let write y =
z+ h

4w, then let consider p(y,D). This is what would happen by continuing the
main algorithm from y only considering AD.

p(y,D) can not return in step 4 (of p) because otherwise q the returned
point verifies q − 5d

3 c ∈ ker(AD) which is impossible otherwise x should not
have passed the step 4 of the algorithm. This is the basic argument of the
termination: ker(AD) has been totally explored before entering in step 5. Let
stress that q− 5d

3 c may not be an admissible point regarding Ax ≥ b but anyway,
this proves that one can build a point in ker(AD) so x should not have passed
the step 4 of the algorithm.

So p will finish by returning in step 5 (of p) - looping is impossible as D
increases strictly.

Let ∆ be the resulting D when leaving p algorithm. It means that projection
of −c on ker(A∆) is not null. So, ∆ 6= D (because if D is met in step 7 it means
again that projection of −c on ker(AD) is null).

For all x,D met in the main algorithm in step 7.b, let y = z + h
4w and

∆ built by p(y,D), then ∆ is a strict subset of D.

3.2 Breaking the loop earlier

In this subsection, I consider a (quite strong) not degenerated hypothesis:

Not degenerated hypothesis: For all x,D met in the main algorithm in
step 7.b, let y = z + h

4w and ∆ built by p(y,D), then ∀k ∈ D\∆, there do not
exist θ such that Akθ = bk, Aθ ≥ b, cθ < cz.

This hypothesis is that z (step 6 of the main algorithm) is corner from which
it is impossible to be closer to the constraint k ∈ D\∆ than from the constraint
kept in ∆. In other words, the idea is that if

• Ac = 3
51

• ∃w/Aw > 0, cw < 0

• @v/Av = 0, cw < 0

there is at least k such that @vk/Avk ≥ 0, cvk < 0 with in addition Akvk = 0.
In other words, if w goes away from all, then it goes away from one even

faster than from the other. This hypothesis is somehow related to the fact that
z is a maximal dimensionality vertex.

Now, let write xt, Dt be x,D the t times that algorithm enters in step 7.b,
then let write yt and ∆t the related y and ∆.

If k ∈ (Dt\∆t) ∩ Dt+τ , then let consider the projection of xt+τ on the
constraint k i.e. xt+τ − dt+τAk. By definition of dt+τ , Am(xt+τ − dt+τAk) ≥
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dt+τ − dt+τAmAk > 0 except for k = m for which Ak(xt+τ − dt+τAk) = 0. So,
one can build a direct contradiction to the not degenerated hypothesis

So, under the not degenerated hypothesis, ∀t, k ∈ Dt\∆t, ∀τ , k /∈ Dt+τ .

Under not degenerated hypothesis ∀t, τ , (Dt\∆t) ∩Dt+τ = ∅.

So ∆t can not be empty, ∆i ∩ ∆j = ∅ (because ∆t ⊂ Dt for all t and
∆t ∩Dt+τ = ∅) and, finally, ∪

t
∆t is bounded by {1, ...,M}.

So the sequence of Dt has at most M elements. Worse case is when each ∆t

are singleton.

Under not degenerated hypothesis, the algorithm can not do more
than M call to the subsolver.

As the algorithm can not do more than M loop without calling the subsolver,
and, as loops are either simple projection or call to a strongly polynomial time
algorithm, then the algorithm is strongly polynomial itself. More precisely, the
algorithm is polynomial on Q. Still, the size of the integer observed during the
algorithm may become exponential. But by considering +,−,×, / on Q to be
unitary operation (false assumption on real computer but acceptable in theory),
the algorithm is polynomial.

Under not degenerated hypothesis, the algorithm is
strongly polynomial.

4 Lemmas

This section provide lemmas about the required assumption on linear program
and the link between sub solver and Chubanov algorithm.

4.1 Linear feasibility and linear separability

[2] presents an algorithm to solve in strongly polynomial time the following
problem: ∃?x ∈ QN/Ax = 0, x > 0 under the assumption that A ∈ MM,N (Q)
has a rank of M .

Let A a matrix without any assumption. Let consider the matrix A =(
A −A −I

)
formed with A concat with −A concat with −I the opposite

of identity matrix.
First, this matrix has full rank M due to the identity block.
Then, applying the Chubanov algorithm (or any linear feasibility solver) to

this matrix A will lead (if a solution exists) to x1, x2, x3 such that

(
A −A −I

) x1

x2

x3

 = 0
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and

 x1

x2

x3

 > 0 So, let x = x1 − x2, it holds that Ax = Ix3 = x3 > 0. And,

if no solution exists, then Chubanov algorithm will provide a certificate.

Chubanov algorithm can be applied on a derived problem to solve
linear separability ∃?x ∈ QN/Ax > 0 with A ∈MM,N (Q)

(under no assumption on A, especially on the rank).

4.2 Normalizing linear program

If the linear program given as input is min
Ax≥b

cx and verifies A ∈ U(MJ,I(Q)),

b ∈ QM with i 6= j ⇒ (Ai, bi) 6= (Aj , bj), c ∈ U(QN ) and Ac = γ1 with γ > 0,
and, cx being bounded by 0, then the offered algorithm of section 2 can be
directly used.

Otherwise, the linear program has to be normalized with the following
scheme:

1. If the linear program is as an optimisation problem (e.g. max
Ax≤b,x≥0

cx), it

should first be converted into a inequality system A′x ≥ b′. This could be
done by combining primal and dual.

2. After that (or directly is input was an inequality system), an other nor-
malisation is performed to reach required property (here with γ = 3

5 )

3. the important point is that from any linear program, pre processing can
form an equivalent linear program meeting these requirements

4. In addition, if needed redundant rows are removed (trivial pre processing).
Currently, algorithm can just be updated to directly handle identical rows.
But this pre processing is that trivial that it is better to perform it: if
Ai = Aj after all normalisation, either bi = bj and row j can be removed
either the row with smaller b can be removed, because Aix ≥ bi > bj ⇒
Aix ≥ bj ...

4.2.1 Primal dual

The conversion of an optimisation linear program into a linear inequality system
is quite classical. A brief recall is provided bellow.

Let assume original goal is to solve max
Arawx≤braw,x≥0

crawx. It is well known

that the dual problem is min
AT

rawy≥craw,y≥0
brawy. Now, the primal dual is formed

by combining all constraints: Arawx ≤ braw, and, x ≥ 0, and, ATrawy ≥ craw,
and crawx = brawy, and finally, y ≥ 0.
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So, the problem max
Arawx≤braw,x≥0

crawx can be folded into Abigxbig ≥ bbig with

Abig =


−Araw 0
I 0
0 ATraw
0 I

craw −braw
−craw braw

 and bbig =


−braw

0
craw

0
0
0

.

4.2.2 Normalized primal dual error minimization

This normalisation step takes a linear program Γχ ≥ β as input, and, produces
an equivalent linear program min

Ax≥b
cx with A ∈ U(MJ,I(Q)), b ∈ QM , c ∈

U(QN ), and, Ac = 3
51, and, cx being bounded by 0.

It is sufficient to consider:

A =



4

5(
Γ1Γ1

2 +1)
Γ1

4

5(
Γ1Γ1

2 +1)

Γ1Γ1

2
4

5(
Γ1Γ1

2 +1)

3
5

... ... ...
4

5(
ΓMΓM

2 +1)
ΓM

4

5(
ΓMΓM

2 +1)

ΓMΓM

2
4

5(
ΓMΓM

2 +1)

3
5

0 4
5 0 3

5
0 − 4

5 0 3
5

0 0 4
5

3
5

0 0 − 4
5

3
5


and

b =



4

5(
Γ1Γ1

2 +1)
β1

...
4

5(
ΓMΓM

2 +1)
βM

0
0
0
0


, c =


0
...
0
0
1



First, the produced linear program is in the desired form: min
Ax≥b

cx with

A ∈ U(MJ,I(Q)), b ∈ QM , c ∈ U(QN ), and, Ac = 3
51.

Trivially, Ac = 3
51 by construction, and, all rows of A are normalized ei-

ther directly because ( 4
5 )2 + ( 3

5 )2 = 1, or, because of that, and the fact that,

( 1
ΓmΓm

2 +1
)2ΓmΓm + ( 1

ΓmΓm
2 +1

)2 (ΓmΓm)2

4 + ( 1
ΓmΓm

2 +1
)2 is ( 1

ΓmΓm
2 +1

)2× (ΓmΓm +

(ΓmΓm)2

4 + 1) which is ( 1
ΓmΓm

2 +1
)2 × (ΓmΓm

2 + 1)2 which is 1 !

Then, the 4 last constraint prevent xN+3 to be negative so cx is well bounded
by 0. Indeed, if xN+2 + xN+3 ≥ 0 and −xN+2 + xN+3 ≥ 0, then xN+3 ≥ 0),
and, when xN+3 = 0 these constraints force xN+1 = xN+2 = 0 because the
three constraints xN+2 + xN+3 ≥ 0, −xN+2 + xN+3 ≥ 0, and xN+3 = 0 can be
reduced to xN+2 ≥ 0 and −xN+2 ≥ 0 which force xN+2 = 0.
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Now, the goal is to minimize cx = xN+3. So, either the minimum is
xN+3 = 0 or either there is no such solution. In the case Ax ≥ b, xN+3 = 0, it
holds xN+1 = xN+2 = xN+3 = 0, and, x1, ..., xN = χ with 4

5( ΓmΓm
2 +1)

Γmχ ≥
4

5( ΓmΓm
2 +1)

βm. But this last inequality can be reduced to Γmχ ≥ βm. So, if

the solution of the derived linear program is x with Ax ≥ b, xN+3 = 0, then
x1, ..., xN = χ is a solution of the original set of inequality.

And, inversely, if there is a solution χ, then, x = χ, 0, 0, 0 is a solution of the
optimisation problem (because xN+3 is bounded by 0).

So, this derived linear program is equivalent to the inequality set.

For any linear program, it is possible to create a derived form
meeting the requirement of the offered algorithm.

All this normalization is entirely done in Q i.e. no square root are
needed.

Discussion

Seeing the very important result, this short paper claims to prove, it surely
contains some wrong statements.

But, this short paper calls for a discussion. First, because, the offered algo-
rithm behaves like expected in toy numerical experiments (including Klee-Minty
cube). And, because, this way of solving linear program may be updated to
reach strong polynomial time algorithm for linear programming.
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