
HAL Id: hal-00722920
https://hal.science/hal-00722920v11

Preprint submitted on 15 Mar 2019 (v11), last revised 16 Jan 2023 (v38)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving generic linear program using Chubanov
algorithm and simple projections.

Adrien Chan-Hon-Tong

To cite this version:
Adrien Chan-Hon-Tong. Solving generic linear program using Chubanov algorithm and simple pro-
jections.. 2019. �hal-00722920v11�

https://hal.science/hal-00722920v11
https://hal.archives-ouvertes.fr

Solving generic linear program using Chubanov

algorithm and simple projections.

Adrien CHAN-HON-TONG
ONERA - université paris sud

March 15, 2019

Abstract

This short article presents an algorithm which solves generic linear
program (Ax ≥ b or min

Ax≥b
cx) using simple projections and call to a sub

solver dedicated to linear feasibility (Ax = 0, x > 0). Such link could be
interesting since linear feasibility can be solved in strong polynomial time
thank to Chubanov algorithm.

1 Introduction

Interior point algorithms (e.g. [3]) are mainly the state of the art of linear
program solver.

Yet, interior point algorithms may not allow to solve linear program in strong
polynomial time (indeed, [1] shows that major interior point family can not).
This drawback is, may be, linked to the fact that these algorithms work directly
at raw numerical level, and, hence scaling the linear program may result in
different move of the interior point.

This short article presents an algorithm which prevents sensibility to raw
numerical level by forcing interior point moves to be matched with a set of
constraints. In addition, this algorithm links generic linear program and linear
feasibility. This last point could be interesting since linear feasibility can be
solved in strong polynomial time thank to Chubanov algorithm [2].

Indeed, the offered algorithm only performs two kind of operations: com-
puting simple projections or calling a sub solver on a linear feasibility problem.
Thus, thank to Chubanov algorithm [2], his complexity is directly linked to the
number of call of the sub solver: a strong polynomial bound on the number of
linear feasibility queries will lead to a strong polynomial algorithm. Such bound
is unfortunately not established in this short paper. But, this kind of algorithm
could be interesting as one of them may reach such property.

Next section recalls some useful lemmas, and, presents a pre processing
required for the main algorithm presented in section 3. Termination of the
algorithm is proven in section 4 before perspectives.

1

Notation

In this paper, Q is the set of rational number, QI the set of I dimensional vector
of Q, .i will design the component i of the vector. MJ,I(Q) is the set of matrix
with J rows and I columns, with values in Q.

Less classically, if p and q are two vectors of QI , then pq will be pT q =∑
n
pn × qn (transposition is omitted in scalar product). Also, U(QI) will be the

set of normalized vector from QI i.e. v ∈ U(QN) ⇔ vv = 1. U(MJ,I(Q)) will
be the set of matrix from MJ,I(Q) whose rows are in U(QI).

2 Some useful lemmas

2.1 Linear feasibility and linear separability

[2] presents an algorithm to solve in strongly polynomial time the following
problem:

∃?x ∈ QN/Ax = 0, x > 0

under the assumption that A ∈MM,N (Q) has a rank of M .
In this short paper, raw linear feasibility solver can not be used directly.

This is why a minor but required lemma is introduced here.
Chubanov algorithm can be applied on a derived problem to solve
linear separability ∃?x ∈ QN/Ax > 0 under no assumption.

Indeed, let A ∈ MM,N (Q) (without requiring anything about the rank).
The goal is to solve ∃?x ∈ QN/Ax > 0.

It is sufficient, for that, to consider the matrix A =
(
A −A −I

)
formed

with A concat with −A concat with −I the opposite of identity matrix.
First, this matrix has full rank M due to the identity block.
Then if a solution exists, applying the Chubanov algorithm (or any linear

feasibility solver) to this matrix A will lead to x1, x2, x3 such that

(
A −A −I

) x1

x2

x3

 = 0

and

 x1

x2

x3

 > 0 So, x = x1 − x2 and Ax = Ix3 = x3 > 0. And, if no solution

exists, then Chubanov algorithm will provide a certificate.

2.2 Normalizing linear program

If the linear program given as input is min
Ax≥b

cx and verifies A ∈ U(MJ,I(Q)),

b ∈ QM , c ∈ U(QN) and Ac = γ1 with γ > 0, and, cx being bounded by 0, then
the offered algorithm can be directly used.

Otherwise, the linear program has to be normalized with the following
scheme:

2

1. If the linear program is as an optimisation problem (e.g. max
Ax≤b,x≥0

cx), it

should first be converted into a inequality system A′x ≥ b′. This could be
done by combining primal and dual.

2. After that (or directly is input was an inequality system), an other nor-
malisation is performed to reach required property (here with γ = 3

5)

3. the important point is that from any linear program, pre processing can
form an equivalent linear program meeting these requirements

2.2.1 Primal dual

The conversion of an optimisation linear program into a linear inequality system
is quite classical. A brief recall is provided bellow.

Let assume original goal is to solve max
Arawx≤braw,x≥0

crawx. It is well known

that the dual problem is min
AT

rawy≥craw,y≥0
brawy. Now, the primal dual is formed

by combining all constraints: Arawx ≤ braw, and, x ≥ 0, and, ATrawy ≥ craw,
and crawx = brawy, and finally, y ≥ 0.

So, the problem max
Arawx≤braw,x≥0

crawx can be folded into Abigxbig ≥ bbig with

Abig =


−Araw 0
I 0
0 ATraw
0 I

craw −braw
−craw braw

 and bbig =


−braw

0
craw

0
0
0

.

2.2.2 Normalized primal dual error minimization

This normalisation step takes a linear program Γχ ≥ β as input, and, produces
an equivalent linear program min

Ax≥b
cx with A ∈ U(MJ,I(Q)), b ∈ QM , c ∈

U(QN), and, Ac = 3
51, and, cx being bounded by 0.

All this normalization is entirely done in Q i.e. no square
root are needed.

It is sufficient to consider:

A =



4

5(
Γ1Γ1

2 +1)
Γ1

4

5(
Γ1Γ1

2 +1)

Γ1Γ1

2
4

5(
Γ1Γ1

2 +1)

3
5

...
4

5(
ΓMΓM

2 +1)
ΓM

4

5(
ΓMΓM

2 +1)

ΓMΓM

2
4

5(
ΓMΓM

2 +1)

3
5

0 4
5 0 3

5
0 − 4

5 0 3
5

0 0 4
5

3
5

0 0 − 4
5

3
5



3

and

b =



4

5(
Γ1Γ1

2 +1)
β1

...
4

5(
ΓMΓM

2 +1)
βM

0
0
0
0


, c =


0
...
0
0
1



First, the produced linear program is in the desired form: min
Ax≥b

cx with

A ∈ U(MJ,I(Q)), b ∈ QM , c ∈ U(QN), and, Ac = 3
51.

Trivially, Ac = 3
51 by construction, and, all rows of A are normalized ei-

ther directly because (4
5)2 + (3

5)2 = 1, or, because of that, and the fact that,

(1
ΓmΓm

2 +1
)2ΓmΓm + (1

ΓmΓm
2 +1

)2 (ΓmΓm)2

4 + (1
ΓmΓm

2 +1
)2 is (1

ΓmΓm
2 +1

)2× (ΓmΓm +

(ΓmΓm)2

4 + 1) which is (1
ΓmΓm

2 +1
)2 × (ΓmΓm

2 + 1)2 which is 1 !

Then, the 4 last constraint prevent xN+3 to be negative so cx is well bounded
by 0. Indeed, if xN+2 + xN+3 ≥ 0 and −xN+2 + xN+3 ≥ 0, then xN+3 ≥ 0),
and, when xN+3 = 0 these constraints force xN+1 = xN+20 because the three
constraints xN+2+xN+3 ≥ 0, −xN+2+xN+3 ≥ 0, and xN+3 = 0 can be reduced
to xN+2 ≥ 0 and −xN+2 ≥ 0 which force xN+2 = 0.

Now, the goal is to minimize cx = xN+3. So, either the minimum is
xN+3 = 0 or either there is no such solution. In the case Ax ≥ b, xN+3 = 0, it
holds xN+1 = xN+2 = xN+3 = 0, and, x1, ..., xN = χ with 4

5(ΓmΓm
2 +1)

Γmχ ≥
4

5(ΓmΓm
2 +1)

βm. But this last inequality can be reduced to Γmχ ≥ βm. So, if

the solution of the derived linear program is x with Ax ≥ b, xN+3 = 0, then
x1, ..., xN = χ is a solution of the original set of inequality.

And, inversely, if there is a solution χ, then, x = χ, 0, 0, 0 is a solution of the
optimisation problem (because xN+3 is bounded by 0).

So, this derived linear program is equivalent to the inequality set.

3 Algorithm

3.1 Key points

Before introducing the algorithm, I present here some key points.

• The most interesting point is that this algorithm links generic linear pro-
gram to linear feasibility. Indeed, the algorithm is very simple, all diffi-
culties being forwarded into the linear feasibility solver (e.g. Chubanov
algorithm [2]).

• To delegate difficulties to the linear feasibility solver, the algorithm keeps
the current point on the interior of the admissible space (Ax > b). The

4

current point performs trivial greedy move when such trivial move exists,
or, call the sub solver to find a jump move. All moves keep the current
point into the inner space (Ax > b). Currently, working in the inner space
may not be that required because one could then project on the border
of the admissible space (Ax = b). Yet, working on the inner space is even
easier.

• The fact to work in the inner space is made possible because Ac > 0.
Indeed, Ac > 0 allows to build a trivial admissible point λc for some large
λ, and, allows to build an inner point for any admissible point (if Ax = b,
A(x + εc) > b). More precisely, if x∗ is optimal and x an admissible non
optimal point then there exist an inner point better than x (see section
4). The algorithm even assumes Ac = 3

51 for convenience.

• Each call to the sub solver is matched with a specific vertex/corner of the
admissible space. Yet, very differently from the simplex algorithm, moves
of the current point are not linked to moves along edges. Precisely, between
two consecutive calls to the sub solver, the sets of saturated constraint can
be completely disjoint (most probably reduced to a single point depending
in some implementation detail). So the main idea of the algorithm is not
to explore vertex/corner like in simplex, but, mostly to explore faces. And
the key point is that there is an exponential number of vertex but a linear
number of faces. Currently, in numerical toy experiments, the algorithm
definitely rejects one constraint between two call of the sub solver.

• Unfortunately, in this short paper, no bounds are proven on the number
of explored vertex/corner, neither on the rejection of a face between two
consecutive calls. So this algorithm despite being very different from the
simplex may have similar drawback of exploring an exponential number of
vertex/corner. I only prove that the algorithm terminates (this is easy as
the set of constraints during a sub solver call can not be twice the same).
But, maybe such kind of algorithm that links generic linear program to
linear feasibility can be updated to have a polynomial number of calls to
the sub solver (then such algorithm may be strongly polynomial by using
Chubanov algorithm as sub solver).

5

3.2 Pseudo code

N and M are the numbers of variables and constraints. The input linear pro-
gram is min

Ax≥b
cx with A ∈ U(MJ,I(Q)), b ∈ QM , c ∈ U(QN), and, Ac = 3

51,

and, cx being bounded by 0.
The pseudo code the algorithm (which starts from a trivial interior point x

e.g. (1 + 5
3max

m
bm)c) is:

1. compute d = min
m

Amx− bm

2. compute D the set of planes at distance d

3. compute p = max
Am(x−λc)≥bm,c(x−λc)≥0

λ

4. z = x− pc

5. let v be the projection of −c on Ker(AD) (may result in cv < 0, ADv = 0)

6. if v 6= 0

(a) compute λ: min
m/∈D/Amv<0

Amx−bm−d
−Amv

(b) x← x+ λv

(c) GO TO 1

7. call Chubanov algorithm to find θ such that

(
AD
−c

)
θ > 0

8. if no such θ exists, then return x and the certificate

9. find δ > 0 such that A(z + δθ) > b (by construction c(z + δθ) < cz)

10. x← z + δθ

11. GO TO 1

4 Termination of the algorithm

First, let stress that all moves (steps 6.b or 10) are either not defined or maintain
the current point in the inner space ({x/Ax > b}). Also, trivially cx is decreasing
during the algorithm (as 6.b and 10 decrease cx by construction of v and θ if
defined).

6

4.1 The algorithm is well defined

Steps 1, 2, 3, 4, 5, 8, 10, 11 are trivially well defined assuming that all points
are still in the admissible space i.e. {x/Ax ≥ b}.

6.a the min is well defined because moving along v decreases the cost cx of x
(because v 6= 0) which is bounded by 0. So this move can not be done for ever,
and, so, necessarily some plane with meet the ball of center x and radius d - it
will be added to D. These moves are generalization of bisector moves, but, are
very simple projections.

Step 7 is the call to the sub solver (e.g. Chubanov algorithm). The set
of saturated constraint on z is exactly D because Ac = 3

51 (moving along c
decreases equally the distance to each constraint - remember that every row
and c are normalized !).

If z is not the solution then step 7 should return something. Indeed, let
consider θ = x∗ + cz

2 c − z with x∗ being the optimal. As, x∗ the solution
verifies Ax∗ ≥ b, let define ρ = x∗ + cz

2 c. Then, ρ verifies Aρ > b but still
cρ = cz

2 < cz (because cz > cx∗ otherwise it would have been a solution). So,
c(ρ− z) > 0 and AD(ρ− z) = ADρ > bD (since ADz = 0 and ADρ > b). So, I
have proven that θ = x∗+ cz

2 c− z is a possible solution. Of course, there is NO
reason that the solution returned by the call to the Chubanov algorithm will be
θ = x∗ + cz

2 c− z (if so, one call will be enough). But, still, if a solution exists,
Chubanov algorithm should return one.

So either there is no solution and 8 leads to termination, either 9 will be
possible seing the definition of θ: for all m /∈ D, Amz > bm and for all m ∈ D,
Amz = bm but Amθ > 0. So finding δ is possible (in O(NM) just by looping
over all constraints).

So the algorithm is well defined and all moves are in the inner space ({x/Ax >
b}).

4.2 Breaking the loop

The set D can not have twice the same value in step 7. Indeed, if algorithm
reaches two time in step 7 in point x1 and x2 with a common value for D, then,
let consider the point z1 and z2 from step 4. Then, it holds both cz2 < cz1 and
ADz2 = ADz1 = 0. So, the algorithm should not have pass the step 6 when
meeting x1.

In other words, algorithm explores the ker(AD) to increase D, then when
D is big enough, the algorithm moves bellow a corner of AD. As D was big
enough at this step, it means that the ker(AD) is nul and that D will never be
reached again.

So, it can not have more than 2M step 7.
And, step 6.b strictly increases D which is bounded by {1, ...,M}. So, the

algorithm can not perform more than M2M loops. Each loop taking less than
a call of the Chubanov algorithm (each of them being strongly polynomial).

7

5 Perspectives

This short paper presents an algorithm which solves generic linear program
(max
Ax≤b,x≥0

cx) by solving a sequence of linear feasibility ones (Ax = 0, x > 0).

Unfortunately, this short paper does not prove any bound on the size of this
sequence.

So, at this point, this short paper is not very interesting. At most, this kind
of algorithm could be an interesting way toward strongly polynomial algorithm
for linear program and/or a way to link linear feasibility and generic linear
program.

Yet, the offered algorithm exhibits interesting behaviour on toy numerical
experiments, and, does not rely on vertex exploration like the simplex (but
rather in face exploration).

This idea of face exploration is interesting. Currently, here, I prove D can
not be twice the same when reaching step 7. But there is a lot of D... But,
the underlying idea behind this idea of face exploration is that if the set D
corresponding to the x is two time the same just after a step 10, then there
is chance that all the following steps 6 should be the same. This would lead to
the same D in the next step 7 which has been proven impossible. So, the not
proven idea is that D can not be twice the same just after a step 10. Yet, just
after the step 10, there is large chance that D is a singleton. Indeed, in step
7, the sub solver looks for ADθ > 0 and not for ADθ = µ1. So, Amθ have no
reason to be equal, and thus, step 10 should lead to a singleton.

So, if all these not proven statements were true, it would mean that only
M + 1 steps 10 are possible...

Unfortunately, step 7 can select θ such that lot of m ∈ D have same Amθ
even if just required to produce ADθ > 0 (this way the number of D after step
10 is still large).

References

[1] Xavier Allamigeon, Pascal Benchimol, Stéphane Gaubert, and Michael
Joswig. Log-barrier interior point methods are not strongly polynomial.
SIAM Journal on Applied Algebra and Geometry, 2(1):140–178, 2018.

[2] Sergei Chubanov. A polynomial projection algorithm for linear feasibility
problems. Mathematical Programming, 153(2):687–713, 2015.

[3] Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algo-
rithms in convex programming, volume 13. Siam, 1994.

8

Fichier : /home/achanhon/Bureau/1pour100/source/main.py Page 1 sur 5

from __future__ import print_function

##
################################## MAIN ALGORITHM
##################################
##

from fractions import Fraction

##################### REQUIRED BASIC LINEAR ALGEBRA FUNCTIONS #####################

def combinaisonlineaire(u,l,v):
 w = []
 for i in range(len(u)):
 w.append(u[i]+l*v[i])
 return w

def allocateVector(N):
 output = []
 for n in range(N):
 output.append(Fraction())
 return output

def produitscalairevecteur(l,v):
 return combinaisonlineaire(allocateVector(len(v)),l,v)

def produitscalaire(u,v):
 w = Fraction()
 for i in range(len(u)):
 w+=u[i]*v[i]
 return w

def allocateVector(N):
 output = []
 for n in range(N):
 output.append(Fraction())
 return output

def projection(u, BOG):
 pu = allocateVector(len(BOG[0]))
 for v in BOG:
 pu=combinaisonlineaire(pu,produitscalaire(u,v)/produitscalaire(v,v),v)
 return pu

def gramschimdBOG(H_):
 H = [h.copy() for h in H_ if produitscalaire(h,h) != Fraction()]
 BOG = []
 while len(H)>0:
 BOG.append(H.pop())
 for i in range(len(H)):
 H[i] = combinaisonlineaire(H[i],Fraction(-1),projection(H[i],BOG))
 H = [h for h in H if produitscalaire(h,h) != Fraction()]
 return BOG

##################### ALGORITHM #####################

def solvenormalized(A,b,c,xoptimal,x):
 M = len(A)
 N = len(A[0])

 while True:
 print(x)

 d = produitscalaire(A[0],x)-b[0]
 for m in range(M):
 if produitscalaire(A[m],x)-b[m]<d:

Fichier : /home/achanhon/Bureau/1pour100/source/main.py Page 2 sur 5

 d = produitscalaire(A[m],x)-b[m]

 if d<Fraction():
 print("d<Fraction()")
 quit()
 if d==Fraction() and produitscalaire(x,c)!=produitscalaire(xoptimal,c):
 print("d==Fraction() and produitscalaire(x,c)!
=produitscalaire(xoptimal,c)")
 quit()
 print(d)

 D = []
 for m in range(len(A)):
 if produitscalaire(A[m],x)-b[m]==d:
 D.append(m)
 print(D)

 if produitscalaire(x,c)==produitscalaire(xoptimal,c):
 quit()

 projectionOnVect = projection(produitscalairevecteur(Fraction(-1),c),
gramschimdBOG([A[m].copy() for m in D]))
 projectionOnKer =
combinaisonlineaire(produitscalairevecteur(Fraction(-1),c),Fraction(-1),projectionOnVect)

 for m in D:
 if produitscalaire(A[m],projectionOnKer)!=Fraction():
 print("produitscalaire(A[m],projectionOnKer)!=Fraction()")
 quit()
 if produitscalaire(c,projectionOnKer)>Fraction():
 print("produitscalaire(c,projectionOnKer)>Fraction()")
 quit()
 if produitscalaire(c,projectionOnKer)==Fraction() and
produitscalaire(projectionOnKer,projectionOnKer)!=Fraction():
 print("produitscalaire(c,projectionOnKer)==Fraction() and
produitscalaire(projectionOnKer,projectionOnKer)!=Fraction()")
 quit()

 v = projectionOnKer
 print(v)

 if produitscalaire(v,v)!=Fraction():
 candidate = []
 for m in range(M):
 if produitscalaire(v,A[m])<Fraction():
 currentdir = produitscalaire(A[m],x)-b[m]
 desireddir = d
 move = -(currentdir-desireddir)/produitscalaire(v,A[m])
 candidate.append(move)

 if candidate == []:
 print("candidate == []")
 quit()

 move = min(candidate)
 if move == Fraction():
 print("move == Fraction()")
 quit()

 x = combinaisonlineaire(x,move,v)
 print("### bisector move ###")
 continue

 y =combinaisonlineaire(x, -d/produitscalaire(A[0],c) ,c)

 if produitscalaire(y,c)==Fraction():

Fichier : /home/achanhon/Bureau/1pour100/source/main.py Page 3 sur 5

 x = y
 print("done")
 continue

 optANDc = combinaisonlineaire(xoptimal,produitscalaire(y,c)/Fraction(2),c)
 y09 = produitscalairevecteur(Fraction(999,1000),y)
 simulateChubanov = combinaisonlineaire(y09,Fraction(1,1000),optANDc)
 x = optANDc
 print("### chubanov jump ###")
 continue

##
################################## PRE PROCESSING
##################################
##

def allocateMatrix(M,N):
 mymatrix = []
 for m in range(M):
 mymatrix.append(allocateVector(N))
 return mymatrix

def primaldual(rawA,rawb,rawc):
#primal: max {rawc rawx / rawA rawx<= rawb, rawx>=0}
#dual: min {rawb rawy / transpose(rawA) rawy>= rawc, rawy>=0}
#primal dual: {rawx / rawA rawx<=rawb, rawx>=0, transpose(rawA) rawy >=rawc,
rawy>=0, rawc rawx=rawb rawy} unfolded into A x >= b
 M = len(rawA)
 N = len(rawA[0])
 A = allocateMatrix(M+N+N+M+2,N+M)
 b = allocateVector(M+N+N+M+2)

 offsetY = N
 offset = 0
 for m in range(M):
 for n in range(N):
 A[m+offset][n] = -rawA[m][n]
 b[m+offset] = -rawb[m]

 offset += M
 for n in range(N):
 A[n+offset][n] = 1

 offset += N
 for n in range(N):
 for m in range(M):
 A[n+offset][m+offsetY] = rawA[m][n]
 b[n+offset] = rawc[n]

 offset += N
 for m in range(M):
 A[m+offset][m+offsetY] = 1

 for n in range(N):
 A[-2][n] = rawc[n]
 for m in range(m):
 A[-2][m+offsetY] = -rawb[m]

 for n in range(N):
 A[-1][n] = -rawc[n]
 for m in range(m):
 A[-1][m+offsetY] = rawb[m]

 return A,b

def normalize(rawA, rawb, rawxoptimal):

Fichier : /home/achanhon/Bureau/1pour100/source/main.py Page 4 sur 5

#input rawA rawx >= rawb
#return A,b,c such that min{cx / Ax>=b} if equivalent
#+ A is normalized, c is normalized, cx is 0 bounded, Ac = 3/4 vector(1)
 M = len(rawA)
 N = len(rawA[0])
 A = allocateMatrix(M+4,N+3)
 b = allocateVector(M+4)
 c = allocateVector(N+3)
 c[-1] = Fraction(1)

 normRawA = allocateVector(M)
 normRawAtrick = allocateVector(M)
 for m in range(M):
 normRawA[m] = produitscalaire(A[m],A[m])
 normRawAtrick[m] = normRawA[m]/Fraction(2)+Fraction(1)

 for m in range(M):
 for n in range(N):
 A[m][n] = rawA[m][n]*Fraction(4,5)/normRawAtrick[m]
 A[m][-3] = normRawA[m]*Fraction(4,5*2)/normRawAtrick[m]
 A[m][-2] = Fraction(4,5*2)/normRawAtrick[m]
 A[m][-1] = Fraction(3,5)
 b[m] = rawb[m]*Fraction(4,5)/normRawAtrick[m]

 A[-4][-3] = Fraction(4,5)
 A[-4][-1] = Fraction(3,5)
 A[-3][-3] = -Fraction(4,5)
 A[-3][-1] = Fraction(3,5)
 A[-2][-2] = Fraction(4,5)
 A[-2][-1] = Fraction(3,5)
 A[-1][-2] = -Fraction(4,5)
 A[-1][-1] = Fraction(3,5)

 xoptimal = allocateVector(N+3)
 for n in range(N):
 xoptimal[n] = rawxoptimal[n]

 #check x solution
 if produitscalaire(c,xoptimal)!=Fraction():
 print("produitscalaire(c,xoptimal)!=Fraction()")
 quit()
 for m in range(M):
 if produitscalaire(A[m],xoptimal)<b[m]:
 print("produitscalaire(A[m],xoptimal)<b[m]")
 quit()

 x = allocateVector(N+3)
 x[-1] = max(b)+1
 x[-1] *= Fraction(5,3)
 return A,b,c,xoptimal,x

##
################################## TOY EXPERIMENT
##################################
##

import random

def randomVector(N):
 output = []
 for n in range(N):
 output.append(Fraction(random.randint(-100,100)))
 return output

def randomMatrix(M,N):
 mymatrix = []

Fichier : /home/achanhon/Bureau/1pour100/source/main.py Page 5 sur 5

 for m in range(M):
 mymatrix.append(randomVector(N))
 return mymatrix

def randomproblem(N,M):
 xoptimal = randomVector(N)

 Aequal = randomMatrix(M,N)
 bequal = allocateVector(M)
 for m in range(M):
 bequal[m] = produitscalaire(Aequal[m],xoptimal)

 Agreater = randomMatrix(M,N)
 bgreater = allocateVector(M)
 for m in range(M):
 bgreater[m] = produitscalaire(Agreater[m],xoptimal)-
Fraction(random.randint(1,100))

 return Aequal+Agreater,bequal+bgreater,xoptimal

#def cubeproblem(N):
twopower = allocateVector(N)
twopower[0]=2
for n in range(1,N):
twopower[n] = Fraction(2)*twopower[n-1]

b = allocateVector(N)
b[0] = Fraction(5)
for n in range(1,N):
b[n] = Fraction(5) * b[n-1]

c = twopower[::-1]

A = allocateMatrix(N,N)
for n in range(2,N):
for k in range(n):
A[n][k] = twopower[n-k]
A[n][n] = 1

return A,b,c

rawA,rawb,rawxoptimal = randomproblem(10,10)
print(rawA,rawb,rawxoptimal)

A,b,c,xoptimal,x = normalize(rawA,rawb,rawxoptimal)
print(A,b,c,xoptimal,x)

solvenormalized(A,b,c,xoptimal,x)

