
HAL Id: hal-00722920
https://hal.science/hal-00722920v10

Preprint submitted on 7 Feb 2019 (v10), last revised 16 Jan 2023 (v38)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving linear program with Chubanov queries and
bisection moves.
Adrien Chan-Hon-Tong

To cite this version:
Adrien Chan-Hon-Tong. Solving linear program with Chubanov queries and bisection moves.. 2019.
�hal-00722920v10�

https://hal.science/hal-00722920v10
https://hal.archives-ouvertes.fr

Solving linear program with Chubanov queries

and bisection moves.

Adrien CHAN-HON-TONG
ONERA - université paris sud

January 2019

Abstract

This short article focus on the link between linear feasibility and
generic linear program. An algorithm is presented to solve generic linear
program using linear feasibility queries and working at constraint level in-
stead of raw values level. Even if the number of required linear feasibility
queries is not established, this algorithm may be especially interesting,
since, thank to Chubanov algorithm, there is a strongly polynomial time
algorithm to solve linear feasibility problem.

1 Introduction

Interior point algorithms (e.g. [3]) are mainly the state of the art to solve lin-
ear program. Yet, interior point algorithms have two drawbacks. First, these
algorithms work directly at raw values level. This way, the moves of the cur-
rent point can not directly be matched with a set of constraints. In addition,
these algorithms can not take advantage of, for example, Chubanov algorithm
[2] which provides a strongly polynomial time algorithm for linear feasibility
problem.

In this short paper, the focus is given to an algorithm which has not these
two drawbacks. The algorithm explicitly works at constraint level and explicitly
solves generic linear program by solving a set of linear feasibility problems. This
can be done for example with Chubanov algorithm.

This way, this algorithm is interesting to link linear feasibility to generic
linear program. And, it may also be an interesting way to look for a strongly
polynomial time algorithm to solve generic linear program (especially, seeing
that [1] shows that major interior point family is not). Indeed, such property
would directly result from a number of Chubanov queries bounded by a poly-
nomial in the size of the problem. Such bound is absolutely not established in
this short paper. But, maybe, this kind of algorithm may be updated to reach
such property.

1

2 Some useful lemmas

2.1 Linear feasibility and linear separability

First of all, [2] allows to solve in strongly polynomial time the following problem:

∃?x ∈ QN/Ax = 0, x > 0

under the assumption that A ∈MM,N (Q) has a rank of M . In this short paper,
raw linear feasibility can not be used directly. This is why a minor but required
lemma is introduced here.
Chubanov algorithm can also be used to solve linear separability.

Indeed, with a simple trick, Chubanov algorithm can be used to solve (at
least, under the assumption that some solution exists):

∃?x ∈ QN/Ax > 0

with any A ∈MM,N (Q).
It is sufficient, for that, to consider the matrix A =

(
A −A −I

)
formed

with A concat with −A concat with −I the identity matrix. Applying the
Chubanov algorithm to this matrix A will lead to x1, x2, x3 such that

(
A −A −I

) x1

x2

x3

 = 0

and

 x1

x2

x3

 > 0 So, x = x1 − x2 and Ax = Ix3 = x3 > 0.

Let note that the rank is obviously M as there is a identity bloc. This is
this routine i.e. solving ∃?x ∈ QN/Ax > 0 that why be required in the offered
algorithm. (It will never be called without be sure that a solution exist.)

2.2 Dealing with all possibles linear programs

The offered algorithm assumes that the input linear program meet some re-
quirements. Yet, these requirements do not restrict generality as from any
linear program, one can form a derived linear program meeting the requirement
and whose solution contains solution of the original one. This will be presented
here.

In this short article, transposition is omitted in scalar product: if p, q are 2
vectors pq corresponds to pT q =

∑
n
pn × qn.

2.2.1 The working form

Definition of the working form: in this short paper, the working form of a
linear program will be:

2

• min
x/Ax≥b

cx with A ∈MM,N (Q), b ∈ QM and c ∈ QN

• both c and row of the matrix A are normalized i.e. cc = 1 and for all m,
AmAm = 1

• ∃γ > 0 such with Ac > γ1

– it implies that from any point x belonging to the admissible space,
moving along c increases equally the distance to all constraints

– it implies that there is a non empty admissible space and a trivial
solution (x = λc for λ� 1)

• and with x being an optimal solution iif Ax ≥ b and cx = 0

2.2.2 overview of the processing to meet requirement

for any linear program, it is possible to form an equivalent linear
program in working form.

The generation of a derived linear program from a standard is a combina-
tion of classical tricks but this combination is absolutely not trivial due to the
specificity of the requirements of the offered algorithm. In one sentence, it is
about combining primal and dual twice plus using trick to normalize row and c.

Let review this derived linear program quickly than I will come back in each
part more precisely.

Let assume original goal is to solve max
Arawx≤braw,x≥0

crawx. It is well known

that the dual problem is min
AT

rawy≥craw,y≥0
brawy. Now, the primal dual is formed

by combining all constraints: Arawx ≤ braw, and, x ≥ 0, and, ATrawy ≥ craw,
and crawx = brawy, and finally, y ≥ 0.

This problem can be folded into a Abig matrix and a bbig as Abigxbig ≥ bbig.

Precisely Abig =


−Araw 0
I 0
0 ATraw
0 I

craw −braw
−craw braw

 and bbig =


−braw

0
craw

0
0
0

.

Now, let consider min
Abigxbig+z1≥bbig,z≥0

z, with z being just a scalar. This last

problem verifies Abigcbig > 0. But, there is a solution (x, y, z) with z = 0 iif
there exists a solution x, y to the original problem. This is not sufficient for the
algorithm which needs to be sure that a solution with z = 0 exists.

Yet, there is a simple solution: this process is done ones again (this is not
classical) leading to

min
Adoublexdouble+zdouble1≥bdouble,zdouble≥0

zdouble

Here Adouble is almost for Abig what Abig is for Araw.

3

Eventually, this new linear program is equivalent to the raw input (solving
the derived leads to the solution of the original) but this new linear program
is in working form. Also, it is sufficient to add little normalization to get the
other property.

Now, let review precisely each part of this processing !

2.2.3 Reaching normalized linear program

For any linear program Ax ≥ b in Q, one can form an equivalent Γχ ≥ β such
that for any m ΓmΓm = 1 in Q. Let notice that no square root are needed !

It is sufficient to consider

Γ =



1
A1A1

2 +1
A1

1

(
A1A1

2 +1)

A1A1

2
1

A1A1
2 +1

...
1

AMAM
2 +1

AM
1

(
AMAM

2 +1)

AMAM

2
1

AMAM
2 +1

0 1 0
0 −1 0
0 0 1
0 0 −1


,

and β =



1
A1A1

2 +1
b1

...
1

AMAM
2 +1

bM

0
0
0
0


.

Indeed, the two new variables added in χ are forced to be 0 by the 4 new
constraints. So, everything goes like if all added value was null. Yet, now all
rows of the matrix are normalized !

Indeed, norm of the row m is (1
AmAm

2 +1
)2AmAm + (1

AmAm
2 +1

)2 (AmAm)2

4 +

(1
A1A1

2 +1
)2 which is (1

AmAm
2 +1

)2×(AmAm+ (AmAm)2

4 +1) which is (1
AmAm

2 +1
)2×

(AmAm

2 + 1)2 which is 1 !

2.2.4 Keeping normalization when adding z variables

For any normalized linear program Ax ≥ b in Q, it is sufficient to form

Γ =


4
5A1

3
5 0

...
4
5AM

3
5 0

0 3
5

4
5

0 3
5 − 4

5

, and β =


4
5b1
...

4
5bM

0
0

 to get a new linear program

which is

• still normalized

4

• with (0 1 0) being normalized and with a common scalar product
with each row

• equivalent to the first linear program when the first added variable is 0

• this first added variable being forced to be greater than 0

Thus, if Ax ≥ b has a solution then min
Γχ≥β

(0 1 0)χ will find this solution.

If Ax ≥ b has no solution, then optimal value of the added variable will
not be 0, but, let notice that this new linear program is at least bounded and
resolvable.

2.2.5 Primal dual

The primal dual trick to convert a maximization/minimization into a set of
linear inequality is quite classical, and, will not be presented more than in 2.2.2.

Let notice than, since, 2.2.4 allows to form a bounded and resolvable linear
program, the idea of applying twice the primal dual is straightforward in some
way.

2.2.6 Summary of all these derivations

In 2.2.3, 2.2.4 and 2.2.5, some tricks are presented allowing to normalize linear
program, add a row with a common scalar product, and, finally form an equiva-
lent problem with property to have solution. Using these 3 tricks, one is always
able to form an equivalent linear program meeting the requirement of 2.2.1 from
any raw linear program.

Hence, there is no restriction to focus only on linear program meeting the
requirement of 2.2.1. For these ones, an algorithm based on Chubanov one is
presented in next section.

3 Algorithm

Consistently with previous section, N is the number of variables and M the
number of constraint (i.e. rows of matrix A), and, the problem is min cx

Ax≥b
with

assumptions described before. Transposition is still omitted in scalar product:
if p, q are 2 vectors pq corresponds to pT q =

∑
n
pn × qn.

Constraints, rows of matrix A and planes will be 3 ways to speak about the
same objects. If A is matrix (or sub matrix), Ker(A) is the sub space of all
vectors h such that Ah = 0 i.e. Ker(A) = {h/Ah = 0}.

3.1 Key points

Before introducing the algorithm, I present here some key points.

5

• The algorithm works on the interior of the admissible space like interior
point method. But, this algorithm remains close to the geometric structure
of the problem. Indeed, all moves of the current point are matched with
a sets of constraints.

• At any step of the algorithm only the closest constraints of the current
point have an influence.

• Precisely, the closest constraints of the current point push the point away
in order both to maintain the distance with the constraints and to decrease
cost function. Eventually, this leads to meet an other constraint that enter
the set of closest constraints.

• When no such move exists, the routine based on Chubanov algorithm is
called leading to a reboot of the set of closest constraints. (Ax ≥ 1 could
have a solution while Ax = 1 no.)

• The algorithm terminates because the set of closest constraint can not be
twice the same

3.2 Pseudo code

The pseudo code the algorithm which should start from a trivial interior point
x is:

1. compute d = min
m

Amx− bm

2. compute D the set of planes at distance d

3. compute p = max
Am(x−λc)≥bm,c(x−λc)≥0

λ

4. z = x− pc
5. check trivial termination

(a) if x is a solution (Ax ≥ b, cx = 0), return x

(b) if z is a solution, return z

6. let v be the projection of −c on Ker(AD) (may result in cv < 0, ADv = 0)

7. if v 6= 0

(a) compute λ: min
m/∈D/Amv<0

Amx−bm−d
−Amv

(b) x← x+ λv

(c) GO TO 1

8. call Chubanov routine to find θ such that

(
AD
−c

)
θ > 0

9. find δ > 0 such that A(z + δθ) > b (by construction c(z + δθ) < cz)

10. x← z + δθ

11. GO TO 1

6

4 Termination of the algorithm

From a point interior point, the coarse algorithm generates a set of
interior points plus one optimal point.
well defined :

First, all steps and moves are well defined.
Step 6 is just the projection of a vector on a sub space.
In step 7.a, moving along v decreases the cost cx of x (because v 6= 0) which

is obviously bounded as cx ≥ 0. So this move can not be done for ever, and, so,
necessarily some plane with meet the ball of center x and radius d - it will be
added to D. These moves are generalization of bisector move.

Step 8 should returns something if there is a possible solution. And, there
is at least one: let consider θ = x∗ + cz

2 c − z. Indeed, x∗ the solution (there is
one see 2.2) verifies Ax∗ ≥ b so let define ρ = x∗ + cz

2 c. Then, ρ verifies Aρ > b
but still cρ = cz

2 < cz (because cx∗ = 0 and cz > 0 otherwise z should have
been a solution in 5.b). So, c(ρ − z) > 0 and AS(ρ − z) = ASρ > bS (since
ASz = 0 and Aρ > b). So, I have proven that θ = x∗ + cz

2 c − z is a possible
solution. Of course, there is NO reason that the solution returned by the call to
the Chubanov algorithm will be θ = x∗ + cz

2 c−z (if so, one call will be enough).
But, still, a solution exists so Chubanov algorithm will return one.

Then, step 9 is obviously possible seeing the definition of S: for all m /∈ S,
Amz > bm and for all m ∈ S, Amz = bm but Amθ > 0. So finding δ is possible
(in O(NM) just by looping over all constraints).

So the algorithm is well defined (assuming that all points are still in the
admissible space i.e. {x/Ax ≥ b}.
Interior moves: All moves are designed to never go outside the interior of the
admissible space (i.e. {x/Ax > b}) - except to reach an optimal point. Indeed,
step 7.b keeps constant the distance to the constraint satisfaction of constraint.
And, step 11 starts from a corner and uses θ to increases satisfaction of the all
constraints forming the corner before meeting constraints outside the corner.
Decreasing cost:

Then, trivially cx is decreasing during the algorithm (as 7.b and 10 decrease
cx by construction of v and θ).
breaking the loop:

Then, the set D can not have twice the same value in step 9. Indeed, if
algorithm reaches two time in step 9 in point x1 and x2 with a common value
for D, then, let consider the point z1 and z2 from step 4. Then, it holds both
cz2 < cz1 and ADz2 = ADz1 = 0. So, the algorithm should not have pass the
step 6 when meeting x1.

In other words, algorithm explores the ker(AD) to increase D, then when
D is big enough, the algorithm moves bellow a corner of AD. As D was big
enough at this step, it means that the ker(AD) is nul and that D will never be
reached again.

So, it can not have more than 2M step 10. And, step 7.b strictly increases D
which is bounded by {1, ...,M}. So, the algorithm can not perform more than
M2M loops. Each loop taking less than a call of the Chubanov algorithm.

7

Is the algorithm strongly polynomial ?

The central question is the number of call of the Chubanov algorithm from step
9.

In numerical experimentation on toy example, it seems that any call of the
Chubanov algorithm leads to the definitive rejection of at least one constraint.

Even, if this statement is probably wrong in large dimension and/or complex
case, the underlying idea is that during step 11, the set of closest constraints
form a linear cone with a single vertex z and with the property that each linear
plane forming the cone is tangent to the ball of center x and radius d. Then,
the cone is cut by the plane {u/cu = cz}. And, the question is: could the point
x can meet all planes forming the cone without crossing neither other planes
nor {u/cu = cz}.

This question is interesting because complexity of the algorithm is more or
less the complexity of Chubanov call (which is strongly polynomial) times the
number of call of this routine which could be bounded by M if such statement
was true. So, this (probably wrong) statement is related to an hypothetical
strong polynomial time property of the algorithm running in O(M2) Chubanov
call plus O(NM2) elementary operations in Q.

More precisely, the source code of the toy experiment is provided in ap-
pendix. The generated linear program may be too simple, and implementation
of Chubanov as x∗ + cz

2 c− z helps the algorithm too much. Yet, more than 40
runs of the algorithm on none trivial size (N = 15 and M = 30), this rejection
effect has been always observed (even if surely false).

References

[1] Xavier Allamigeon, Pascal Benchimol, Stéphane Gaubert, and Michael
Joswig. Log-barrier interior point methods are not strongly polynomial.
SIAM Journal on Applied Algebra and Geometry, 2(1):140–178, 2018.

[2] Sergei Chubanov. A polynomial projection algorithm for linear feasibility
problems. Mathematical Programming, 153(2):687–713, 2015.

[3] Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algo-
rithms in convex programming, volume 13. Siam, 1994.

8

/home/achanhon/Bureau/PERSO/1pour100/main.py
Page 1 sur 5 jeu. 07 févr. 2019 17:22:48 CET

1 from __future__ import print_function
2
3 from fractions import Fraction
4
5 def checkSquare(Q):
6 if len(Q)==0:
7 print("len(Q)==0")
8 quit()
9 if len(Q[0])==0:
10 print("len(Q[0])==0")
11 quit()
12 for i in range(len(Q)):
13 if len(Q[i])!=len(Q[0]):
14 print("len(Q["+str(i)+"])!=len(Q[0])")
15 quit()
16
17 def combinaisonlineaire(u,l,v):
18 #checkSquare([u,v])
19 w = []
20 for i in range(len(u)):
21 w.append(u[i]+l*v[i])
22 return w
23
24 def produitscalaire(u,v):
25 #checkSquare([u,v])
26 w = Fraction()
27 for i in range(len(u)):
28 w+=u[i]*v[i]
29 return w
30
31 def projection(u, BOG):
32 #checkSquare([u]+BOG)
33 pu = []
34 for i in range(len(u)):
35 pu.append(Fraction())
36
37 for v in BOG:
38 pu=combinaisonlineaire(pu,produitscalaire(u,v)/produitscalaire(v,v),v)
39
40 return pu
41
42 def gramschimdBOG(H_):
43 #checkSquare(H_)
44 H = [h.copy() for h in H_ if produitscalaire(h,h) != Fraction()]
45 BOG = []
46 while len(H)>0:
47 BOG.append(H.pop())
48 for i in range(len(H)):
49 H[i] = combinaisonlineaire(H[i],Fraction(-1),projection(H[i],BOG))
50 H = [h for h in H if produitscalaire(h,h) != Fraction()]
51 return BOG
52
53
54 print("a,b,optimal should be set by hand")
55 A = []
56 b = []
57 c = []
58 optimal = []
59
60 x = []
61 vectorzero = []
62 moinsc = []
63
64 def checkSize():
65 checkSquare(A)
66 checkSquare([optimal,c])
67 if len(A)!=len(b) or len(c) != len(A[0]):
68 print("len(A)!=len(b) or len(c) != len(A[0])")
69 quit()
70

- 1 -

/home/achanhon/Bureau/PERSO/1pour100/main.py
Page 2 sur 5 jeu. 07 févr. 2019 17:22:48 CET

71 global vectorzero
72 for n in range(len(c)):
73 vectorzero.append(Fraction())
74
75 global moinsc
76 moinsc = combinaisonlineaire(vectorzero,Fraction(-1),c)
77
78 print("size of input data are consistant")
79
80 def computed(y):
81 d = produitscalaire(A[0],y)-b[0]
82 for m in range(len(A)):
83 if produitscalaire(A[m],y)-b[m]<d:
84 d = produitscalaire(A[m],y)-b[m]
85 return d
86
87 def computeD(y):
88 D = []
89 d = computed(y)
90 for m in range(len(A)):
91 if produitscalaire(A[m],y)-b[m]==d:
92 D.append(m)
93 return D
94
95 def checkAdmissible(y):
96 return computed(y)>=Fraction()
97 def checkStrinctAdmissible(y):
98 return computed(y)>Fraction()
99 def checkOptimal(y):
100 return checkAdmissible(y) and produitscalaire(c,y)==Fraction()
101
102 def checkProperties():
103 if not checkOptimal(optimal):
104 print("not checkOptimal(optimal)")
105 quit()
106
107 for m in range(len(A)):
108 if produitscalaire(A[m],A[m]) != Fraction(1):
109 print("produitscalaire(A["+str(m)+"],A["+str(m)+"]) != Fraction(1) :

"+str(A[m])+" "+str(produitscalaire(A[m],A[m])))
110 quit()
111 if produitscalaire(A[m],c) != produitscalaire(A[0],c):
112 print("produitscalaire(A["+str(m)+"],c) != produitscalaire(A[0],c)")
113 quit()
114
115 if produitscalaire(A[0],c) <= Fraction():
116 print("produitscalaire(A[0],c) <= Fraction()")
117 quit()
118
119 maxb = max(b)
120 global x
121 x=combinaisonlineaire(vectorzero,maxb/produitscalaire(A[0],c)+Fraction(1),c)
122 checkStrinctAdmissible(x)
123
124 print("input data seems to meet requirement")
125
126 def computez(y):
127 z =combinaisonlineaire(y, -computed(y)/produitscalaire(A[0],c) ,c)
128 if not checkAdmissible(z) or checkStrinctAdmissible(z):
129 print("not checkAdmissible(z) or checkStrinctAdmissible(z) "+str(z))
130 quit()
131 return combinaisonlineaire(y, -computed(y)/produitscalaire(A[0],c) ,c)
132
133 def simulatechubanov(z):
134 z09 = combinaisonlineaire(vectorzero,Fraction(9,10),z)
135 optANDc = combinaisonlineaire(optimal,produitscalaire(z,c)/Fraction(2),c)
136 out = combinaisonlineaire(z09,Fraction(1,10),optANDc)
137
138 if not checkStrinctAdmissible(out) or

produitscalaire(c,out)>=produitscalaire(c,z):
- 2 -

/home/achanhon/Bureau/PERSO/1pour100/main.py
Page 3 sur 5 jeu. 07 févr. 2019 17:22:48 CET

139 print("not checkStrinctAdmissible(out) or
produitscalaire(c,out)>=produitscalaire(c,z) "+str(z) + " " + str(out))

140 quit()
141 return out
142
143
144 def computeBisector(y):
145 D = computeD(y)
146 projectionOnVect = projection(moinsc, gramschimdBOG([A[m].copy() for m in D]))
147 projectionOnKer = combinaisonlineaire(moinsc,Fraction(-1),projectionOnVect)
148
149 for m in D:
150 if produitscalaire(A[m],projectionOnKer)!=Fraction():
151 print("produitscalaire(A["+str(m)+"],projectionOnKer)!=Fraction()

"+str(projectionOnVect)+" "+str(projectionOnKer))
152 quit()
153 if produitscalaire(moinsc,projectionOnKer)<Fraction():
154 print("produitscalaire(moinsc,projectionOnKer)<Fraction()")
155 quit()
156
157 return projectionOnKer
158
159
160 def bisectormove(y):
161 d = computed(y)
162 v = computeBisector(y)
163
164 if produitscalaire(v,v)==Fraction():
165 return False,v,Fraction(),y
166
167 candidate = []
168 for m in range(len(A)):
169 if produitscalaire(v,A[m])<Fraction():
170 currentdir = produitscalaire(A[m],x)-b[m]
171 desireddir = d
172 move = -(currentdir-desireddir)/produitscalaire(v,A[m])
173 candidate.append(move)
174
175 if candidate == []:
176 print("candidate == []")
177 quit()
178
179 move = min(candidate)
180 if move == Fraction():
181 print("move == Fraction()")
182 quit()
183
184 nexty = combinaisonlineaire(y,move,v)
185 if not checkStrinctAdmissible(nexty):
186 print("not checkStrinctAdmissible(nexty) "+str(y)+" "+str(v)+"

"+str(move)+" "+str(nexty))
187 quit()
188
189 return True,v,move,nexty
190
191
192 def iteration():
193 print("x=" + str(x))
194
195 if checkOptimal(x):
196 return True,x
197
198 z = computez(x)
199 if checkOptimal(z):
200 return True,z
201
202 d = computed(x)
203 print(d)
204
205 D = computeD(x)

- 3 -

/home/achanhon/Bureau/PERSO/1pour100/main.py
Page 4 sur 5 jeu. 07 févr. 2019 17:22:48 CET

206 #print(produitscalaire(A[D[0]],x))
207 #print(A[D[0]])
208 #print(b[D[0]])
209 print(D)
210
211 flag,v,move,y = bisectormove(x)
212 if flag:
213 print("bisector move "+str(v)+" "+str(move))
214 return False, y
215 else:
216 print("chubanov move")
217 return False, simulatechubanov(z)
218
219
220 def algorithm():
221 global x
222
223 nbiter = 0
224 while True:
225 print("## "+str(nbiter))
226 nbiter+=1
227 flag,y = iteration()
228 if flag:
229 print("YEAH")
230 return y
231 else:
232 x = y.copy()
233
234 import numpy as np
235
236 def randomproblem(N,M):
237 npoptimal = np.random.randint(-100,101,size=(N))
238 print(npoptimal)
239
240 Aequal = np.random.randint(-100,101,size=(M,N))
241 bequal = np.dot(Aequal,npoptimal)
242
243 Agreater = np.random.randint(-100,101,size=(M,N))
244 bgreater = np.dot(Agreater,npoptimal) - np.random.randint(0,101,size=(M))
245
246
247 global optimal
248 global c
249 global A
250 global b
251 for n in range(N):
252 optimal.append(Fraction(int(npoptimal[n])))
253 optimal.append(Fraction())
254 optimal.append(Fraction())
255 optimal.append(Fraction())
256
257 vectorzero = []
258 for n in range(len(optimal)):
259 vectorzero.append(Fraction())
260
261 c = vectorzero.copy()
262 c[-1] = Fraction(1)
263
264 for m in range(M):
265 tmp = []
266 for n in range(N):
267 tmp.append(Fraction(int(Aequal[m][n])))
268
269 norm = produitscalaire(tmp,tmp)
270 for n in range(N):
271 tmp[n] *= Fraction(4,5) / (norm/Fraction(2)+Fraction(1))
272
273 tmp.append(Fraction(4,5) * norm/Fraction(2) / (norm/Fraction(2)+Fraction(1)))
274 tmp.append(Fraction(4,5) / (norm/Fraction(2)+Fraction(1)))
275 tmp.append(Fraction(3,5))

- 4 -

/home/achanhon/Bureau/PERSO/1pour100/main.py
Page 5 sur 5 jeu. 07 févr. 2019 17:22:48 CET

276
277 A.append(tmp.copy())
278 b.append(Fraction(int(bequal[m])) * Fraction(4,5) /

(norm/Fraction(2)+Fraction(1)))
279
280 tmp = combinaisonlineaire(vectorzero,Fraction(-1),tmp)
281 tmp[-1]*=Fraction(-1)
282 tmp[-2]*=Fraction(-1)
283 tmp[-3]*=Fraction(-1)
284 A.append(tmp)
285 b.append(Fraction(-int(bequal[m])) * Fraction(4,5) /

(norm/Fraction(2)+Fraction(1)))
286
287 for m in range(M):
288 tmp = []
289 for n in range(N):
290 tmp.append(Fraction(int(Agreater[m][n])))
291
292 norm = produitscalaire(tmp,tmp)
293 for n in range(N):
294 tmp[n] *= Fraction(4,5) / (norm/Fraction(2)+Fraction(1))
295
296 tmp.append(Fraction(4,5) * norm/Fraction(2) / (norm/Fraction(2)+Fraction(1)))
297 tmp.append(Fraction(4,5) / (norm/Fraction(2)+Fraction(1)))
298 tmp.append(Fraction(3,5))
299
300 A.append(tmp.copy())
301 b.append(Fraction(int(bgreater[m])) * Fraction(4,5) /

(norm/Fraction(2)+Fraction(1)))
302
303
304 A.append(vectorzero.copy())
305 A.append(vectorzero.copy())
306 A.append(vectorzero.copy())
307 A.append(vectorzero)
308
309 b.append(Fraction())
310 b.append(Fraction())
311 b.append(Fraction())
312 b.append(Fraction())
313
314 A[-1][-1] =Fraction(3,5)
315 A[-1][-2] =Fraction(4,5)
316 A[-2][-1] =Fraction(3,5)
317 A[-2][-2] =-Fraction(4,5)
318
319 A[-3][-1] =Fraction(3,5)
320 A[-3][-3] =Fraction(4,5)
321 A[-4][-1] =Fraction(3,5)
322 A[-4][-3] =-Fraction(4,5)
323
324
325 randomproblem(15,30)
326 checkSize()
327
328 print(A)
329 print(b)
330 print(c)
331 print(optimal)
332
333 checkProperties()
334
335 print("GO")
336 x = algorithm()
337 print(x)
338
339

- 5 -

