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ONERA - université paris sud
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Abstract

This short article focus on the link between linear feasibility and
generic linear program. An algorithm is presented to solve generic linear
program using linear feasibility queries and working at constraint level in-
stead of raw values level. Even if the number of required linear feasibility
queries is not established, this algorithm may be especially interesting,
since, thank to Chubanov algorithm, there is a strongly polynomial time
algorithm to solve linear feasibility problem.

1 Introduction

Interior point algorithms (e.g. [3]) are mainly the state of the art to solve lin-
ear program. Yet, interior point algorithms have two drawbacks. First, these
algorithms work directly at raw values level. This way, the moves of the cur-
rent point can not directly be matched with a set of constraints. In addition,
these algorithms can not take advantage of, for example, Chubanov algorithm
[2] which provides a strongly polynomial time algorithm for linear feasibility
problem.

In this short paper, the focus is given to an algorithm which has not these
two drawbacks. The algorithm explicitly works at constraint level and explicitly
solves generic linear program by solving a set of linear feasibility problems. This
can be done for example with Chubanov algorithm.

This way, this algorithm is interesting to link linear feasibility to generic
linear program. And, it may also be an interesting way to look for a strongly
polynomial time algorithm to solve generic linear program (especially, seeing
that [1] shows that major interior point family is not). Indeed, such property
would directly result from a number of Chubanov queries bounded by a poly-
nomial in the size of the problem. Such bound is absolutely not established in
this short paper. But, maybe, this kind of algorithm may be updated to reach
such property.
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2 Some useful lemmas

2.1 Linear feasibility and linear separability

First of all, [2] allows to solve in strongly polynomial time the following problem:

∃?x ∈ QN/Ax = 0, x > 0

under the assumption that A ∈MM,N (Q) has a rank of M . In this short paper,
raw linear feasibility can not be used directly. This is why a minor but required
lemma is introduced here.
Chubanov algorithm can also be used to solve linear separability.

Indeed, with a simple trick, Chubanov algorithm can be used to solve (at
least, under the assumption that some solution exists):

∃?x ∈ QN/Ax > 0

with any A ∈MM,N (Q).
It is sufficient, for that, to consider the matrix A =

(
A −A −I

)
formed

with A concat with −A concat with −I the identity matrix. Applying the
Chubanov algorithm to this matrix A will lead to x1, x2, x3 such that

(
A −A −I

) x1

x2

x3

 = 0

and

 x1

x2

x3

 > 0 So, x = x1 − x2 and Ax = Ix3 = x3 > 0.

Let note that the rank is obviously M as there is a identity bloc. This is
this routine i.e. solving ∃?x ∈ QN/Ax > 0 that why be required in the offered
algorithm. (It will never be called without be sure that a solution exist.)

2.2 Dealing with all possibles linear programs

The offered algorithm assumes that the input linear program meet some re-
quirements. Yet, these requirements do not restrict generality as from any
linear program, one can form a derived linear program meeting the requirement
and whose solution contains solution of the original one. This will be presented
here.

In this short article, transposition is omitted in scalar product: if p, q are 2
vectors pq corresponds to pT q =

∑
n
pn × qn.

2.2.1 The working form

Definition of the working form: in this short paper, the working form of a
linear program will be:
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• min
x/Ax≥b

cx with A ∈MM,N (Q), b ∈ QM and c ∈ QN

• both c and row of the matrix A are normalized i.e. cc = 1 and for all m,
AmAm = 1

• ∃γ > 0 such with Ac > γ1

– it implies that from any point x belonging to the admissible space,
moving along c increases equally the distance to all constraints

– it implies that there is a non empty admissible space and a trivial
solution (x = λc for λ� 1)

• and with x being an optimal solution iif Ax ≥ b and cx = 0

2.2.2 overview of the processing to meet requirement

for any linear program, it is possible to form an equivalent linear
program in working form.

The generation of a derived linear program from a standard is a combina-
tion of classical tricks but this combination is absolutely not trivial due to the
specificity of the requirements of the offered algorithm. In one sentence, it is
about combining primal and dual twice plus using trick to normalize row and c.

Let review this derived linear program quickly than I will come back in each
part more precisely.

Let assume original goal is to solve max
Arawx≤braw,x≥0

crawx. It is well known

that the dual problem is min
AT

rawy≥craw,y≥0
brawy. Now, the primal dual is formed

by combining all constraints: Arawx ≤ braw, and, x ≥ 0, and, ATrawy ≥ craw,
and crawx = brawy, and finally, y ≥ 0.

This problem can be folded into a Abig matrix and a bbig as Abigxbig ≥ bbig.

Precisely Abig =


−Araw 0
I 0
0 ATraw
0 I

craw −braw
−craw braw

 and bbig =


−braw

0
craw

0
0
0

.

Now, let consider min
Abigxbig+z1≥bbig,z≥0

z, with z being just a scalar. This last

problem verifies Abigcbig > 0. But, there is a solution (x, y, z) with z = 0 iif
there exists a solution x, y to the original problem. This is not sufficient for the
algorithm which needs to be sure that a solution with z = 0 exists.

Yet, there is a simple solution: this process is done ones again (this is not
classical) leading to

min
Adoublexdouble+zdouble1≥bdouble,zdouble≥0

zdouble

Here Adouble is almost for Abig what Abig is for Araw.
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Eventually, this new linear program is equivalent to the raw input (solving
the derived leads to the solution of the original) but this new linear program
is in working form. Also, it is sufficient to add little normalization to get the
other property.

Now, let review precisely each part of this processing !

2.2.3 Reaching normalized linear program

For any linear program Ax ≥ b in Q, one can form an equivalent Γχ ≥ β such
that for any m ΓmΓm = 1 in Q. Let notice that no square root are needed !

It is sufficient to consider

Γ =



1
A1A1

2 +1
A1

1

(
A1A1

2 +1)

A1A1

2
1

A1A1
2 +1

... ... ...
1

AMAM
2 +1

AM
1

(
AMAM

2 +1)

AMAM

2
1

AMAM
2 +1

0 1 0
0 −1 0
0 0 1
0 0 −1


,

and β =



1
A1A1

2 +1
b1

...
1

AMAM
2 +1

bM

0
0
0
0


.

Indeed, the two new variables added in χ are forced to be 0 by the 4 new
constraints. So, everything goes like if all added value was null. Yet, now all
rows of the matrix are normalized !

Indeed, norm of the row m is ( 1
AmAm

2 +1
)2AmAm + ( 1

AmAm
2 +1

)2 (AmAm)2

4 +

( 1
A1A1

2 +1
)2 which is ( 1

AmAm
2 +1

)2×(AmAm+ (AmAm)2

4 +1) which is ( 1
AmAm

2 +1
)2×

(AmAm

2 + 1)2 which is 1 !

2.2.4 Keeping normalization when adding z variables

For any normalized linear program Ax ≥ b in Q, it is sufficient to form

Γ =


4
5A1

3
5 0

... ... ...
4
5AM

3
5 0

0 3
5

4
5

0 3
5 − 4

5

, and β =


4
5b1
...

4
5bM

0
0

 to get a new linear program

which is

• still normalized
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• with ( 0 1 0 ) being normalized and with a common scalar product
with each row

• equivalent to the first linear program when the first added variable is 0

• this first added variable being forced to be greater than 0

Thus, if Ax ≥ b has a solution then min
Γχ≥β

( 0 1 0 )χ will find this solution.

If Ax ≥ b has no solution, then optimal value of the added variable will
not be 0, but, let notice that this new linear program is at least bounded and
resolvable.

2.2.5 Primal dual

The primal dual trick to convert a maximization/minimization into a set of
linear inequality is quite classical, and, will not be presented more than in 2.2.2.

Let notice than, since, 2.2.4 allows to form a bounded and resolvable linear
program, the idea of applying twice the primal dual is straightforward in some
way.

2.2.6 Summary of all these derivations

In 2.2.3, 2.2.4 and 2.2.5, some tricks are presented allowing to normalize linear
program, add a row with a common scalar product, and, finally form an equiva-
lent problem with property to have solution. Using these 3 tricks, one is always
able to form an equivalent linear program meeting the requirement of 2.2.1 from
any raw linear program.

Hence, there is no restriction to focus only on linear program meeting the
requirement of 2.2.1. For these ones, an algorithm based on Chubanov one is
presented in next section.

3 Algorithm

Consistently with previous section, N is the number of variables and M the
number of constraint (i.e. rows of matrix A), and, the problem is min cx

Ax≥b
with

assumptions described before. Transposition is still omitted in scalar product:
if p, q are 2 vectors pq corresponds to pT q =

∑
n
pn × qn.

Constraints, rows of matrix A and planes will be 3 ways to speak about the
same objects. If A is matrix (or sub matrix), Ker(A) is the sub space of all
vectors h such that Ah = 0 i.e. Ker(A) = {h/Ah = 0}.

3.1 Key points

Before introducing the algorithm, I present here some key points.
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• The algorithm works on the interior of the admissible space like interior
point method. But, this algorithm remains close to the geometric structure
of the problem. Indeed, all moves of the current point are matched with
a sets of constraints.

• At any step of the algorithm only the closest constraints of the current
point have an influence.

• Precisely, the closest constraints of the current point push the point away
in order both to maintain the distance with the constraints and to decrease
cost function. Eventually, this leads to meet an other constraint that enter
the set of closest constraints.

• When no such move exists, the routine based on Chubanov algorithm is
called leading to a reboot of the set of closest constraints. (Ax ≥ 1 could
have a solution while Ax = 1 no.)

• The algorithm terminates because the set of closest constraint can not be
twice the same

3.2 Pseudo code

The pseudo code the algorithm which should start from a trivial interior point
x is:

1. compute d = min
m

Amx− bm

2. compute D the set of planes at distance d

3. compute p = max
Am(x−λc)≥bm,c(x−λc)≥0

λ

4. z = x− pc
5. check trivial termination

(a) if x is a solution (Ax ≥ b, cx = 0), return x

(b) if z is a solution, return z

6. let v be the projection of −c on Ker(AD) (may result in cv < 0, ADv = 0)

7. if v 6= 0

(a) compute λ: min
m/∈D/Amv<0

Amx−bm−d
−Amv

(b) x← x+ λv

(c) GO TO 1

8. call Chubanov routine to find θ such that

(
AD
−c

)
θ > 0

9. find δ > 0 such that A(z + δθ) > b (by construction c(z + δθ) < cz)

10. x← z + δθ

11. GO TO 1
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4 Termination of the algorithm

From a point interior point, the coarse algorithm generates a set of
interior points plus one optimal point.
well defined :

First, all steps and moves are well defined.
Step 6 is just the projection of a vector on a sub space.
In step 7.a, moving along v decreases the cost cx of x (because v 6= 0) which

is obviously bounded as cx ≥ 0. So this move can not be done for ever, and, so,
necessarily some plane with meet the ball of center x and radius d - it will be
added to D. These moves are generalization of bisector move.

Step 8 should returns something if there is a possible solution. And, there
is at least one: let consider θ = x∗ + cz

2 c − z. Indeed, x∗ the solution (there is
one see 2.2) verifies Ax∗ ≥ b so let define ρ = x∗ + cz

2 c. Then, ρ verifies Aρ > b
but still cρ = cz

2 < cz (because cx∗ = 0 and cz > 0 otherwise z should have
been a solution in 5.b). So, c(ρ − z) > 0 and AS(ρ − z) = ASρ > bS (since
ASz = 0 and Aρ > b). So, I have proven that θ = x∗ + cz

2 c − z is a possible
solution. Of course, there is NO reason that the solution returned by the call to
the Chubanov algorithm will be θ = x∗ + cz

2 c−z (if so, one call will be enough).
But, still, a solution exists so Chubanov algorithm will return one.

Then, step 9 is obviously possible seeing the definition of S: for all m /∈ S,
Amz > bm and for all m ∈ S, Amz = bm but Amθ > 0. So finding δ is possible
(in O(NM) just by looping over all constraints).

So the algorithm is well defined (assuming that all points are still in the
admissible space i.e. {x/Ax ≥ b}.
Interior moves: All moves are designed to never go outside the interior of the
admissible space (i.e. {x/Ax > b}) - except to reach an optimal point. Indeed,
step 7.b keeps constant the distance to the constraint satisfaction of constraint.
And, step 11 starts from a corner and uses θ to increases satisfaction of the all
constraints forming the corner before meeting constraints outside the corner.
Decreasing cost:

Then, trivially cx is decreasing during the algorithm (as 7.b and 10 decrease
cx by construction of v and θ).
breaking the loop:

Then, the set D can not have twice the same value in step 9. Indeed, if
algorithm reaches two time in step 9 in point x1 and x2 with a common value
for D, then, let consider the point z1 and z2 from step 4. Then, it holds both
cz2 < cz1 and ADz2 = ADz1 = 0. So, the algorithm should not have pass the
step 6 when meeting x1.

In other words, algorithm explores the ker(AD) to increase D, then when
D is big enough, the algorithm moves bellow a corner of AD. As D was big
enough at this step, it means that the ker(AD) is nul and that D will never be
reached again.

So, it can not have more than 2M step 10. And, step 7.b strictly increases D
which is bounded by {1, ...,M}. So, the algorithm can not perform more than
M2M loops. Each loop taking less than a call of the Chubanov algorithm.
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Is the algorithm strongly polynomial ?

The central question is the number of call of the Chubanov algorithm from step
9.

In numerical experimentation on toy example, it seems that any call of the
Chubanov algorithm leads to the definitive rejection of at least one constraint.

Even, if this statement is probably wrong in large dimension and/or complex
case, the underlying idea is that during step 11, the set of closest constraints
form a linear cone with a single vertex z and with the property that each linear
plane forming the cone is tangent to the ball of center x and radius d. Then,
the cone is cut by the plane {u/cu = cz}. And, the question is: could the point
x can meet all planes forming the cone without crossing neither other planes
nor {u/cu = cz}.

This question is interesting because complexity of the algorithm is more or
less the complexity of Chubanov call (which is strongly polynomial) times the
number of call of this routine which could be bounded by M if such statement
was true. So, this (probably wrong) statement is related to an hypothetical
strong polynomial time property of the algorithm running in O(M2) Chubanov
call plus O(NM2) elementary operations in Q.

More precisely, the source code of the toy experiment is provided in ap-
pendix. The generated linear program may be too simple, and implementation
of Chubanov as x∗ + cz

2 c− z helps the algorithm too much. Yet, more than 40
runs of the algorithm on none trivial size (N = 15 and M = 30), this rejection
effect has been always observed (even if surely false).
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/home/achanhon/Bureau/PERSO/1pour100/main.py
Page 1 sur 5 jeu. 07 févr. 2019 17:22:48 CET

1   from __future__ import print_function
2   
3   from fractions import Fraction
4   
5   def checkSquare(Q):
6   if len(Q)==0:
7   print("len(Q)==0")
8   quit()
9   if len(Q[0])==0:
10   print("len(Q[0])==0")
11   quit()
12   for i in range(len(Q)):
13   if len(Q[i])!=len(Q[0]):
14   print("len(Q["+str(i)+"])!=len(Q[0])")
15   quit()
16   
17   def combinaisonlineaire(u,l,v):
18   #checkSquare([u,v])
19   w = []
20   for i in range(len(u)):
21   w.append(u[i]+l*v[i])
22   return w
23   
24   def produitscalaire(u,v):
25   #checkSquare([u,v])
26   w = Fraction()
27   for i in range(len(u)):
28   w+=u[i]*v[i]
29   return w
30   
31   def projection(u, BOG):
32   #checkSquare([u]+BOG)
33   pu = []
34   for i in range(len(u)):
35   pu.append(Fraction())
36   
37   for v in BOG:
38   pu=combinaisonlineaire(pu,produitscalaire(u,v)/produitscalaire(v,v),v)
39   
40   return pu
41   
42   def gramschimdBOG(H_):
43   #checkSquare(H_)
44   H = [h.copy() for h in H_ if produitscalaire(h,h) != Fraction()]
45   BOG = []
46   while len(H)>0:
47   BOG.append(H.pop())
48   for i in range(len(H)):
49   H[i] = combinaisonlineaire(H[i],Fraction(-1),projection(H[i],BOG))
50   H = [h for h in H if produitscalaire(h,h) != Fraction()]
51   return BOG
52   
53   
54   print("a,b,optimal should be set by hand")
55   A = []
56   b = []
57   c = []
58   optimal = []
59   
60   x = []
61   vectorzero = []
62   moinsc = []
63   
64   def checkSize():
65   checkSquare(A)
66   checkSquare([optimal,c])
67   if len(A)!=len(b) or len(c) != len(A[0]):
68   print("len(A)!=len(b) or len(c) != len(A[0])")
69   quit()
70   

- 1 -



/home/achanhon/Bureau/PERSO/1pour100/main.py
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71   global vectorzero
72   for n in range(len(c)):
73   vectorzero.append(Fraction())
74   
75   global moinsc
76   moinsc = combinaisonlineaire(vectorzero,Fraction(-1),c)
77   
78   print("size of input data are consistant")
79   
80   def computed(y):
81   d = produitscalaire(A[0],y)-b[0]
82   for m in range(len(A)):
83   if produitscalaire(A[m],y)-b[m]<d:
84   d = produitscalaire(A[m],y)-b[m]
85   return d
86   
87   def computeD(y):
88   D = []
89   d = computed(y)
90   for m in range(len(A)):
91   if produitscalaire(A[m],y)-b[m]==d:
92   D.append(m)
93   return D
94   
95   def checkAdmissible(y):
96   return computed(y)>=Fraction()
97   def checkStrinctAdmissible(y):
98   return computed(y)>Fraction()
99   def checkOptimal(y):
100   return checkAdmissible(y) and produitscalaire(c,y)==Fraction()
101   
102   def checkProperties():
103   if not checkOptimal(optimal):
104   print("not checkOptimal(optimal)")
105   quit()
106   
107   for m in range(len(A)):
108   if produitscalaire(A[m],A[m]) != Fraction(1):
109   print("produitscalaire(A["+str(m)+"],A["+str(m)+"]) != Fraction(1) : 

"+str(A[m])+" "+str(produitscalaire(A[m],A[m])))
110   quit()
111   if produitscalaire(A[m],c) != produitscalaire(A[0],c):
112   print("produitscalaire(A["+str(m)+"],c) != produitscalaire(A[0],c)")
113   quit()
114   
115   if produitscalaire(A[0],c) <= Fraction():
116   print("produitscalaire(A[0],c) <= Fraction()")
117   quit()
118   
119   maxb = max(b)
120   global x
121   x=combinaisonlineaire(vectorzero,maxb/produitscalaire(A[0],c)+Fraction(1),c)
122   checkStrinctAdmissible(x)
123   
124   print("input data seems to meet requirement")
125   
126   def computez(y):
127   z =combinaisonlineaire(y, -computed(y)/produitscalaire(A[0],c) ,c)
128   if not checkAdmissible(z) or checkStrinctAdmissible(z):
129   print("not checkAdmissible(z) or checkStrinctAdmissible(z) "+str(z))
130   quit()
131   return combinaisonlineaire(y, -computed(y)/produitscalaire(A[0],c) ,c)
132   
133   def simulatechubanov(z):
134   z09 = combinaisonlineaire(vectorzero,Fraction(9,10),z)
135   optANDc = combinaisonlineaire(optimal,produitscalaire(z,c)/Fraction(2),c)
136   out = combinaisonlineaire(z09,Fraction(1,10),optANDc)
137   
138   if not checkStrinctAdmissible(out) or

produitscalaire(c,out)>=produitscalaire(c,z):
- 2 -
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139   print("not checkStrinctAdmissible(out) or 
produitscalaire(c,out)>=produitscalaire(c,z) "+str(z) + " " + str(out))

140   quit()
141   return out
142   
143   
144   def computeBisector(y):
145   D = computeD(y)
146   projectionOnVect = projection(moinsc, gramschimdBOG([A[m].copy() for m in D]))
147   projectionOnKer = combinaisonlineaire(moinsc,Fraction(-1),projectionOnVect)
148   
149   for m in D:
150   if produitscalaire(A[m],projectionOnKer)!=Fraction():
151   print("produitscalaire(A["+str(m)+"],projectionOnKer)!=Fraction() 

"+str(projectionOnVect)+" "+str(projectionOnKer))
152   quit()
153   if produitscalaire(moinsc,projectionOnKer)<Fraction():
154   print("produitscalaire(moinsc,projectionOnKer)<Fraction()")
155   quit()
156   
157   return projectionOnKer
158   
159   
160   def bisectormove(y):
161   d = computed(y)
162   v = computeBisector(y)
163   
164   if produitscalaire(v,v)==Fraction():
165   return False,v,Fraction(),y
166   
167   candidate = []
168   for m in range(len(A)):
169   if produitscalaire(v,A[m])<Fraction():
170   currentdir = produitscalaire(A[m],x)-b[m]
171   desireddir = d
172   move = -(currentdir-desireddir)/produitscalaire(v,A[m])
173   candidate.append(move)
174   
175   if candidate == []:
176   print("candidate == []")
177   quit()
178   
179   move = min(candidate)
180   if move == Fraction():
181   print("move == Fraction()")
182   quit()
183   
184   nexty = combinaisonlineaire(y,move,v)
185   if not checkStrinctAdmissible(nexty):
186   print("not checkStrinctAdmissible(nexty) "+str(y)+" "+str(v)+" 

"+str(move)+" "+str(nexty))
187   quit()
188   
189   return True,v,move,nexty
190   
191   
192   def iteration():
193   print("x=" + str(x))
194   
195   if checkOptimal(x):
196   return True,x
197   
198   z = computez(x)
199   if checkOptimal(z):
200   return True,z
201   
202   d = computed(x)
203   print(d)
204   
205   D = computeD(x)

- 3 -
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206   #print(produitscalaire(A[D[0]],x))
207   #print(A[D[0]])
208   #print(b[D[0]])
209   print(D)
210   
211   flag,v,move,y = bisectormove(x)
212   if flag:
213   print("bisector move "+str(v)+" "+str(move))
214   return False, y
215   else:
216   print("chubanov move")
217   return False, simulatechubanov(z)
218   
219   
220   def algorithm():
221   global x
222   
223   nbiter = 0
224   while True:
225   print("########################################## "+str(nbiter))
226   nbiter+=1
227   flag,y = iteration()
228   if flag:
229   print("YEAH")
230   return y
231   else:
232   x = y.copy()
233   
234   import numpy as np
235   
236   def randomproblem(N,M):
237   npoptimal = np.random.randint(-100,101,size=(N))
238   print(npoptimal)
239   
240   Aequal = np.random.randint(-100,101,size=(M,N))
241   bequal = np.dot(Aequal,npoptimal)
242   
243   Agreater = np.random.randint(-100,101,size=(M,N))
244   bgreater = np.dot(Agreater,npoptimal) - np.random.randint(0,101,size=(M))
245   
246   
247   global optimal
248   global c
249   global A
250   global b
251   for n in range(N):
252   optimal.append(Fraction(int(npoptimal[n])))
253   optimal.append(Fraction())
254   optimal.append(Fraction())
255   optimal.append(Fraction())
256   
257   vectorzero = []
258   for n in range(len(optimal)):
259   vectorzero.append(Fraction())
260   
261   c = vectorzero.copy()
262   c[-1] = Fraction(1)
263   
264   for m in range(M):
265   tmp = []
266   for n in range(N):
267   tmp.append(Fraction(int(Aequal[m][n])))
268   
269   norm = produitscalaire(tmp,tmp)
270   for n in range(N):
271   tmp[n] *= Fraction(4,5) / (norm/Fraction(2)+Fraction(1))
272   
273   tmp.append(Fraction(4,5) * norm/Fraction(2) / (norm/Fraction(2)+Fraction(1)))
274   tmp.append(Fraction(4,5) / (norm/Fraction(2)+Fraction(1)))
275   tmp.append(Fraction(3,5))
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276   
277   A.append(tmp.copy())
278   b.append(Fraction(int(bequal[m])) * Fraction(4,5) /

(norm/Fraction(2)+Fraction(1)))
279   
280   tmp = combinaisonlineaire(vectorzero,Fraction(-1),tmp)
281   tmp[-1]*=Fraction(-1)
282   tmp[-2]*=Fraction(-1)
283   tmp[-3]*=Fraction(-1)
284   A.append(tmp)
285   b.append(Fraction(-int(bequal[m])) * Fraction(4,5) /

(norm/Fraction(2)+Fraction(1)))
286   
287   for m in range(M):
288   tmp = []
289   for n in range(N):
290   tmp.append(Fraction(int(Agreater[m][n])))
291   
292   norm = produitscalaire(tmp,tmp)
293   for n in range(N):
294   tmp[n] *= Fraction(4,5) / (norm/Fraction(2)+Fraction(1))
295   
296   tmp.append(Fraction(4,5) * norm/Fraction(2) / (norm/Fraction(2)+Fraction(1)))
297   tmp.append(Fraction(4,5) / (norm/Fraction(2)+Fraction(1)))
298   tmp.append(Fraction(3,5))
299   
300   A.append(tmp.copy())
301   b.append(Fraction(int(bgreater[m])) * Fraction(4,5) /

(norm/Fraction(2)+Fraction(1)))
302   
303   
304   A.append(vectorzero.copy())
305   A.append(vectorzero.copy())
306   A.append(vectorzero.copy())
307   A.append(vectorzero)
308   
309   b.append(Fraction())
310   b.append(Fraction())
311   b.append(Fraction())
312   b.append(Fraction())
313   
314   A[-1][-1] =Fraction(3,5)
315   A[-1][-2] =Fraction(4,5)
316   A[-2][-1] =Fraction(3,5)
317   A[-2][-2] =-Fraction(4,5)
318   
319   A[-3][-1] =Fraction(3,5)
320   A[-3][-3] =Fraction(4,5)
321   A[-4][-1] =Fraction(3,5)
322   A[-4][-3] =-Fraction(4,5)
323   
324   
325   randomproblem(15,30)
326   checkSize()
327   
328   print(A)
329   print(b)
330   print(c)
331   print(optimal)
332   
333   checkProperties()
334   
335   print("GO")
336   x = algorithm()
337   print(x)
338   
339   
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