Solving linear program with Chubanov queries and bisection moves.
 Adrien Chan-Hon-Tong

To cite this version:

Adrien Chan-Hon-Tong. Solving linear program with Chubanov queries and bisection moves.. 2019. hal-00722920v10

HAL Id: hal-00722920
 https://hal.science/hal-00722920v10

Preprint submitted on 7 Feb 2019 (v10), last revised 16 Jan 2023 (v38)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Solving linear program with Chubanov queries and bisection moves.

Adrien CHAN-HON-TONG
ONERA - université paris sud

January 2019

Abstract

This short article focus on the link between linear feasibility and generic linear program. An algorithm is presented to solve generic linear program using linear feasibility queries and working at constraint level instead of raw values level. Even if the number of required linear feasibility queries is not established, this algorithm may be especially interesting, since, thank to Chubanov algorithm, there is a strongly polynomial time algorithm to solve linear feasibility problem.

1 Introduction

Interior point algorithms (e.g. [3]) are mainly the state of the art to solve linear program. Yet, interior point algorithms have two drawbacks. First, these algorithms work directly at raw values level. This way, the moves of the current point can not directly be matched with a set of constraints. In addition, these algorithms can not take advantage of, for example, Chubanov algorithm [2] which provides a strongly polynomial time algorithm for linear feasibility problem.

In this short paper, the focus is given to an algorithm which has not these two drawbacks. The algorithm explicitly works at constraint level and explicitly solves generic linear program by solving a set of linear feasibility problems. This can be done for example with Chubanov algorithm.

This way, this algorithm is interesting to link linear feasibility to generic linear program. And, it may also be an interesting way to look for a strongly polynomial time algorithm to solve generic linear program (especially, seeing that [1] shows that major interior point family is not). Indeed, such property would directly result from a number of Chubanov queries bounded by a polynomial in the size of the problem. Such bound is absolutely not established in this short paper. But, maybe, this kind of algorithm may be updated to reach such property.

2 Some useful lemmas

2.1 Linear feasibility and linear separability

First of all, [2] allows to solve in strongly polynomial time the following problem:

$$
\exists ? x \in \mathbb{Q}^{N} / A x=\mathbf{0}, x>\mathbf{0}
$$

under the assumption that $A \in \mathcal{M}_{M, N}(\mathbb{Q})$ has a rank of M. In this short paper, raw linear feasibility can not be used directly. This is why a minor but required lemma is introduced here.

Chubanov algorithm can also be used to solve linear separability.

Indeed, with a simple trick, Chubanov algorithm can be used to solve (at least, under the assumption that some solution exists):

$$
\exists ? x \in \mathbb{Q}^{N} / \mathcal{A} x>0
$$

with any $\mathcal{A} \in \mathcal{M}_{M, N}(\mathbb{Q})$.
It is sufficient, for that, to consider the matrix $A=\left(\begin{array}{lll}\mathcal{A} & -\mathcal{A} & -I\end{array}\right)$ formed with \mathcal{A} concat with $-\mathcal{A}$ concat with $-I$ the identity matrix. Applying the Chubanov algorithm to this matrix A will lead to x_{1}, x_{2}, x_{3} such that

$$
\left(\begin{array}{lll}
\mathcal{A} & -\mathcal{A} & -I
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\mathbf{0}
$$

and $\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)>\mathbf{0}$ So, $x=x_{1}-x_{2}$ and $\mathcal{A} x=I x_{3}=x_{3}>\mathbf{0}$.
Let note that the rank is obviously M as there is a identity bloc. This is this routine i.e. solving $\exists ? x \in \mathbb{Q}^{N} / \mathcal{A} x>\mathbf{0}$ that why be required in the offered algorithm. (It will never be called without be sure that a solution exist.)

2.2 Dealing with all possibles linear programs

The offered algorithm assumes that the input linear program meet some requirements. Yet, these requirements do not restrict generality as from any linear program, one can form a derived linear program meeting the requirement and whose solution contains solution of the original one. This will be presented here.

In this short article, transposition is omitted in scalar product: if p, q are 2 vectors $p q$ corresponds to $p^{T} q=\sum_{n} p_{n} \times q_{n}$.

2.2.1 The working form

Definition of the working form: in this short paper, the working form of a linear program will be:

- $\min _{x / A x \geq b} c x$ with $A \in \mathcal{M}_{M, N}(\mathbb{Q}), b \in \mathbb{Q}^{M}$ and $c \in \mathbb{Q}^{N}$
- both c and row of the matrix A are normalized i.e. $c c=1$ and for all m, $A_{m} A_{m}=1$
- $\exists \gamma>0$ such with $A c>\gamma \mathbf{1}$
- it implies that from any point x belonging to the admissible space, moving along c increases equally the distance to all constraints
- it implies that there is a non empty admissible space and a trivial solution $(\mathrm{x}=\lambda c$ for $\lambda \gg 1)$
- and with x being an optimal solution iif $A x \geq b$ and $c x=0$

2.2.2 overview of the processing to meet requirement

for any linear program, it is possible to form an equivalent linear program in working form.

The generation of a derived linear program from a standard is a combination of classical tricks but this combination is absolutely not trivial due to the specificity of the requirements of the offered algorithm. In one sentence, it is about combining primal and dual twice plus using trick to normalize row and c.

Let review this derived linear program quickly than I will come back in each part more precisely.

Let assume original goal is to solve $\max _{A_{\text {raw }} x \leq b_{r a w}, x \geq \mathbf{0}} c_{\text {raw }} x$. It is well known that the dual problem is $\min _{A_{\text {raw }}^{T} y \geq c_{\text {raw }}, y \geq \mathbf{0}} b_{\text {raw }} y$. Now, the primal dual is formed by combining all constraints: $A_{\text {raw }} x \leq b_{\text {raw }}$, and, $x \geq \mathbf{0}$, and, $A_{\text {raw }}^{T} y \geq c_{\text {raw }}$, and $c_{\text {raw }} x=b_{\text {raw }} y$, and finally, $y \geq \mathbf{0}$.

This problem can be folded into a $A_{b i g}$ matrix and a $b_{b i g}$ as $A_{b i g} x_{b i g} \geq b_{b i g}$. Precisely $A_{\text {big }}=\left(\begin{array}{cc}-A_{\text {raw }} & 0 \\ I & 0 \\ 0 & A_{\text {raw }}^{T} \\ 0 & I \\ c_{\text {raw }} & -b_{\text {raw }} \\ -c_{\text {raw }} & b_{\text {raw }}\end{array}\right)$ and $b_{\text {big }}=\left(\begin{array}{c}-b_{\text {raw }} \\ 0 \\ c_{\text {raw }} \\ 0 \\ 0 \\ 0\end{array}\right)$.

Now, let consider $\min _{A_{b i g} x_{b i g}+z 1 \geq b_{b i g}, z \geq 0} z$, with z being just a scalar. This last problem verifies $A_{b i g} c_{b i g}>\mathbf{0}$. But, there is a solution (x, y, z) with $z=0$ iif there exists a solution x, y to the original problem. This is not sufficient for the algorithm which needs to be sure that a solution with $z=0$ exists.

Yet, there is a simple solution: this process is done ones again (this is not classical) leading to

$$
\min _{A_{\text {double }} x_{\text {double }}+z_{\text {double }} \mathbf{1} \geq b_{\text {double }}, z_{\text {double }} \geq 0} z_{\text {double }}
$$

Here $A_{\text {double }}$ is almost for $A_{\text {big }}$ what $A_{\text {big }}$ is for $A_{\text {raw }}$.

Eventually, this new linear program is equivalent to the raw input (solving the derived leads to the solution of the original) but this new linear program is in working form. Also, it is sufficient to add little normalization to get the other property.

Now, let review precisely each part of this processing !

2.2.3 Reaching normalized linear program

For any linear program $A x \geq b$ in \mathbb{Q}, one can form an equivalent $\Gamma \chi \geq \beta$ such that for any $m \Gamma_{m} \Gamma_{m}=1$ in \mathbb{Q}. Let notice that no square root are needed !

It is sufficient to consider
$\Gamma=\left(\begin{array}{ccc}\frac{1}{\frac{A_{1} A_{1}}{2}+1} A_{1} & \frac{1}{\left(\frac{A_{1} A_{1}}{2}+1\right)} \frac{A_{1} A_{1}}{2} & \frac{1}{\frac{A_{1} A_{1}}{2}+1} \\ \cdots & \cdots & \cdots \\ \frac{1}{\frac{A_{M} A_{M}}{2}+1} A_{M} & \frac{1}{\left(\frac{A_{M} A_{M}}{2}+1\right)} \frac{A_{M} A_{M}}{2} & \frac{1}{\frac{A_{M} A_{M}}{2}+1} \\ \mathbf{0} & 1 & 0 \\ \mathbf{0} & -1 & 0 \\ \mathbf{0} & 0 & 1 \\ \mathbf{0} & 0 & -1\end{array}\right)$,
and $\beta=\left(\begin{array}{c}\frac{1}{\frac{A_{1} A_{1}}{2}+1} b_{1} \\ \cdots \\ \frac{A_{M} A_{M}}{2}+1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right)$.
Indeed, the two new variables added in χ are forced to be 0 by the 4 new constraints. So, everything goes like if all added value was null. Yet, now all rows of the matrix are normalized !

Indeed, norm of the row m is $\left(\frac{1}{\frac{A_{m} A_{m}}{2}+1}\right)^{2} A_{m} A_{m}+\left(\frac{1}{\frac{A_{m} A_{m}}{2}+1}\right)^{2} \frac{\left(A_{m} A_{m}\right)^{2}}{4}+$ $\left(\frac{1}{\frac{A_{1} A_{1}}{2}+1}\right)^{2}$ which is $\left(\frac{1}{\frac{A_{m} A_{m}}{2}+1}\right)^{2} \times\left(A_{m} A_{m}+\frac{\left(A_{m} A_{m}\right)^{2}}{4}+1\right)$ which is $\left(\frac{1}{\frac{A_{m} A_{m}}{2}+1}\right)^{2} \times$ $\left(\frac{A_{m}^{2} A_{m}}{2}+1\right)^{2}$ which is 1 !

2.2.4 Keeping normalization when adding z variables

For any normalized linear program $A x \geq b$ in \mathbb{Q}, it is sufficient to form
$\Gamma=\left(\begin{array}{ccc}\frac{4}{5} A_{1} & \frac{3}{5} & 0 \\ \cdots & \cdots & \cdots \\ \frac{4}{5} A_{M} & \frac{3}{5} & 0 \\ \mathbf{0} & \frac{3}{5} & \frac{4}{5} \\ \mathbf{0} & \frac{3}{5} & -\frac{4}{5}\end{array}\right)$, and $\beta=\left(\begin{array}{c}\frac{4}{5} b_{1} \\ \cdots \\ \frac{4}{5} b_{M} \\ 0 \\ 0\end{array}\right)$ to get a new linear program
which is

- still normalized
- with ($\left.\begin{array}{lll}\mathbf{0} & 1 & 0\end{array}\right)$ being normalized and with a common scalar product with each row
- equivalent to the first linear program when the first added variable is 0
- this first added variable being forced to be greater than 0

Thus, if $A x \geq b$ has a solution then $\min _{\Gamma \chi \geq \beta}\left(\begin{array}{ccc}0 & 1 & 0\end{array}\right) \chi$ will find this solution.
If $A x \geq b$ has no solution, then optimal value of the added variable will not be 0 , but, let notice that this new linear program is at least bounded and resolvable.

2.2.5 Primal dual

The primal dual trick to convert a maximization/minimization into a set of linear inequality is quite classical, and, will not be presented more than in 2.2.2.

Let notice than, since, 2.2.4 allows to form a bounded and resolvable linear program, the idea of applying twice the primal dual is straightforward in some way.

2.2.6 Summary of all these derivations

In 2.2.3, 2.2.4 and 2.2.5, some tricks are presented allowing to normalize linear program, add a row with a common scalar product, and, finally form an equivalent problem with property to have solution. Using these 3 tricks, one is always able to form an equivalent linear program meeting the requirement of 2.2.1 from any raw linear program.

Hence, there is no restriction to focus only on linear program meeting the requirement of 2.2 .1 . For these ones, an algorithm based on Chubanov one is presented in next section.

3 Algorithm

Consistently with previous section, N is the number of variables and M the number of constraint (i.e. rows of matrix A), and, the problem is $\min _{A x \geq b} c x$ with assumptions described before. Transposition is still omitted in scalar product: if p, q are 2 vectors $p q$ corresponds to $p^{T} q=\sum_{n} p_{n} \times q_{n}$.

Constraints, rows of matrix A and planes will be 3 ways to speak about the same objects. If A is matrix (or sub matrix), $\operatorname{Ker}(A)$ is the sub space of all vectors h such that $A h=0$ i.e. $\operatorname{Ker}(A)=\{h / A h=0\}$.

3.1 Key points

Before introducing the algorithm, I present here some key points.

- The algorithm works on the interior of the admissible space like interior point method. But, this algorithm remains close to the geometric structure of the problem. Indeed, all moves of the current point are matched with a sets of constraints.
- At any step of the algorithm only the closest constraints of the current point have an influence.
- Precisely, the closest constraints of the current point push the point away in order both to maintain the distance with the constraints and to decrease cost function. Eventually, this leads to meet an other constraint that enter the set of closest constraints.
- When no such move exists, the routine based on Chubanov algorithm is called leading to a reboot of the set of closest constraints. ($A x \geq 1$ could have a solution while $A x=1$ no.)
- The algorithm terminates because the set of closest constraint can not be twice the same

3.2 Pseudo code

The pseudo code the algorithm which should start from a trivial interior point x is:

1. compute $d=\min _{m} A_{m} x-b_{m}$
2. compute D the set of planes at distance d
3. compute $p=\max _{A_{m}(x-\lambda c) \geq b_{m}, c(x-\lambda c) \geq 0} \lambda$
4. $z=x-p c$
5. check trivial termination
(a) if x is a solution $(A x \geq b, c x=0)$, return x
(b) if z is a solution, return z
6. let v be the projection of $-c$ on $\operatorname{Ker}\left(A_{D}\right)$ (may result in $c v<0, A_{D} v=\mathbf{0}$)
7. if $v \neq \mathbf{0}$
(a) compute λ : $\min _{m \notin D / A_{m} v<0} \frac{A_{m} x-b_{m}-d}{-A_{m} v}$
(b) $x \leftarrow x+\lambda v$
(c) GO TO 1
8. call Chubanov routine to find θ such that $\binom{A_{D}}{-c} \theta>\mathbf{0}$
9. find $\delta>0$ such that $A(z+\delta \theta)>b$ (by construction $c(z+\delta \theta)<c z$)
10. $x \leftarrow z+\delta \theta$
11. GO TO 1

4 Termination of the algorithm

From a point interior point, the coarse algorithm generates a set of interior points plus one optimal point. well defined :

First, all steps and moves are well defined.
Step 6 is just the projection of a vector on a sub space.
In step 7.a, moving along v decreases the cost $c x$ of x (because $v \neq \mathbf{0}$) which is obviously bounded as $c x \geq 0$. So this move can not be done for ever, and, so, necessarily some plane with meet the ball of center x and radius d - it will be added to D. These moves are generalization of bisector move.

Step 8 should returns something if there is a possible solution. And, there is at least one: let consider $\theta=x^{*}+\frac{c z}{2} c-z$. Indeed, x^{*} the solution (there is one see 2.2) verifies $A x^{*} \geq b$ so let define $\rho=x^{*}+\frac{c z}{2} c$. Then, ρ verifies $A \rho>b$ but still $c \rho=\frac{c z}{2}<c z$ (because $c x^{*}=0$ and $c z>0$ otherwise z should have been a solution in 5.b). So, $c(\rho-z)>0$ and $A_{S}(\rho-z)=A_{S} \rho>b_{S}$ (since $A_{S} z=0$ and $\left.A \rho>b\right)$. So, I have proven that $\theta=x^{*}+\frac{c z}{2} c-z$ is a possible solution. Of course, there is NO reason that the solution returned by the call to the Chubanov algorithm will be $\theta=x^{*}+\frac{c z}{2} c-z$ (if so, one call will be enough). But, still, a solution exists so Chubanov algorithm will return one.

Then, step 9 is obviously possible seeing the definition of S : for all $m \notin S$, $A_{m} z>b_{m}$ and for all $m \in S, A_{m} z=b_{m}$ but $A_{m} \theta>0$. So finding δ is possible (in $O(N M)$ just by looping over all constraints).

So the algorithm is well defined (assuming that all points are still in the admissible space i.e. $\{x / A x \geq b\}$.
Interior moves: All moves are designed to never go outside the interior of the admissible space (i.e. $\{x / A x>b\}$) - except to reach an optimal point. Indeed, step 7.b keeps constant the distance to the constraint satisfaction of constraint. And, step 11 starts from a corner and uses θ to increases satisfaction of the all constraints forming the corner before meeting constraints outside the corner.

Decreasing cost:

Then, trivially $c x$ is decreasing during the algorithm (as $7 . \mathrm{b}$ and 10 decrease $c x$ by construction of v and θ).

breaking the loop:

Then, the set D can not have twice the same value in step 9 . Indeed, if algorithm reaches two time in step 9 in point x_{1} and x_{2} with a common value for D, then, let consider the point z_{1} and z_{2} from step 4 . Then, it holds both $c z_{2}<c z_{1}$ and $A_{D} z_{2}=A_{D} z_{1}=0$. So, the algorithm should not have pass the step 6 when meeting x_{1}.

In other words, algorithm explores the $\operatorname{ker}\left(A_{D}\right)$ to increase D, then when D is big enough, the algorithm moves bellow a corner of A_{D}. As D was big enough at this step, it means that the $\operatorname{ker}\left(A_{D}\right)$ is nul and that D will never be reached again.

So, it can not have more than 2^{M} step 10 . And, step $7 . b$ strictly increases D which is bounded by $\{1, \ldots, M\}$. So, the algorithm can not perform more than $M 2^{M}$ loops. Each loop taking less than a call of the Chubanov algorithm.

Is the algorithm strongly polynomial ?

The central question is the number of call of the Chubanov algorithm from step 9.

In numerical experimentation on toy example, it seems that any call of the Chubanov algorithm leads to the definitive rejection of at least one constraint.

Even, if this statement is probably wrong in large dimension and/or complex case, the underlying idea is that during step 11, the set of closest constraints form a linear cone with a single vertex z and with the property that each linear plane forming the cone is tangent to the ball of center x and radius d. Then, the cone is cut by the plane $\{u / c u=c z\}$. And, the question is: could the point x can meet all planes forming the cone without crossing neither other planes nor $\{u / c u=c z\}$.

This question is interesting because complexity of the algorithm is more or less the complexity of Chubanov call (which is strongly polynomial) times the number of call of this routine which could be bounded by M if such statement was true. So, this (probably wrong) statement is related to an hypothetical strong polynomial time property of the algorithm running in $O\left(M^{2}\right)$ Chubanov call plus $O\left(N M^{2}\right)$ elementary operations in \mathbb{Q}.

More precisely, the source code of the toy experiment is provided in appendix. The generated linear program may be too simple, and implementation of Chubanov as $x^{*}+\frac{c z}{2} c-z$ helps the algorithm too much. Yet, more than 40 runs of the algorithm on none trivial size ($N=15$ and $M=30$), this rejection effect has been always observed (even if surely false).

References

[1] Xavier Allamigeon, Pascal Benchimol, Stéphane Gaubert, and Michael Joswig. Log-barrier interior point methods are not strongly polynomial. SIAM Journal on Applied Algebra and Geometry, 2(1):140-178, 2018.
[2] Sergei Chubanov. A polynomial projection algorithm for linear feasibility problems. Mathematical Programming, 153(2):687-713, 2015.
[3] Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in convex programming, volume 13. Siam, 1994.
from future import print function

```
from fractions import Fraction
```

def checkSquare(Q):
if len (Q)==0:
print ("len (Q) ==0")
quit()
if $\operatorname{len}(Q[0])==0$:
print("len (Q[0]) ==0")
quit()
for i in range(len(Q)):
if $\operatorname{len}(Q[i])!=\operatorname{len}(Q[0]):$
print("len(Q["+str(i)+"])!=len(Q[0])")
quit()
def combinaisonlineaire(u,l,v):
\#checkSquare([u,v])
w = []
for i in range(len(u)):
w. append (u[i]+l*v[i])
return W
def produitscalaire(u,v):
\#checkSquare([u,v])
w = Fraction()
for i in range(len(u)):
$\mathrm{w}+=\mathrm{u}[\mathrm{i}] * \mathrm{v}$ [i]
return W
def projection(u, BOG):
\#checkSquare([u]+BOG)
pu = []
for i in range(len(u)):
pu.append(Fraction())
for v in $B O G$:
pu=combinaisonlineaire(pu,produitscalaire(u,v)/produitscalaire(v,v),v)
return pu
def gramschimdBOG(H):
\#checkSquare(H)
$H=$ [h.copy() for h in H if produitscalaire(h,h) != Fraction()]
BOG = []
while len (H) >0:
BOG.append (H.pop ())
for i in range(len (H)) :
$\mathrm{H}[\mathrm{i}]=$ combinaisonlineaire(H[i],Fraction(-1), projection(H[i],BOG))
$H=[h$ for h in H if produitscalaire(h,h) != Fraction()]
return BOG
print("a,b,optimal should be set by hand")
$\mathrm{A}=$ []
$\mathrm{b}=[\mathrm{l}$
c $=$ []
optimal = []
x = []
vectorzero = []
moinsc = []
def checkSize():
checkSquare(A)
checkSquare([optimal, c])
if $\operatorname{len}(A)!=\operatorname{len}(b)$ or len(c) $!=\operatorname{len}(A[0]):$
print("len $(A)!=\operatorname{len}(b)$ or $\operatorname{len}(c)$! $=\operatorname{len}(A[0]) ")$
quit()

71
global vectorzero
for n in range(len(c)): vectorzero.append(Fraction())
global moinsc
moinsc = combinaisonlineaire(vectorzero,Fraction(-1), c)
print("size of input data are consistant")
def computed(y):
$\mathrm{d}=$ produitscalaire(A[0],y)-b[0]
for m in range(len(A)):
if produitscalaire(A[m],y)-b[m]<d:
$\mathrm{d}=$ produitscalaire(A[m],y)-b[m]
return d
def computeD(y):
D = []
d = computed (y)
for m in range(len (A)): if produitscalaire $(A[m], y)-b[m]==d:$
D.append(m)
return D
def checkAdmissible(y):
return computed (y) $>=$ Fraction()
def checkStrinctAdmissible(y):
return computed (y) $>$ Fraction()
def check0ptimal(y):
return checkAdmissible(y) and produitscalaire(c,y)==Fraction()
def checkProperties():
if not checkOptimal(optimal):
print("not check0ptimal(optimal)")
quit()
for m in range(len(A)): if produitscalaire (A[m],A[m]) != Fraction(1):
print("produitscalaire (A["+str(m)+"],A["+str(m)+"]) != Fraction(1): e
"+str(A[m])+" "+str(produitscalaire(A[m],A[m])))
quit()
if produitscalaire(A[m],c) != produitscalaire(A[0], c):
print("produitscalaire(A["+str(m)+"], c) != produitscalaire(A[0], c)")
quit()
if produitscalaire(A[0], C) <= Fraction():
print("produitscalaire(A[0], c) <= Fraction()")
quit()
$\operatorname{maxb}=\max (b)$
global x
x=combinaisonlineaire(vectorzero, maxb/produitscalaire(A[0], c)+Fraction(1), c)
checkStrinctAdmissible(x)
print("input data seems to meet requirement")
def computez(y):
z =combinaisonlineaire(y, -computed(y)/produitscalaire (A[0], c) , c)
if not checkAdmissible(z) or checkStrinctAdmissible(z):
print("not checkAdmissible(z) or checkStrinctAdmissible(z) "+str(z))
quit()
return combinaisonlineaire(y, -computed(y)/produitscalaire(A[0],c) , c)
def simulatechubanov(z):
z09 = combinaisonlineaire(vectorzero, Fraction (9,10), z)
optANDc = combinaisonlineaire(optimal, produitscalaire(z,c)/Fraction(2), c)
out = combinaisonlineaire(z09,Fraction(1,10),optANDc)
if not checkStrinctAdmissible(out) or
produitscalaire(c,out)>=produitscalaire(c,z):

```
print("not checkStrinctAdmissible(out) or
    produitscalaire(c,out)>=produitscalaire(c,z) "+str(z) + " " + str(out))
    quit()
    return out
def computeBisector(y):
    D = computeD(y)
    projectionOnVect = projection(moinsc, gramschimdBOG([A[m].copy() for m in D]))
    projectionOnKer = combinaisonlineaire(moinsc,Fraction(-1),projectionOnVect)
    for m in D:
        if produitscalaire(A[m],projection0nKer)!=Fraction():
            print("produitscalaire(A["+str(m)+"],projectionOnKer)!=Fraction() e
            quit()
    if produitscalaire(moinsc,projectionOnKer)<Fraction():
        print("produitscalaire(moinsc,projectionOnKer)<Fraction()")
        quit()
    return projectionOnKer
def bisectormove(y):
    d = computed(y)
    v = computeBisector(y)
    if produitscalaire(v,v)==Fraction():
        return False,v,Fraction(),y
    candidate = []
    for m in range(len(A)):
        if produitscalaire(v,A[m])<Fraction():
            currentdir = produitscalaire(A[m],x)-b[m]
            desireddir = d
            move = -(currentdir-desireddir)/produitscalaire(v,A[m])
            candidate.append(move)
    if candidate == []:
        print("candidate == []")
        quit()
    move = min(candidate)
    if move == Fraction():
        print("move == Fraction()")
        quit()
    nexty = combinaisonlineaire(y,move,v)
    if not checkStrinctAdmissible(nexty):
        print("not checkStrinctAdmissible(nexty) "+str(y)+" "+str(v)+" e
            "+str(move)+" "+str(nexty))
        quit()
    return True,v,move,nexty
def iteration():
    print("x=" + str(x))
    if checkOptimal(x):
        return True,x
    z = computez(x)
    if check0ptimal(z):
        return True,z
    d = computed(x)
    print(d)
    D = computeD(x)
```

```
/home/achanhon/Bureau/PERS0/1pour100/main.py
Page 4 sur 5
jeu. 07 févr. 2019 17:22:48 CET

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
```

 206 #print(produitscalaire(A[D[0]],x))
    ```
```

 206 #print(produitscalaire(A[D[0]],x))
    ```
```

 #print(A[D[0]])
    ```
    #print(A[D[0]])
    #print(b[D[0]])
    #print(b[D[0]])
    print(D)
    print(D)
    flag,v,move,y = bisectormove(x)
    flag,v,move,y = bisectormove(x)
    if flag:
    if flag:
        print("bisector move "+str(v)+" "+str(move))
        print("bisector move "+str(v)+" "+str(move))
        return False, y
        return False, y
    else:
    else:
        print("chubanov move")
        print("chubanov move")
        return False, simulatechubanov(z)
        return False, simulatechubanov(z)
def algorithm():
def algorithm():
    global x
    global x
    nbiter = 0
    nbiter = 0
    while True:
    while True:
        print("########################################## "+str(nbiter))
        print("########################################## "+str(nbiter))
        nbiter+=1
        nbiter+=1
        flag,y = iteration()
        flag,y = iteration()
        if flag:
        if flag:
            print("YEAH")
            print("YEAH")
            return y
            return y
        else:
        else:
            x = y.copy()
            x = y.copy()
import numpy as np
def randomproblem(N,M):
    npoptimal = np.random.randint(-100,101, size=(N))
    print(npoptimal)
    Aequal = np.random.randint(-100,101,\operatorname{size}=(M,N))
    bequal = np.dot(Aequal,npoptimal)
    Agreater = np.random.randint(-100,101,size=(M,N))
    bgreater = np.dot(Agreater,npoptimal) - np.random.randint(0,101,size=(M))
    global optimal
    global c
    global A
    global b
    for n in range(N):
        optimal.append(Fraction(int(npoptimal[n])))
    optimal.append(Fraction())
    optimal.append(Fraction())
    optimal.append(Fraction())
    vectorzero = []
    for n in range(len(optimal)):
        vectorzero.append(Fraction())
    c = vectorzero.copy()
    c[-1] = Fraction(1)
    for m in range(M):
        tmp = []
        for n in range(N):
            tmp.append(Fraction(int(Aequal[m][n])))
        norm = produitscalaire(tmp,tmp)
        for n in range(N):
            tmp[n] *= Fraction(4,5) / (norm/Fraction(2)+Fraction(1))
        tmp.append(Fraction(4,5) * norm/Fraction(2) / (norm/Fraction(2)+Fraction(1)))
        tmp.append(Fraction(4,5) / (norm/Fraction(2)+Fraction(1)))
        tmp.append(Fraction(3,5))
```

```
    A. append(tmp.copy())
    b.append(Fraction(int(bequal[m])) * Fraction(4,5) /
    (norm/Fraction(2)+Fraction(1)))
    tmp = combinaisonlineaire(vectorzero,Fraction(-1),tmp)
    tmp[-1]*=Fraction(-1)
    tmp[-2]*=Fraction(-1)
    tmp[-3]*=Fraction(-1)
    A. append(tmp)
    b.append(Fraction(-int(bequal[m])) * Fraction(4,5) /
    (norm/Fraction(2)+Fraction(1)))
for m in range(M):
    tmp = []
    for n in range(N):
        tmp.append(Fraction(int(Agreater[m][n])))
    norm = produitscalaire(tmp,tmp)
for n in range(N):
        tmp[n] *= Fraction(4,5) / (norm/Fraction(2)+Fraction(1))
    tmp.append(Fraction(4,5) * norm/Fraction(2) / (norm/Fraction(2)+Fraction(1)))
    tmp.append(Fraction(4,5) / (norm/Fraction(2)+Fraction(1)))
    tmp.append(Fraction(3,5))
    A.append(tmp.copy())
    b.append(Fraction(int(bgreater[m])) * Fraction(4,5) /
    (norm/Fraction(2)+Fraction(1)))
```

A. append(vectorzero. copy ())
A. append(vectorzero. copy ())
A. append (vectorzero. copy())
A. append (vectorzero)
b.append(Fraction())
b. append(Fraction())
b. append (Fraction())
b.append(Fraction())
$\mathrm{A}[-1][-1]=$ Fraction $(3,5)$
$A[-1][-2]=$ Fraction $(4,5)$
$A[-2][-1]=F r a c t i o n(3,5)$
$A[-2][-2]=-F r a c t i o n(4,5)$
A[-3][-1] $=$ Fraction $(3,5)$
$A[-3][-3]=$ Fraction $(4,5)$
$A[-4][-1]=F r a c t i o n(3,5)$
$A[-4][-3]=-$ Fraction $(4,5)$
randomproblem(15,30)
checkSize()
print (A)
print (b)
print (c)
print (optimal)
checkProperties()
print("GO")
x = algorithm()
print(x)

