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Abstract

We propose in this paper a parareal in time algorithm for the resolution of the Langenbuch-Maurer-Werner
(LMW) benchmark [1] neutron diffusion transient model. The parallelization in time is prompt thanks to a
the coarse solver, which is based on a stable coarse time step with a steady control rods model. The finite
element implementation provides a good scalability of the algorithm, where the time discretization is based
on a Euler implicit scheme. Numerical results show the efficiency of the parareal method on large light water
reactor transient model.

Keywords: Parareal in time algorithm, time-dependent neutron diffusion equations, hight performance
computing.
2010 MSC: code, primary 65Y05; Secondary 35Q20.

1. Introduction

The accurate knowledge of the time-dependent spatial flux distribution in nuclear reactor is required
for nuclear safety and design. The motivation behind the development of methods for solving the energy-,
space-, and time-dependent kinetic equations is not only the challenge of developing a method for solving a
large set of coupled partial differential equations, but also a real need to predict the performance and assess
the safety of large commercial reactors, both these presently operating and those being designed for the
future.

Modern reactor core designs and safety, nowadays, depend heavily on the simulation of the reactor
core and plants dynamics as well as their mutual interaction. Significant progress has been registered, for
the last fifteen years, in developing accurate techniques to simulate the computationally expensive reactor
core models. Modeling the reactor core involves a large set of coupled time-dependent partial differential
equations (PDEs), where the exact model kinetic transport equation is simplified to multi-group diffusion
approximation. The time-dependent multi-group neutron diffusion equation is usually used to study the
transient behavior of the neutron flux (power) distribution on the reactor core, where the prediction of the
dependencies of neutrons flux comprising dynamics in reactor core at a forward long time, is very important
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for nuclear safety. These diffusion equations are coupled with the dynamic of some delayed neutrons, which
are called precursors.

For a lack of availability of read-write memory in the sequential computers, it is relevant to often pro-
pose parallel methods, which solve these large scaled system, with massively parallel computers. Many
successful works, has been done in the parallelization of the neutron model’s simulation. For instance [2]
studies the static case i.e. Eigenvalues problems with space domain decomposition methods, and a very nice
strategy [3], [4] uses quasi-stationnary approach to accelerate the simulation.

In this paper we investigate the application of the parareal in time algorithm [5, 6] on neutron diffusion
equation that governs the time-dependent flux distribution in the reactor core. The parareal in time algo-
rithm is an iterative scheme, that enables to improve computational time with parallel simulation. In several
cases, parareal in time algorithm gives an impressive rate of convergence for the linear diffusion equations
or more unexpected efficiency with non-linearity [7]. This algorithm is studied and shows stability and
convergence results [8, 9, 10, 11, 12] particularly for diffusion system and others. Also it presents efficiency
in parallel computer simulation. We find a variety [13, 14, 15, 9, 16, 17, 18, 19] of versions of this scheme
that adapt [20, 21, 22, 23, 24, 25] the original algorithm to tackle new settings. Furthermore the parareal
algorithm can be easily coupled with other iterative schemes such as domain decomposition methods e.g.
basic Schwartz algorithm or more complex one [26], and optimal control based descent algorithm [27, 28, 29].

The paper is organized as follows: After this introduction, we present at the second section the model of
the kinetic of neutron inside the reactor core. The third section is devoted to the brief introduction of the
parareal in time algorithm. Numerical tools are present in the fourth section where we explain how paraeal
algorithm is adapted to solve the problem. We finally, in section five, present and discuss the numerical
experiments that show the speedup following the fully-parallel implementation of the parareal algorithm in
a parallel architecture.

2. Model

The neutron dynamics in a reactor core is governed by the kinetic transport Boltzmann’s equation [30].
The solution to these equations is denoted as Ψ and represents the directional neutron flux, that is a function
of time, of the position ~r within the reactor core Ω ⊂ R3, of the velocity of neutron ~V =

√
2E/m~d, where ~d is

a unit vector that stands for the direction of the velocity, E stands for the energy of the neutron and m for
it’s mass. For computational reason, a simplification of the model has been proposed in [30, chap XXI, sec
5] that consists in averaging through the velocity directional variable leading to the introduction of the new

function φ(t,~r, E) = 1
4π

∫
S Ψ(t,~r, ~d, E) d~d where S is the unit sphere. This method leads to accurate enough

results in most of standard cases, unfortunately the computational time remains excessively long. Further
simplifications consist in averaging also in the energy variable : the energy interval [Emin, Emax] is divided
into ĝ non overlapping intervals around a set of discreet energies {Eg}

ĝ
g=1 and leads to consider a new unknown

Φ = {φg}
ĝ
g=1 composed of the set of the neutron average flux (or power) over each subinterval around Eg. This

approach is known as the multi-group theory [31] where for each energy group g = 1, . . . , ĝ and any position
~r ∈ Ω ⊂ R3, the equations are a set of coupled-three-dimensional, multi-energy-group neutron kinetics
equations involving a time delayed contributions (called precursors, and denoted as C ≡ C(~r, t) = {Ck(~r, t)}Kk=1).
The partial differential equation that governs the kinetic of neutron in the reactor core writes

1
Vg

∂

∂t
φg(~r, t) = div(Dg~∇φg(~r, t)) − Σ

g
t φ

g(~r, t) + χ
g
p

ĝ∑
g′=1

(1 − βg′ )νg′Σ
g′
f φ

g′ (~r, t)

+

ĝ∑
g′=1

Σg′⇀g
s φg′ (~r, t) +

K∑
k=1

χ
k,g
d Ck(~r, t), t ∈ [0,T ],~r ∈ Ω,

φg(~r, t) = 0 on the boundary of the reactor core : t ∈ [0,T ],~r ∈ ∂Ω,

φg(~r, 0) = φ
g
0(~r) the initial condition : ~r ∈ Ω.

(1)
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The delayed neutron concentrations satisfy:

∂Ck

∂t
(~r, t) = −λkCk(~r, t) +

ĝ∑
g′=1

βk,g′νg′Σ
g′
f φ

g′ (~r, t), t ∈ [0,T ],~r ∈ Ω. (2)

In Eqs. (1) and (2), the neutron velocity Vg =
√

2Eg/m, the diffusion coefficient is denoted by Dg. Σ
g
t , νΣg

f

are the total and production cross-section, Σ
g′⇀g
s stands for the transfer cross-section from energy group g′ to

g. The fission spectra of prompt and delayed neutrons, respectively χg
p , χk,g

d . The concentration of precursor
group is denoted by Ck, their delay fraction and decay constant are denoted by βk,g and λk respectively. The

total delay fraction is denoted by βg, where βg =

K∑
k=1

βk,g. For further physical explanation and analysis of

the model we refer to [32] and reference therein.
We denote, hereafter, by reactivity the energy of the reactor core equal to the sum over g of the squared

L2(Ω)-norms of the fluxes φg, solutions of the neutron model Eq. (1). The reactivity of the reactor core
remains a function of time. Its evolution is essentially caused by the chain reaction of the neutrons’ fission.
In the reactor core this fission chain reaction produces exponentially in time new neutrons, responsible of the
variation of the reactivity of the reactor. To control this effect, some rods are immersed inside the reactor
core in order to absorb some neutrons. Those control rods are sequentially withdrawn and immersed in
order to control the reactivity of the reactor. This action insure safety of the reaction during the production
of the electricity.

The reactor core may have three states of energy: subcritical, critical and supercritical. Those states
correspond to the density of neutrons diffusing in the reactor. The reactor is said to be critical if the
neutron outcome, in the sense of energy, is null. That means, the production and absorption of neutron are
equal during time. The neutron outcome in the reactor at equilibrium obeys:

production f ission = absorption + leaks.

The simulation of the neutron model generally starts from an equilibrium average flux distribution, which
is characterized by a steady solution of Eq. (1) without external source i.e. the unique source of neutron

considered is the fission. We thus disregard the contribution of the delayed neutron i.e. βg and χ
k,g
d are

assumed vanishing. Such an initial condition for the simulation of the neutron model is a solution to the
following eigenvalue problem, which looks for a scalar keff known as the effective reactivity. This factor is the
largest generalized eigenvalue associated to the two operators: production operator, namely, F and absorption
operator, namely, P. The production operator characterizes the production of the neutrons by fission and
is extracted from the fission source term χ

g
p
∑ĝ

g′=1 ν
g′Σ

g′
f φ

g′ (~r, t), whereas absorption operator characterizes

escapes or leaks in the system and corresponds to the diffusion and scattering term : −div
(
Dg∇φg(~r, t)

)
+

Σ
g
t φ

g(~r, t) −
ĝ∑

g′=1

Σg⇀g′
s φg′ (~r, t). The eigenvalues problem reads : find Λ ∈ R and ΦΛ such that

PΦΛ = ΛFΦΛ.

The solution ΦΛ associated to Λmax, the largest eigenvalue to this problem is chosen as the initial condition

to problem Eq. (1), and we set keff =
1

Λmax
. Note that from the steady state of Eq (2) we have also CΛmax

which corresponds to ΦΛmax and stands for the initial condition for the precursor concentrations.
Problem Eqs. (1) and (2) can be written in a condensed form as follows:{

∂y(t)
∂t

= A(t)y(t), on [0,T ] ×Ω

y(t = 0) = y0, on {0} ×Ω.
(3)
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where y stands for the solution y := (φ1, . . . , φĝ,C)T . In the case where ĝ = 2 the reaction diffusion operator
A(t) thus reads

A(t) =

(
V1div(D1∇(•)) − Σ1

t (•) + V1χ1
p(1 − β1)ν1Σ1

f (•) + V1Σ
(1⇀1)
s (•) V1χ1

p(1 − β2)ν2Σ2
f (•) + V1Σ

(2⇀1)
s (•) V1 ∑K

k=1 χ
k,1
d (•)

V2χ2
p(1 − β1)νΣ1

f (•) + V2Σ
(1⇀2)
s (•) V2div(D2∇(•)) − Σ2

t (•) + V2χ2
p(1 − β2)ν2Σ2

f (•) + V2Σ
(2⇀2)
s (•) V2 ∑K

k=1 χ
k,2
d (•)

βk,1ν1Σ1
f (•) βk,2ν2Σ2

f (•) −λk(•)

)
.

The dependence in time of the operator A(t) is due to the change of cross sections values where the reaction
occurs. The existence of a solution to this problem is proven in [30, chap XXI, section 2]. It can be written
thanks to a flow map as follows

∀t ≥ 0,∀τ > 0, y(t + τ) = Et
τ(y(t)), (4)

where the uniqueness of the solution provide the semi-group property of the propagator E.

3. The parareal in time algorithm

The parareal in time algorithm [5] is a “divide and conquer” method that enables parallelization across
the time direction. Following the same strategy as in domain decomposition methods, the parareal in
time algorithm is based on breaking up the time interval of simulation into sub-intervals and solve over
each sub-interval independently using different processors by updating iteratively the initial condition over
each sub-interval. The time evolution problem is thus broken up into a series of independent evolution
problem on smaller time intervals. The parareal in time algorithm can be presented as a predictor corrector
process [25, 7], and also as a multi gmulti-shooting algorithm also as a kind of Newton method with a time
coarse grid defining the Jacobian matrix [17]. Many improvements on the method, in particular for efficient
iterative solution procedure on parallel architectures have been proposed, see e.g. [24, 33].

Starting from the general formulation of Eq. (3), we assume given a uniform partition of the time interval
into N subintervals, such that 0 = t0 < t1 < .. < tn < tn+1 < .. < tN = T , and denote ∆t = tn+1 − tn, so tn = n∆t.
Based on the semigroup property stated in (4) we have

y(tn+1) = E
tn
∆t(y(tn)) = E

t0
(n+1)∆t(y0).

In practice, we have to provide a fine enough numerical approximation of the propagator E denoted by F
and named by fine propagator in what follows. It is based on an appropriate classical discretization scheme.
In order to understand the mechanism of the parallelization across the time, let us denote by Yn such a fine
approximation to the solution of the Cauchy problem Eq.(3) at time tn i.e. Yn ' y(tn). The sequence of
solution (Yn)n=N−1

n=1 is thus solution of:

Yn+1 = F
tn
∆t(Yn), ∀ 1 ≤ n ≤ N − 1 with Y0 = y0,

putting in evidence the sequential nature of the time propagation and, correlatively the fact that we are
constrained to know first the actual solution e.g. at time tn in order to compute the solution at time tn+1.
The parareal in time algorithm further involves another propagator, denoted as G which is a coarse version
of the fine propagator F . The propagator G is assumed to be faster and cheaper, in order to accomplish
the sequential propagation of the solution from time t0 to tN , of course it cannot be so accurate as F . This
allows to define a sequence of approximate solutions (Yk

n)k>0 that converges to the right solution Yn when k
goes to infinity. Starting from

Y0
n+1 = G

tn
∆t(Y

0
n ), Y0

0 = y0, (5)

the numerical scheme of the parareal method is given by:

Yk+1
n+1 = G

tn
∆t(Y

k+1
n ) + F

tn
∆t(Y

k
n) − Gtn

∆t(Y
k
n), with Yk

0 = y0. (6)

The first contribution of the right hand side in Eq.(6) is the prediction for all propagated solution at
time tn+1, where the rest of the right hand side corresponds to the correction scheme, using the accurate
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solution with the accurate propagator F subtracting the inaccurate solution predicted before using the
coarse propagator G.

4. Numerical method

Thanks to the property of symmetry in the reactor core the computational domain is reduced to the

quarter. Consequently, we consider Neumann boundary condition at the interfaces, that is
∂φg

∂~n
(~r, t) = 0,

where ~n is the outward normal of the domain.

4.1. Setting-up the initial condition

The critical state of the reactor core can be derived from the steady solution of Eq. (1) without the
contribution of the delayed neutrons.

−div(Dg∇φg)(~r, t) + Σ
g
t φ

g(~r, t) −
ĝ∑

g′=1

Σg⇀g′
s φg′ (~r, t) =

1
keff

χg
ĝ∑

g′=1

νg′Σ
g′
f φ

g(~r, t), (7)

Practically, we carry out the eigen value problem (on the factor keff) by the use for instance of the power
algorithm.

4.2. Fine propagation

Numerical discretization of the neutron equation is briefly presented in this subsection. The Eq.(1) is
composed by several time dependent partial differential equations of order two in space and order one in time
for the flux distribution and six ordinary differential equations for the concentration of precursors. We give
first the space discretization of those equations and second we give the numerical scheme to approximate
the time dependency.

The numerical scheme, to approximate space variable, is based on the classical Galerkin representation
on an orthogonal basis spanned by a shape functions. We use, in fact, finite element method for the space
discretization, where the space domain is meshed with tetrahedral elements. We use P1-Lagrange finite
element for the average flux and P0-Lagrange finite element for both concentration of precursors and the
physical parameters. In the sequel,the space-time approximation of the global unknown y(ti), is denoted by
yi. We now assume the following partition of the time interval [t0, tn̂] = ∪n̂−1

n=0[tn, tn+1] where [tn, tn+1] is also

devided to î points. consequently we have [t0, tn̂] = ∪n̂−1
n=0 ∪

î−1
i=0 [tn,i, tn,i+1]. Obviously, tn,0 = tn and tn,î = tn+1. In

the sequel the double subscript is dropped and the use of the subscript i stands, from now on, for the index
of any time ti, whereas the use of the subscript n stands only for time tn = n4t.

The evolution in time of the solution yi is approximated using the θ−scheme, which assumes at time ti+1
the solution yi is known. The solution at time ti+1 is thus computed by solving yi+1−yi = τθAi+1yi+1+τ(1−θ)Aiyi,
where θ ∈ (0, 1), and Ai represents the approximation matrix of the operator A(ti) at time ti. Finite element
matrix representation can be found in e.g. [34, chap.3]. The resolution in the forward time, with θ , 0,
requires matrix inversion at each time step, such that

yi+1 =
(
I − τθAi+1

)−1(I + τ(1 − θ)Ai
)
yi. (8)

The efficient choice of the parameter θ is discussed in the experimental part.
More technical discussion concerning the fine propagation, in addition to the classical discretization

scheme presented above, is given in the sequel.
The numerical approximation of the transient LMW application needs a particular attention of the

control rods movement, where the cross-sections have to be interpolated in order to avoid oscillations and
instabilities of the numerical solver. Similar cross-sections interpolation technique is applied in [35] for the
neutron nodal expansion method with the use of the improved quasi-static for spatial neutron kinetics.
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Numerically, cross sections are approximated with piecewise constant function, where the triangulation
of the domain is made with particular issues: each simplex (tetrahedra) has one horizontal/vertical facet
and one vertical edge. This kind of 3d-mesh is possible to build by using several layers of prisms, which
we cut into three tetrahedrons. This particular choice of the triangulation is motivated by the fact that it
enables interpolating the cross sections, hence a better approximation if two king of cross section co-exist in
one tetrahedron. Otherwise, one has to refine the mesh in order to captivate the immersion of control rods
in fuel in the reactor. This is very expensive from the numerical point of view.

Figure 1(left), presents a cut of the prism into three tetrahedra having one horizontal/vertical facet and
one vertical edge, whereas Figure 1(right) presents the immersion of the control rod into the tetrahedron
where cross section (represented with color) are taken into account relatively with the volume occupied by
control rod. In this case positive values, between 0 and 1 closed, is attributed to the cross section related
to the rods, whereas cross section related to fuel are deduced automatically i.e. interpolated using the
complement value. It is worthy noting that this procedure is done before finite element matrix assembly.
We update cross sections at each time step using interpolation, then we assemble the main matrix and solve
the system of Eq. (8).

y

x

z
h

hr

h f

Control rod

Fuel

Figure 1: P0-interpolation of the cross-sections over one simplex (tetrahedron). The triangulation of the domain Ω ⊂ R3 is
structured in the sense that each tetrahedron has one horizontal/vertival facet and one vertical edge, suppose that h is the
hight of one tetrahedron we denote by hr and h f the length of the penetration of control rods in the tetrahedron and the rest
of the length respectively. The distance hr and h f are therefore perfectly determined using the velocity of control rods.

4.3. Coarse propagation using reduction of the model

In this subsection we present and discuss a reduction of the previous model; this simplified system will
be used in the parareal in time algorithm as a coarse solver for the simulation. The reduction we use is
related to the number of groups both for flux and precursors in Eqs. (1)-(2). Further simplification that
concerns the evolution of the control rods in the reactor core is carried out here after.

In the kinetic of neutrons, their is several factors that contribute directly or indirectly to the production of
energy within the reactor core. For example, delayed neutrons have a very important role in the stability and
the damping of the constantly increasing energy produced by fission. The contribution of the concentrations
of precursors is fundamental to access accurate information about flux density at time t during the reaction.
Therefore, one can imagine the impact of the absence of the delayed neutrons in the reaction behavior inside
the reactor core. Indeed, when this happens, damping is reduced and energy production is more rapid in time.
This fact considered, we reduce the neutron model by eliminating groups of the concentration precursors.
From a physical point of view, the reaction of the reduced model is more rapid in time, so we are able to
reach, approximatively in time and quantity, the peak of the energy, one has to manipulate the velocity
of neutrons in this case. The reduced system has thus less number of unknown (i.e. just Eq (1) without
coupling with precursor Eq. (2)). Hence, we reduce the numerical system and accelerate its resolution.

In the following, we shall call complete model and reduced model, the neutron model of Eqs. (1)-(2) with
and without precursors concentration groups respectively.
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We recall that control rods have a specific motions that regularize their contribution on the fission reaction
by absorbing neutrons. We highlight the fact that at each time step numerical effort is provided in order
to assemble the updated system according to the new control rods position. We propose an alternative to
that effort by reducing the motion of control rods to a two specific positions. The resulting reduced motion
is called static, which refers to a fixed control rods positioning, whereas, the continuous motion of rods is
called dynamic.

Let us now study the relationship between the reactivity factor keff, the positioning of control rods and
the flux distribution in the core. We discuss the extension of what we showed in section 4.1 at each time tn of
the simulation. Indeed, in the dynamic context of control rods, we can suppose that at each time step tn we
look for a new initial condition at time tn in order to start the reaction for the period of time [tn, tn+1). Hence,
we deal with the steady equation in order to produce as in section 4.1 the initial conditions (Yn)n for any
time tn, which is not necessary critical ! Notice that this operation is fully parallel. However, the resolution
with a power-type algorithm is also numerically expensive, even the procedure is completely simultaneous.
On the other hand, if we consider a coarse motion of control rods that coincides with the coarse time step,
we still make numerical effort when the number of the series (Yn)n is increasing. Nevertheless, we observe
that the reactivity factor keff is implicitly a function of time; any position of control rods can be represented
by a specific real factor. Hence, with a formal way, the motion of control rods could be replaced by a
time dependent reactivity function keff(t), where rods are fixed at the initial positioning. This may not be
en efficient way, however, time dependence of the reactivity is not provided a priori. For all that reasons,
in order to reduce the motion of control rods, we proceed as following: After fixing the control rods at
their initial position, we generate the initial flux distribution denoted by φ̃Λmax , which is the largest Eigen
vector as described before. Where the corresponding largest Eigen value is denoted by ˜keff. Second, the
flux distribution is normalized in the sense that we multiply it by ˜keff in order to have a largest Eigen value
keff equal to unity. That flux distribution presents the initial condition of our simulation. Actually we
can control the productivity (increasing or decreasing) of the fission reaction with the change we make on
the variable keff (see section 4.1 for more explication). Since prior information about the productivity are
not provided, we may only use two values of the reactivity factor keff in order to realize supercritical and
subcritical states of the reactor. The motion of control rods is therefore reduced, and the resulting reduced
model produce the same state of the reactor before and after the peak. This reduction enables us to make
computation cheaper while keeping accurate results as we show it in the experimental part later on (see
section 5).

4.4. The algorithm

We have actually the ingredients to start up our algorithm, which we present with a frame on Algo-
rithm 1.The time parallel algorithm is implemented with a master-slave configuration for which we have
two types of communications: a distributive and a collective communication. In the distribution communi-
cation, the main processor sends information towards all its processors agents. On the other hand in the
collection communication; the Master himself receives and collects information since his agents. In both
cases, it is about the same quantity of informations which passes in the two directions. The second type
of communication is devoted to the correction of the coarse error, which requires fine information to be
communicated by agent processors toward master. We use some keywords from the parallel programing
language to describe communication procedures. For instance, Recv(data, sender) and Send(data,receiver)
mean that the processor who execute those commands receives the data from the sender and send data to
the receiver. Whereas the Broadcast(sender,data) means that the processor sender send data to all other
processors.

5. Experimental part

In this section, we simulate the Langenbuch-Maurer-Werner (LMW) benchmark application [1], which is a
kinetic benchmark in regard to the effect of delayed neutron fraction on the numerical transient application.
The LMW simulates the kinetic of neutrons Eq. (1) involving rod movement dealing with a simplified

7



Algorithm 1: Parareal kinetic of neutrons
Input: n̂ := #slave proc, τF ,τG
Input: Y0

0 = [(ΦΛmax )T , (cΛmax )T ]T as initial conditions, ε∞ a tolerance of the algorithm ;
Input: Solver A, data vector y;
Routine(A, y)
1) Positioning the absorber rods with respect to their dynamic chronology;

2) Assembling matrices related to Eqs. (1)-(2);

3) Solving iteratively in time the system of Eq. (8) (the result is denoted by Ay);

end Routine;
k ←− 0;
repeat

if master processor then
foreach n ∈ {0, .., n̂ − 1} do

1) Call: Routine(Gtn
∆t ,Y

k
n) (i.e. coarse-serial propagation);

2)
if p = 0 then
repeat return to 1 with Yk

n+1 until n = n̂ − 1
else
Construct (Yk

n )n≥1 with respect to the algorithm (6);

end

3) Send (Yk
n , processor(n)) ;

end

else
forall the slave processor(n)/n ∈ {0, . . . , n̂ − 1} do

Recv (Yk
n ,master processor);

Call: Routine( F tn
∆t ,Y

k
n) (i.e. fine-parallel propagation);

Send (F tn
∆t Y

k
n , processor(n)) ;

end

end
if master processor then

foreach n ∈ {0, .., n̂ − 1} do
Recv (F tn

∆t Y
k
n , processor(n)) ;

Evaluate εk
n+1 = ‖F

tn
∆t Y

k
n − Yk

n+1‖
2
2/‖Y

k
n+1‖

2
2;

end

end
k ← k + 1;

Broadcast (master processor, εk
n);

until maxn ε
p
n ≤ ε

∞;
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large light water reactor. The LMW benchmark presented in Figure 2, as a quarter of the hole domain,
initiates by withdrawing a bank of four partially inserted control rods inside the reactor core for certain
time, then, another bank of five control rods is inserted. The global transient time is about 60 sec when
the velocity of all banks of control rods is about 3 cm/sec. As explained before, the rods motions modeling
has important discrepancy on the cross-sections that should be interpolated in order to avoid errors and
undesired oscillations on the solution. We give hereafter the cross-sections of the LMW transient problem
and discuss experiments involving parallelization across the time for the numerical simulation.

5.1. The parameters of the physic

Control rod groupB

Control rod groupA

Fuel groupB

Fuel groupA

Reflector

x

y

z

110cm

110cm

Figure 2: LMW transient problem: cross-section configuration in regard to rods positioning. Horizontal cross-sections .

The motion of control rods in the LMW benchmark application reads: At time t = 0 sec the first group
of rods has an initial position at z = 100 cm, while the second group has a higher position at z = 180 cm.
The velocity of the control rods motion is about 3 cm/sec and is summarized as follows:

Group 1 : (t = 0 | z = 100 cm)↗ (t = 26, 5 | z = 180 cm),
Group 2 : (t = 7, 5 | z = 180 cm)↘ (t = 47, 5 | z = 60 cm).

Cross-sections of the fuel (group-A and group-B), control rods (group-A and group-B) and reflectors are
given in Table 1. Scattering cross-section for the different medium are given in Table 2.

Physical data medium

Cross sections fuel A fuel B
group-1 group-2 group-1 group-2

Σt 0.23409670 0.93552546 0.23381787 0.95082160
Σ f 0.006477691 0.1127328 0.007503284 0.1378004

rods reflecteur
group-1 group-2 group-1 group-2

Σt 0.23409670 0.93552546 0.20397003 1.26261670
Σ f 0.006477691 0.1127328 .0 .0

celerity 1.25e+7 2.5e+5 1.25e+7 2.5e+5.

Table 1: Total and fission cross-sections of the LMW 3d benchmark.

5.2. Numerical tests and discussions

This section is dedicated to numerical tests of the LMW parallel in time transient problem. We outline
our discussion into four step: We first give simulation results related to the brute application of the parareal
in time algorithm on the model described in section 2, next we present results related to the reduced model
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fuel A

Σ
g⇀g′
s group-1 group-2

group-1 .20613914 .01755550
group-2 .0 .84786329

fuel B

Σ
g⇀g′
s group-1 group-2

groupe-1 .20564756 .01717768
groupe-2 .85156526 .0

rods of control

Σ
g⇀g′
s groupe-1 groupe-2

groupe-1 .20558914 .01755550
groupe-2 .84406329 .0

reflector

Σ
g⇀g′
s groupe-1 groupe-2

groupe-1 .17371253 .02759693
groupe-2 1.21325319 .0

Table 2: “scattering” cross section data.

where we disregard delayed neutrons on the initial model. Then, we couple the two models. We finally
discuss the speed-up achieved with the algorithm.

The numerical simulations were carried out on a parallel shared-memories-machine, which has 64 pro-
cessor with 2.0 GHz, 256 Go of shared memory and a communication network Numalink (15 GB/sec). The
parallelization of the procedure is carried out using MPI library and the scientific computation software
FreeFem++[36].

The analytical solution of Eq. (1) is not available, we produce thus a sufficiently approximated numer-
ical solution using a refined time step. In what concerns space approximation, we are content with first
order polynomial approximation with nodal P1-Lagrange finite element, where the domain is meshed with
tetrahedron.

As described above, the parareal in time algorithm present two types of solver that alternate, during
the time process, between coarse-sequential resolution and fine-parallel resolution of Eq. (1). The brut
application of that algorithm need thus two type of numerical time-space discretization. In this paper we
focus only on the coarse time discretization aspect and refer to [23] for an consideration of a coarse-space
based solver with application to Navier–Stokes problem.

We use θ-scheme (see Eq. (8)) in order to approximate the time variation of the solution, where θ = 0
leads to Euler Explicit scheme, θ = 1 leads to Euler Implicit scheme of order 1. Numerical test showed
that the case θ = 1 is the most stable scheme that provides an accurate solution without oscillation on its
L2 representation. We present in Figure 3 the L2 trajectory of the flux distribution solution of the LMW
produced with the parareal in time algorithm. The series of figures given in Figure 3 represent the first fourth
iterations of the parareal algorithm. We remark that convergence of the trajectory occurs in few iterations
using parallel simulation. These results show the evolution of the energy production with respect to the
simulated time of the reaction (in seconds). The energy initiates with a value of 1.25e + 6 that represent
the equilibrium of the reactor. We recall that bank of four control rods are already immersed in the reactor
core at time t = 0. Those rods are withdrawn simultaneously where after 7.5 sec another group of control
rods is immersed. The energy of the reactor (presented here as L2 norm of the neutron flux distribution)
is therefore achieving a peak before decreasing with the effect of the neutron absorption by the immersed
rods.

The simulation of the reduced model is presented in Figure 4. Here the parareal in time algorithm is
used to produce parallel solution as the previous computation where the delayed neutrons don’t contribute
in the solution. We thus test and study sensitivity of the model as regards the reduction of the involved
unknown and the brusque change of the position of control rods. As explained before in subsection 4.3; in
the reduced model, we use change of reactivity instead of changing control rod positioning. This fact, avoid
interpolating cross-sections at each position change. The global matrix is assembled only once where rods
are fixed on their initial positions. Table 3 shows the corresponding change of the reactivity with respect to
the control rods positions.

Let us show numerical convergence results. We present in Figure 5 the convergence of the algorithm
with a threshold ε taken as the maximum among ε p

n , where :

ε p := max
n
ε p

n , where ε p
n =
‖Y p

n − Yn‖
2
2

‖Yn‖
2
2

,
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Figure 3: 1-4 iterations of the parareal in time algorithm for the LMW transient model: τF = 10−1, τG = 4 et n̂ = 10.

Figure 4: Parareal in time algorithm behavior applied on the reduced neutron model (1-4 iteration).τF = 1, τG = 4 et n̂ = 10.
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where Yn is assumed to be the reference numerical solution, whereas Y p
n represents the numerical parallel

solution produced with the parareal in time algorithm.
Taking into account the first order accuracy of the Euler-Implicit time-discretization scheme and the

fact that the referred-to numerical solution (supposed to be very fine) reproduced with a time step 10−2, we
can thus fix the stopping criterion of the algorithm taking into account this information. We consider the
convergence of the parareal in time algorithm to an error ε∞ of order 10−3. We complete the graphic results
with Tables 4 and 5 presenting robustness of the methods with different choice of time-steps discretization.
A thorough convergence results are as well given in the Tables.

Figure 5: Convergence of the algorithm (iteration 00-09) that couple the LWM transient model with the reduced model:
(left)τF = 10−1, τG = 2 and n̂ = 10. (right) τF = 10−1, τG = 4 et n̂ = 10. Remark that errors lines appear at time (k + 1)T/n̂ with
vertical line, this occurs because error before that time is vanishing where parallel solution is exactly equal to the serial solution
at time t < (k + 1)T/n̂

Convergence results related to the combination of the the initial model and the reduced model, in the
resolution by the parareal algorithm, are given in Figure 6. We recall that the coarse model, in addition of
reducing the number of unknown, changes the reactivity of the system instead of change position of control
rods. The employed procedure accelerates the computational time. Indeed, only one multiplication of the
matrix (already in memory) by an adequate real coefficient is enough to reproduce the new matrix related
to the operator A(τ) at a desired time τ. It is worthy notting, by the way, that the sequential simulation
lasts 3h.

The basic parallel implementation of the parareal in time algorithm speed up the resolution with a good
efficiency using 16 processor unit. Even it uses the DDM tools, the parareal in time algorithm is technically
different. Indeed the communications are strongly damping the computational time since it occurs in one
sense i.e. from time 0 to time T. Another point that contrast the parareal from the DDM is the package of
information that should pass across the communicator. In fact, this package increase with the number of
the decomposition contrary to the DDM.

6. Conclusion

We have present in this paper an application of the parareal algorithm in the paralallelization across
the time of the simulation of the neutron diffusion multi-group kinetic equations. In order to improve
computational time, the model is reduced by the use of an adequate corse solver based on several property
of the steady solution. Numerical results shows that the algorithm speeds-up the simulation and converges
quite fast, when the thresholds is reached in most case in two or three iterations of the parareal algorithm.
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t ∈ [0, 20] t ∈]20, 80]
Group 1 z=160 cm z=180 cm
Group 2 z=180 cm z=60 cm

reactivity 10008.e-5 9998.e-5

Table 3: Change of the reactivity with respect to the control rods immersion.

Figure 6: iteration 1-2-3-4 (line-first representation) of the algorithm that couple the LWM transient model with the reduced
model, coarse time step is also used for the reduced model: τF = 10−1, τG = 2 and n̂ = 10.
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τF τG max
n≥0

ε1
n max

n≥0
ε2

n max
n≥0

ε3
n max

n≥0
ε4

n

0.01 2 1.42e-02 3.04e-05 1.73e-05 1.12e-06
0.01 4 2.93e-02 1.16e-03 1.22e-04 1.46e-05
0.01 8 6.09e-02 4.11e-03 7.85e-04 1.43e-04
0.1 0.5 2.92e-03 1.31e-05 1.41e-07 2.08e-09
0.1 1 6.53e-03 6.48e-05 1.67e-06 5.12e-08
0.1 2 1.35e-02 2.81e-04 1.51e-05 9.22e-07
0.1 4 2.88e-02 1.11e-03 1.13e-04 1.31e-05
0.1 8 6.04e-02 4.02e-03 7.53e-04 1.35e-04
0.5 2 1.13e-02 1.71e-04 7.02e-06 3.35e-07
0.5 4 2.68e-02 0.80e-04 7.80e-05 7.92e-06
0.5 8 5.83e-02 3.55e-03 6.17e-04 1.02e-04
1 2 7.58e-03 7.42e-05 1.94e-06 6.09e-08
1 4 2.29e-02 6.30e-04 4.64e-05 3.91e-06
1 8 5.43e-02 3.01e-03 4.77e-04 7.12e-05

Table 4: Iteration 1, 2, 3 and 4 of the algorithm, complet model with dynamic rods scenario.

τF τG max
n≥0

ε1
n max

n≥0
ε2

n max
n≥0

ε3
n max

n≥0
ε4

n

0.1 2 1.39e-02 5.19e-05 1.91e-07 5.71e-09
0.1 4 2.78e-02 1.88e-04 1.74e-06 1.52e-07
0.1 8 5.34e-02 5.64e-04 1.63e-05 2.53e-06
0.5 2 1.09e-02 3.17e-05 1.01e-07 2.69e-09
0.5 4 2.48e-02 1.47e-04 1.30e-06 7.39e-08
0.5 8 5.03e-02 4.91e-04 1.21e-05 2.17e-06
1 2 7.22e-02 1.33e-05 3.18e-08 6.96e-10
1 4 2.10e-02 1.03e-04 8.35e-07 5.50e-08
1 8 4.65e-02 4.06e-04 9.42e-06 1.86e-06

Table 5: Iteration 1, 2, 3 and 4 of the algorithm, reduced model with dynamic rods scenario.

Figure 7: (left) Convergence of the algorithm (iteration 00-09) for the LWM transient problem coupled with the reduced model:
τF = 10−1, τG = 4 and n̂ = 10. (right) Wall-time simulation (format: h:m) parareal in time algorithm and the serial one, we vary
the number of used processor/subinterval; τF = 10−1, τG = 2 and n̂ ∈ {1, 4, 8, 10, 16, 20, 40}.
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[2] P. Guérin, A.-M. Baudron, J.-J. Lautard, Domain decomposition methods for the neutron diffusion problem,
Math. Comput. Simulation 80 (11) (2010) 2159–2167, ISSN 0378-4754, doi:10.1016/j.matcom.2010.04.009, URL
http://dx.doi.org/10.1016/j.matcom.2010.04.009.

[3] M. Dahmani, A. Baudron, J. Lautard, L. Erradi, A 3D nodal mixed dual method for nuclear reactor ki-
netics with improved quasistatic model and a semi-implicit scheme to solve the precursor equations, An-
nals of Nuclear Energy 28 (8) (2001) 805–824, ISSN 0306-4549, doi:10.1016/S0306-4549(00)00089-X, URL
http://www.sciencedirect.com/science/article/pii/S030645490000089X.

[4] S. Chauvet, Multi-scale method for the resolution of the neutronic kinetics equations, Ph.D. thesis, URL
oai:tel.archives-ouvertes.fr:tel-00348435, 2008.

[5] J.-L. Lions, Y. Maday, G. Turinici, Resolution d’EDP par un schema en temps“parareel”, C. R. Acad. Sci. Paris Ser. I Math.
332 (7) (2001) 661–668, ISSN 0764-4442, doi:10.1016/S0764-4442(00)01793-6, URL http://dx.doi.org/10.1016/S0764-

4442(00)01793-6.
[6] Y. Maday, G. Turinici, The parareal in time iterative solver: a further direction to parallel implementation, in: Domain

decomposition methods in science and engineering, vol. 40 of Lect. Notes Comput. Sci. Eng., Springer, Berlin, 441–448,
doi:10.1007/3-540-26825-1 45, URL http://dx.doi.org/10.1007/3-540-26825-1_45, 2005.

[7] G. Bal, Y. Maday, A “parareal” time discretization for non-linear PDE’s with application to the pricing of an American
put, in: Recent developments in domain decomposition methods (Zürich, 2001), vol. 23 of Lect. Notes Comput. Sci. Eng.,
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