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Abstract

The accurate knowledge of the time-dependent spatial flux distribution in nuclear reactor
is required for nuclear safety and design. The motivation behind the development of
parallel methods for solving the energy-, space-, and time-dependent kinetic equations is
not only the challenge of developing a method for solving a large set of coupled partial
differential equations, but also a real need to predict the performance and assess the safety
of large commercial reactors, both these presently operating and those being designed for
the future. Numerical results show the efficiency of the parareal method on large light
water reactor transient model.
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1. Introduction1

In this paper, we present a time-parallel algorithm that simulate the kinetic of neutron2

in a nuclear reactor. We consider a large set of coupled time-dependent partial differential3

equations (PDEs) that predict the nuclear engine behavior and in particular its energy4

production.5

The flux distribution on the nuclear reactor is given by a time-dependent neutron6

transport equation. For reason of computing time, the time-dependent neutron diffusion7

equation is usually used to study the transient behavior of the flux. These diffusion equa-8

tions are coupled with the dynamic of some delayed neutrons, which are called precursors.9

The methods for numerically advancing the space–time diffusion group diffusion equa-10

tions, along with their time dependent delayed neutron precursors counterparts, through11

time have been developed. For each of these considered methods, the system to be solved12

has been reduced to the matrix form. The H-method is an accurate and efficient finite dif-13

ference scheme that has been employed in the numerical integration of the time-dependent14

group diffusion equations since the mid-1960s. First-order finite difference schemes such15

as the implicit (backward) Euler, explicit (forward) Euler, and Crank–Nicholson (central16

difference) schemes can be derived easily from the H-method in its general form. The17

time approximation used for the solution of the kinetic diffusion equation with the clas-18

sical method or the improved quasi-static method [3] is based on an integral θ-scheme or19

a difference θ-scheme. The kinetics diffusion equations are solved with a time discretiza-20

tion using an integral θ-scheme both on the flux and the precursors equations (exact21

integration of the precursor equations with a linear expansion of the cross sections and22

polynomial representation of the flux). In this paper, for a sack of simplicity, we will con-23

sider difference θ-scheme for both neutron flux and it’s time-dependent delayed precursor24

groups equation. Since not yet parallelization in time was not purely investigated with25

large scale Kinetic equations, our main topic in this paper is the time-parallel solving of26

the coupled equations present in the neutron model.27

The knowledge of the energy of the nuclear reactor at forward long time is very im-28

portant for nuclear safety, hence very long time machine simulation. In addition for a29

lack of availability of read-write memory in the sequential computers nowadays, it is30

relevant to often propose parallel methods, which solve these large scaled system, with31

massively parallel computers. Many successful works, has been done around paralleliza-32

tion of the approximated resolution of partial differential equation arising from neutron33

models. For instance [2] studies the static case i.e. Eigenvalues problems with space34

domain decomposition methods, and a very nice strategy [3], [4] uses quasi-stationary35

approach to accelerate the simulation. This approach opens some directions to parallelize36

the implementation.37

In this paper we investigate the application of the parareal in time algorithm [5, 6]38

on neutron diffusion equation that governs the time-dependent flux distribution in the39

nuclear reactor. The parareal in time algorithm is an iterative scheme, that enables to40

improve computational time with parallel simulation. In several cases, parareal in time41

algorithm gives an impressive rate of convergence for the linear diffusion equations or42

more unexpected efficiency with non-linearity [7]. This algorithm is studied and shows43

stability and convergence results [8, 9, 10, 11, 12] particularly for diffusion system and44

others. Also it presents efficiency in parallel computer simulation. We find a variety [13,45

14, 15, 9, 16, 17, 18, 19] of versions of this scheme that adapt [20, 21, 22, 23, 24, 25]46
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the original algorithm to tackle new settings. Furthermore the parareal algorithm can be47

easily coupled with other iterative schemes such as domain decomposition methods e.g.48

basic Schwartz algorithm or more complex one [26], and optimal control based descent49

algorithm [27, 28, 29].50

The work in this paper is presented as follows: After this introduction, we present at51

the first section the partial differential equation that model the kinetic of neutron inside52

the nuclear reactor. We discuss that model, explain the real-physics and present the53

maths beside. The second section is devoted to numerical tools that we use to space-54

time discretize the problem. We introduce in the end of this section the parareal in time55

algorithm, which we adapt to the discretized problem. The parareal in time algorithm56

is therefore presented in a discrete way related to unification of variables that we solve57

all-at-once. We develop at the fourth section some approach that enables us to reduce58

the first model while remaining the reduced model close to the non-reduced one. That59

reduction is implemented in the coarse solver of the parareal in time algorithm that helps60

us to predict the solution for a forward time. We finally present and discuss the numerical61

experiments that show the speedup given when using the parareal in time algorithm.62

2. Model63

The neutron dynamics of a nuclear system (in absence of any external source) can64

be modeled by a time-dependent neutron diffusion equation (e.g. the equation (1))65

associated with the time-dependent delayed neutron precursor equations (e.g. the equa-66

tion (2)).67

2.1. Time-dependent partial differential equation68

The directional neutron flux solution of kinetic equation is a function at ~r about point69

of reactor domain, in the interval“dE”about energy E, moving in the cone of directions d~ω70

about direction of ~ω at time t. For computational reasons, we use different simplifications.71

Concerning the energy variable, the time-dependent equations are usually solved using its72

multi-group formulation which is the basis for the vast majority of computer programs.73

By integrating in limited energy intervals from Eg to Eg+1 obtained by subdividing the74

energy E from zero to infinity into ĝ intervals, a set of ĝ coupled differential equations.75

The second simplification concerns the direction variable. We look for the scalar flux76

which is an average flux on different directions. The scalar flux is solution of a simplified77

transport equation: the following diffusion equation78



1
Vg

∂φg(~r, t)
∂t

= div(Dg~∇φg(~r, t)) − Σ
g
t φg(~r, t) + χ

p
g
∑

g′ (1 − βg′ )νΣ
g′
f φg′ (~r, t)

+
∑

g′ Σ
g′
s φg′ (~r, t) +

∑K
k=1 χ

d
k,gCk(~r, t), ~r ∈ Ω ⊂ R3.

φg(~r, t) = 0 on the boundary of the nuclear reactor
φg(~r, 0) = φ0

g(~r) a given initial value

(1)

The delayed neutron precursor satisfy :79

∂Ck

∂t
(~r, t) = −λkCk(~r, t) +

ĝ∑
g′
βkg′νΣ

g′
f φg′ (~r, t) (2)

3



In Equations (1) and (2) one reads:80

Vg is the neutron velocity in energy group g,81

φg is the neutron scalar flux in energy group g,82

Dg is the diffusion coefficient in energy group g,83

Σ
g
t , νΣg

f are the total and production cross-section in energy group g,84

Σ
g′g
s is the transfer cross-section from energy group g’ to g,85

χ
p
g , χd

kg is the fission spectra of prompt and delayed neutrons, respectively Ck is the86

concentration of precursor group k,87

βkg, λk are the delay fraction in energy group g and decay constant of precursor group k,88

βg is the total delay fraction in energy group g ( βg =
∑

k βkg).89

The equation (1) is derived from the transport equation by expanding into spherical90

harmonics and integrated over all directions ~ω, neglecting several terms. For each energy91

group g = 1, . . . , ĝ and ~r ∈ Ω ⊂ R3, the equations are a set of the three-dimensional,92

multi-energy-group neutron kinetics equations, which are derived from (1).93

2.2. Boundary condition in symmetrical physical core94

In what follows, for reason of simplicity, we restrict our simulation for a quarter of
the domain (nuclear reactor). Consequently, we consider Neuman boundary condition
at the symmetry axes. That translate some null outcome across theses interfaces. The
boundary condition is thus:

∂φ

∂~n
(~r, t) = 0 on the interior interfaces.

Such a way, the rest of the domain (nuclear rector) is simply deduced by symmetry.95

2.3. Initial condition determination96

For the initial condition, we consider the stationary version of the equation (7). We
use the concept of reactivity which is related to the energetic behavior of the nuclear
reactor. We focus on the distribution of the flux when the nuclear reactor is stable. This
distribution is thus said stable state. In order to calculate this stable state, we introduce
an eigenvalues problem on effective reactivity denoted by a ke f f factor. This factor indi-
cates the greatest generalized eigenvalue of the two matrices F̂ := Σ f

h and Â (see Eq (9)
below) of production and absorption respectively. The production matrix characterizes
the production of the neutrons by fission, whereas absorption matrix caracterize the
escapes/leaks. The eigenvalues problem is as follows:

ÂΦ =
1

ke f f
F̂Φ.

We use finally an the power algorithm to compute the ke f f factor.97

The nuclear core may have three states of energy (subcritical, critical and supercritical).98

These three states are related to the density of the neutrons diffusing in the core. That99

density is due to neutron production by the chain reaction whereas the disappearance of100

the neutrons by absorption and/or some leaks. The core is said critical if the neutron101
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outcome is null. It means: at every moment the number of produced neutrons is equal to102

the number of disappeared ones. The neutron outcome inside core at equilibrum obeys:103

production f ission + sourceexternal = absorption + leaks. (3)

Neutrons injected into the system constitute the source of the reaction, absorption cans104

be important, the escape/leaks represents the neutrons leaving the system.105

The multiplicative factor in a medium without escape/leaks, noted by k∞ is defined by:106

k∞ :=
neutron account at time t

neutron account at time t-1
. (4)

In a bounded domain, The effective multiplicity factor ke f f is as follows:107

ke f f =
k∞

1 + leaks
. (5)

This coefficient should be very close to unity in order to guarantee a state of equilib-
rium. Thus, if ke f f < 1 the state of the core is said subcritical, else if ke f f > 1 the state
is supercritical and if ke f f = 1 the state is critical.
In order to determine such a state, it is essential to evaluate the stationary state without
external source i.e. the unique source considered is fission.
The stationary Boltzmann equation (6) admits solutions only in the critical case. In this
particular framework, we consider the fission source term extracted from Equation (1):

χ(g)Σ
ĝ
m=1ν

(g′)σ
(g′)
f φ(g′)(~r, t),

and absorption term (diffusion and scattering) also from Equation (1):

−div(D(~r, t)∇φ(g))(~r, t) + σ
(g)
t (x)φ(g)(~r, t) −

ĝ∑
g′=1

σ(g⇀g′)
s φ(g′)(~r, t).

The input data of modeling do not necessary characterizing a critical state and if nec-108

essary, we force our system becoming critical by adding the ke f f factor in the stationary109

version of Equation (1). This equation becomes then:110

−div(D(~r, t)∇φ(g))(~r, t) + σ
(g)
t (x)φ(g)(~r, t) −

∑ĝ
g′=1 σ

(g⇀g′)
s φ(g′)(~r, t)

=
1

ke f f
χ(g)∑ĝ

g′=1 ν
(g′)σ

(g′)
f φ(g′)(~r, t).

(6)

One thus bring himself back to a generalized eigenvalues problem that consists to look111

for ke f f factor for which the critical outcome equation (3) holds.112

We thus use the power method to compute the largest eigenvalues. The corresponding113

eigenvector will be the neutron flux distribution that is the solution of the stationary114

problem (6).115
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3. Numerical methods and time-parallel-solver116

For the convenience of presentation, we gather variables of various groups of energy117

both on neutron flux and delayed neutrons all at ones sought a vectorial form within118

the continuous framework. Then, we proceed to the time-space discretization, in order119

to have finally a block matrix structure representing the linear system that solves the120

problem at each time step.121

This procedure of unification facilitates the application of the parareal in time algorithm122

in the resolution of the neutron model. Indeed, in a practical point of view the vectorial123

variable form makes building of the time-propagator easier.124

3.1. Space discretization125

We assume that the neutronic flux i.e. φ modeled by Equations (1)-(2) belongs to
C0([0,T ]; H1

0(Ω)) and refere to [30, 31, 32, 33] for more theoretical results. We denote by
H1

0(Ω) the Hilbert space defined as follows:

H1
0(Ω)) := {u ∈ L2(Ω), such that ∇u ∈ L2(Ω), u = 0 on ∂Ω},

and denote by 〈., .〉 its scalar product.126

In order to discretize the problem, we use finite elements space approximation associ-
ated with the weak formulation of the flux and the concentration of precursors. We note
that the flux belongs to H := H1

0(Ω) and the precursors belong to U := L2(Ω) (see [35]),
so by meshing the domain Ω ⊂ R3 with an uniform triangulation Th(Ω), one can defines
finite dimensional Hilbert space Hh ⊂ H (repectively Uh ⊂ U), with associated standard
basis functions (ψi)

q
i=1 (respectively (φi)

p
i=1). In addition one has:

Hh := {uh ∈ C0(Ω), uh|K ∈ P1,∀K ∈ Th},

Uh := {uh ∈ C0(Ω), uh|K ∈ P0,∀K ∈ Th}.

The physical problem admits a dynamic geometry because energy control rods are
moving as well as the reaction proceeds. As the cross-sections are constant in each
domain, it is more judicious to attach their dependence in time to the movement of those
rods. These coefficients belong to

L∞(Ω) := {u : Ω→ R,∃c > 0, |u(~r)| ≤ c, ∀~r ∈ Ω},

of which we consider an approximation P0 for the discrete forms.127

128

For the deterministic model of the kinetics equation, the discretized cross sections are129

supposed to be constant on each elements of the mesh (called media).130

In order to indicate the space-dependency on the cross-sections in their discretized131

notations, we use the notation with the hat symbol (i.e.: “ ̂ ”) over each vector of nodal132

coefficients, which is identified to it’s continuous notation.133

By convenience, a block matrix belongs to R(ab)×(cd) means that it has a block rows134

and c block columns of matrices belonging to Rbd i.e. b rows and d columns.135

Let us consider Φ̇ and ċ the nodal representation of first derivative in time of the136

neutron flux and the delayed precursors concentration respectively. The discrete multi-137
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group unified equation governing the neutron flux is as follows:138

Mv
hΦ̇(t) = Ad

hΦ(t) − ΣhΦ(t) + Rhc(t), (7)

In Equation (7)Mv
h := Blockdiag(Mv

h) ∈ R(ĝq̂)×(ĝq̂), with Mv
h ∈ Rq̂q̂, andAd

h := Blockdiag(Ad
h) ∈

R(ĝq̂)×(ĝq̂). The matrix Σh ∈ R(ĝq̂)×(ĝq̂), the matrix Rh := Blockdiag(Rh) ∈ R(ĝq̂)×(ĝq̂). Where
(Mv

h)i, j := V Mh, on the other hand (Mh)i j := 〈ψi, ψ j〉, (Ad
h)i, j := 〈D̄i∇ψi,∇ψ j〉, where D̄i is

the nodal representation of D (constant by element as P0), (Rh)i, j := 〈(χ̂dµ)iψi, ψ j〉. The
matrix Σh of the cross section are defined as :

Σh := Σt
h − Σ

s
h + (Id − [̂β])Σ f

h ,

where,

Σt
h := Blockdiag(Σt

h) ∈ R(ĝq̂)×(ĝq̂),

Σs
h := Blockdiag(Σs

h) ∈ R(ĝq̂)×(ĝq̂),

Σ
f
h := Blockdiag(Σ f

h ) ∈ R(ĝq̂)×(ĝq̂),

[̂β] := Blockdiag(β(i)IRĝĝ ) ∈ R(ĝq̂)×(ĝq̂),

with

(Σt
h)i, j := 〈(σ̂t)iψi, ψ j〉 ∈ Rq̂q̂,

(Σs
h)i, j := 〈(̂̄σs)iψi, ψ j〉 ∈ Rq̂q̂,

(Σ f
h )i, j := 〈(χ̂pνσ f )iψi, ψ j〉 ∈ Rq̂q̂,

where the sections σ̂t , σ̂s et χ̂pνσ f are the finite elements nodal representations with P0139

approximation, in addition (σ̂t)i, (̂̄σs)i and (χ̂pνσ f )i referred to the tetrahedral indexed140

by i.141

The discrete equation that governs the concentration of precursors c is:142

Mhċ(t) = Nhc(t) + [̃β]Σ f
hΦ(t), (8)

where Mc
h ∈ R(k̂ p̂)×(k̂ p̂), Mc

h := Diag(Mc
h), with (Mc

h)i j := 〈φi, φ j〉. The matrix Nh :=143

Blockdiag(Nk
h) ∈ R(k̂ p̂)×(k̂ p̂) with (Nk

h)i, j := (µ(k)
i φi, φ j), and [̃β] ∈ R(k̂ p̂)×(k̂ p̂), such that ([̃β])k,g :=144

(β̄(g)) ∈ Rp̂ p̂ où (β̄(g))i, j := β(g,k)IRp̂ p̂ .145

In the case where we do not have initial condition for Equation (7), we can build it146

using some techniques that we develop hereafter.147

Let us now describe, with more details, implied matrices in the problem. The matrices148

disappearance (absorption+leaks) are described as follows:149

Â := Ad
h − Σ

t
h + Σs

h, (9)

and the matrix related to the fission source term F̂. Thanks to those matrices, we can
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compute the generalized eigenvalue ke f f of the couple (Â, F̂), which satisfies:

ÂΦ =
1

ke f f
F̂Φ,

whereΦ is the eigen-flux associated with ke f f . The algorithm hereafter (power algorithm)150

gives us the eigenvalue of the largest modulus. The space norm ‖.‖2 is associated to the151

scalar product 〈., .〉Rĝq̂ .152

Algorithm 1: Fission source problem using power Algorithm
Input: Initial flow vector Φ0, tolerance ε̃;
Initialize the source term S0 = F̂Φ0; l← 0;
repeat

1. Solve iteratively : ÂΦl+1 = Sl ;
2. Normalize Φ̃l+1 := Φl+1/‖Φl+1‖2;
3. Evaluate the relative error Err :=‖Φ̃l+1 − Φ̃l‖2/‖Φ̃

l+1‖2;
4. Update the source : Sl+1 = F̂Φ̃l+1;

l← l + 1;
until Err ≤ ε̃ ;
Result: Φ := Φl & ke f f := ‖Φl‖2;

153

Using Algorithm 1, we can build the initial condition Φ(g,?) of the neutronic flux
(including all energy groups). Then using the formula

c(k)(~r, 0) :=
1
µ(k) Σ

ĝ
g′=1β

(k,g′)νσ
(g′)
f Φ

(g′),

Therefore, we are able to build the initial condition related to the concentrations of154

precursors groups.155

3.2. Time discretization156

We denote by Φi+1 the approximation of Φ(ti+1) obtained with the time-discretization
θ-scheme.

Mv
hΦi+1 −M

v
hΦi = τθ(Ad

hΦi+1 − ΣhΦi+1 + Rhci+1)

+ τ(1 − θ)(Ad
hΦi − ΣhΦi + Rhci), (10)

and,

Mk
hci+1 −M

k
hci = τθ(Nhci+1 + [̃β]Σ f

hΦi+1) + τ(1 − θ)(Nhci + [̃β]Σ f
hΦi), (11)

where θ ∈ [0, 1] and τ is the time step.157

We denote by Xi := [ΦT
i , cT

i ]T the vector that represents the solution at time ti. The158
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previous iterative formulas (10)-(11) can be written in the following matrix form:159 [
Φi+1
ci+1

]
=

[
DII DIJ

DJI DJJ

]−1 [ BII BIJ

BJI BJJ

] [
Φi

ci

]
, (12)

where

DII :=Mv
h + τθ

(
Σh −A

d
h

)
, BII :=Mv

h + τ(1 − θ)
(
Ad

h − Σh
)
,

DIJ := −τθRh, BIJ := τ(1 − θ)Rh,

DJI := −τθ[̃β]Σ f
h , BJI := τ(1 − θ)[̃β]Σ f

h ,

DJJ :=Mk
h − τθNh, BJJ :=Mk

h + τ(1 − θ)Nh,

which we simply denote by:160

Xi+1 = EXi, (13)

where the block matrix E is :

E :=
[

DII DIJ

DJI DJJ

]−1 [ BII BIJ

BJI BJJ

]
.

In what follows, we describe the construction of the sequential 3D solver. Since control161

energy rods are moving as physical time progress, the space domain properties also vary162

with respect to the positions of rods and fuels in the nuclear reactor. Hence the matrix163

E is time-dependent, sequential and requires an update/assembly at each time step. The164

construction of the serial solver can so be achieved with following three steps:165

Step 1 : localize the absorber rods according to the chronology of the corresponding rod166

group position, then calculate the cross sections.167

Step 2 : construct and assemble the block matrices.168

Step 3 : solve the system e.g. with the gmres algorithm [34].169

Let us describe now in more details some characteristics of our solver and the implementa-170

tion we define in the context of an international standard Benchmarck [35] . In particular171

we will detail adaptation of cross-sections to the mesh generation and managing dynam-172

ical geometry. Let us now discuss two procedures: the first one uses an adaptation of the173

number of the layers (on meshes), on the “z” direction, according to chosen small times174

steps. The second one, what we investigate in this paper is based on the interpolation175

of the Heaviside functions according to the celerity of control rods. We use tetrahedron176

elements generated by the scientific computation software FreeFem++ [1] and we carry177

out the rods movements by interpolating the domain indicators, which characterizes the178

parts of the finite elements (tetrahedron) occupied by rods and/or fuel. These indica-179

tors are used to distinguish constant physical coefficients in each medium/domaine (see180

tables (3)–(4)) that are approximated by P0 finite elements.181

In the setting of our solver, the construction of block matrices requires a construction182

of Heaviside functions, which identify the mediums, by the intuitive rule:183

Presence of rods =⇒ Absence of fuel. (14)

9



The 3D-mesh (Figure on the side) rep-
resents 1

4 nuclear core (front view). The
rest of the core is deduced by symetry.

Figure 1: 3D mesh representation of 1
4 of the nuclear core .

In the framework of P0 finite elements approximation on each tetrahedron, the Heav-184

iside functions of the mediums worth “1” or “0”. However, this modeling is not sophisti-185

cated enough because it produces some undesirable oscillation.186

Let us suppose that at time t1 the rods start to be at the same level as a tetrahedron187

and than to times t2 passes to the following tetrahedron. For the period of time t2 − t1188

the rods are located in specific tetrahedrons (see Figure 3).189

Our approach consists in, initially measuring the rate of sinking of that rods, then190

assigning a value between “0” and “1” to the Heaviside functions. This method takes into191

account the vertical movement of the rods. Once the Heaviside functions of the rods are192

assembled, those of fuel are deduced according to the rule (14). We are now considered

Heaviside function

Time +t1
0

1

t2

Heaviside function

Time +t1

Interpolation

0

1

t2

Figure 2: Heaviside function indicates the rate of sinking of the rods (red) and of the Fuel (blue) on a
tetrahedron.

193

with a an adaptive linear system such that:194

Xi+1 = EiXi, (15)

which motivate parallel computation to increase serial simulation cost in ordinary ma-195

chine, and thus improve computational time.196
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y

x

z
h

hr

hc

f uel

rods

Figure 3: Heaviside function for the rod and the fuel on one tetrahedron.

3.3. Acceleration using parareal in time Algorithm197

In order to accelerate the resolution of Equation (13) we apply the parareal in time
algorithm [5] which is based on prediction correction scheme. We present in what follows
the basic tools for applaying such scheme. Let us divide the time interval [0,T ] into n̂
small ones;

[Tn,Tn+1] := ∪i=l−1
i=0 [Tn,i,Tn,i+1],

where l =
∆T
τ

with ∆T is the size of the small time interval we have Tn,0 = Tn et Tn,l = Tn+1.198

Let {Xn}n≥0 be the sequence of solution of the system (13) at time t = T0, . . . ,Tn, . . . ,Tn̂,199

so that Xn+1 := Xn,l.200

In the case of sequential propagation, those elements are solutions of:201 
Id
−F4 Id

. . .
. . .

−F4 Id




X0
X1
...

Xn̂−1

 =


X0
0
...
0

 , (16)

where F4 = Πl
i=1Ei could be obtained with a “for”-loop as a routine and no need to202

memorize such results of matrix-product.203

As well known The parareal in time algorithm [5, 6] ensures an exact convergence204

towards the fine approximated solution after n̂ iterations, where n̂ is the number of subin-205

tervals of the decomposition. And more accurate results with a time shorter when applied206

on diffusive systems. The updating formula for the series (Xp
n )p≥0

n≥0 of initial conditions val-207

ues is given as follows:208

Xp+1
n+1 = G4Xp+1

n + F4Xp
n −G4Xp

n . (17)

where G4 is a coarse propagator taken with some reduction of the parallel propagator209
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F4 that approximate the right solution with the θ-scheme using fine time step τF . This210

solvers reduction may produce some instability, one cans find in [8, 10, 12] some stability211

results of such scheme. As the coarse part is solved sequentially, it is preferable to212

reduce model such that the coarse propagator G4 is the least expensive as possible while213

remaining stable and always taking into account the physic problem. In what follows,214

we present a reduced neutron model that makes possible use of larger time step serial215

propagator.216

4. Reduced neutron model and input experiments data217

In practice, we consider some reduction of the model. This reduction will relate218

mainly to the dynamic aspect of rods in the nuclear reactor.219

Let us describe the physics. At time t = 0sec the first group of rods has an initial220

position at z = 100cm, while the second group has a higher position at z = 180 cm.221

The linear movement of rods is as follows:222

Group 1 : (t = 0 |z = 100 cm)↗ (t = 26, 5|z = 180 cm), with velocity of 3 cm/sec.223

Group 2 : (t = 7, 5|z = 180 cm)↘ (t = 47, 5|z = 60 cm), with velocity of 3 cm/sec.224

225

We present now both dynamics and statics scenarios which definitions are strongly226

related to the rods movement, and especially at their levels of sinking in the nuclear227

reactor. We show that a simplification of the model can be an advantage to accelerate228

the resolution by the parareal in time algorithm.229

We call complete-data model and reduced-data model the neutron model i.e. Equa-230

tion (7) with and whithout precursors concentration groups respectively.231

A thorough study of the reduction of the model is fundamental in order to allow a232

degradation of the fine solver and to determine the characteristics of a stable propagator.233

Degradation can be carried out either by some de-refinement of the mesh-grid (space-234

time), or by a reduction of the number of the iterations of inversion (when using an235

iterative solver) or by increasing the tolerance at the time of the resolution of the linear236

system or by simplification of the physics of the model. In what follows, we basically use237

this last way to build a coarse propagator.238

In the framework of neutron kinetics, several parameters allow a simplification of the239

model while keeping the simulation results rather close to those obtained with a complete240

model. For this purpose, one can for example decrease the number of the groups of241

energies for the neutron flux, or even the number of the groups of the concentrations of242

the precursors. We can also approach the productivity of the reactor by a simple change243

of the reactivity factor.244

Hereafter, we detail the dynamic aspect of the physical model and we propose a reduction245

of its dynamics. This reduction enables us to make computation cheaper while keeping246

accurate results as we show it in the experimental part later on (see section 5.3).247

4.1. Dynamic rods scenario248

The kinetics in this framework is characterized by a constant velocity ( i.e. of 3cm/sec)249

of control rods. At the initial configuration, rods sinking level provides a critical state of250

the nuclear reactor (i.e. ke f f =1). In this configuration rods of group-1 are at z = 100 cm251

and group-2 are at z = 180 cm. During time the nuclear reactor is gradually switched252

12



Algorithm 2: Algorithme pararéel de la cinétique neutronique
Input: n̂ := #slave proc, τF ,τG

Input: X0
0 = [(Φ?)T , (c?)T ]T as initial conditions, ε a tolerance of the algorithm ;

Input: a solver A, a data vector X;
Routine(A,X)
1) Positioning the absorber rods with respect to the dynamic chronology;
2) Constructing matrices related to equations (10)-(11)-(12);
3) Serial propagation of X using A with respect to its rods’ scenario (the result is

denoted by AX);

end Routine;
p←− 0;
repeat

if master processor then
foreach n ∈ {0, .., n̂ − 1} do

1) Call: Routine(G4,Xp
n) (i.e. coarse-serial propagation);

2)
if p = 0 then
repeat return to 1 with Xp

n+1 until n = n̂ − 1
else
Construct (Xp

n )n≥1 with respect to relationship (17);
end

3) Send (Xp
n , processor(n)) ;

end
else

forall slave processor(n)/n ∈ {0, . . . , n̂ − 1} do
Recv (Xp

n ,master processor);
Call: Routine( F4,Xp

n) (i.e. fine-parallel propagation);
Send (F4Xp

n , processor(n)) ;
end

end
if master processor then

foreach n ∈ {0, .., n̂ − 1} do
Recv (F4Xp

n , processor(n)) ;
Evaluate ε p

n = ||F4Xp
n − Xp

n+1||l2(R8q̂p);
end

end
p← p + 1;
Broadcast (master processor, ε p

n );
until maxn ε

p
n ≤ ε ;

on to produce neutrons by fission. This production is less important if the rods sinking253

level on the engine is important. By this way, one controls the fission productivity on a254

nuclear reactor.255
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4.2. Static rods scenario256

In this scenario rods are fixed. Then we approach the last scenario by choosing the257

rods positions correctly.258

In the framework of the dynamic scenario, there are two principal phases of the core:259

subcritical and supercritical. A reproduction of these phases (related to the states of the260

core) is completely possible when we can arbitrarily control the core neutrons production.261

In what follows we propose two approaches that ensure those states with a fixed262

position of control rods.263

Special rods positioning. In order to approximate the latest scenario, we choose only two264

levels for the two rods groups.

t ∈ [0, 20] t ∈]20, 80]
Group 1 z=160 cm z=180 cm
Group 2 z=180 cm z=60 cm

Table 1: Control of the state of the nuclear core by a change of the positions of the rods.

265

External variation of reactivity. This approach does not change the initial configuration266

of the rods. Nevertheless we are able to reproduce the phenomenon ensured by rods267

positioning. Indeed, on a physical point of view: these positions correspond to a certain268

reactivity, it is thus sufficient to reproduce this reactivity (corresponding to a given factor269

of ke f f ) to reproduce the same scenario.

t ∈ [0, 20] t ∈]20, 80]
reactivity 10008.e-5 9998.e-5

Table 2: Control of the state of the nuclear core by a change of its reactivity.

270

Remark 1. In the case of static scenario, it is easy and practice to implement the second271

method. Indeed, one does not require several updates of the coefficients, contrary to the272

first method. Moreover, the method 4.2 facilitates the development and accelerates the273

execution of the algorithm resulting without any change with respect to the results of274

the first approach 4.1.275

Remark 2. With the static scenario it is difficult to reproduce the results of the real276

scenario. This is clear, because we already lose the continuity of the dynamics. In fact,277

it has a direct impact on energy resulting from this model. Nevertheless, with the static278

scenario of the second method 4.2, we can exploit the reactivity to reach the same peak279

as that of the real scenario. The static version 4.1 related to the rods position does not280

allow this possibility.281
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5. Numerical results282

To validate the method and to test its performance in terms of numerical accuracy and283

computational effort, we consider the 3D variation of the LMW reference test case, which284

can be characterized as an operation transient with large spatial variation involving a285

LWR type reactor [35]. This test case is a three dimensional quarter core benchmark with286

two energy groups and six precursor groups. Figure 4 show the geometry of the model287

reactor. The withdrawal of the rods of group-1 initiates a transient, which is terminated288

by the insertion of the rods group-2. The average power increases and reaches maximum289

values between 20 and 21 seconds, then decreases slightly under the influence of the290

insertion of the rod group-2, and crosses its initial value after 37 seconds.291

The physical data are presented at Table 3 and supplemented by the Tables 4. The292

cross sections are presented in Table 3. Each Table presents the section in a specific293

medium. The neutron data relating to the section of scattering are presented in Tables 4.294

For the implementation and the numerical experiments of the preceding methods,295

we used data of various cross sections given from: [35]. The numerical simulations were296

carried out on a parallel SGI shared-memories-machine, which has 64 processor given297

rhythm with 2.0GHz, 256 Go of shared memory and a communication network Numalink298

(15 GB/s). We thus exploited this machine massively in parallel with the use of the MPI299

library and the scientific computation software FreeFem++[1].300

This paragraph presents the various sections. The neutron flux domain is the sum301

of the two mediums of combustible (group-A and group-B), control rods and reflectors.302

Two energy groups are used for the discretization in each medium. The corresponding

Physical data medium
Cross sections fuel A fuel B

group-1 group-2 group-1 group-2
σt 0.23409670 0.93552546 0.23381787 0.95082160
σ f 0.006477691 0.1127328 0.007503284 0.1378004

rods reflecteur
group-1 group-2 group-1 group-2

σt 0.23409670 0.93552546 0.20397003 1.26261670
σ f 0.006477691 0.1127328 .0 .0

celerity 1.25e+7 2.5e+5 1.25e+7 2.5e+5.

Table 3: Neutron data for the core of benchmark 3D.

303

neutrons are in permanent interaction. These neutrons can change from an energy group304

to another by a deceleration (shocks) or by a simple change of direction (diffusion).305

5.1. The sequential solver306

Experiment are carried-out with various neutron models and shows that the explicit307

Euler scheme is unconditionally unstable, while the θ-scheme related to a value of 0 <308

θ < 1 presents some oscillations with model when precursors concentration groups are309

present. It appears that the single value for which the θ-scheme is unconditionally stable310

and does not present oscillations is the Implicit Euler scheme i.e. θ = 1. We present in311
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fuel A
σ

(g⇀g′)
s group-1 group-2

group-1 .20613914 .01755550
group-2 .0 .84786329

fuel B
σ

(g⇀g′)
s group-1 group-2

groupe-1 .20564756 .01717768
groupe-2 .85156526 .0

rods of control
σ

(g⇀g′)
s groupe-1 groupe-2

groupe-1 .20558914 .01755550
groupe-2 .84406329 .0

reflector
σ

(g⇀g′)
s groupe-1 groupe-2

groupe-1 .17371253 .02759693
groupe-2 1.21325319 .0

Table 4: “scattering” cross section data.

Figure 4: Initial configuration of rods as well as fuel volumes inside nuclear core .
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what follows some graphs showing the behavior of the standard of the neutron flux in312

the nuclear reactor.313

First of all, we simulate a complete neutron model, with six groups of precursors and314

two groups of neutron energy of flux. We eliminate then precursors group and consider315

the impact of their presence on the behavior of the reactor power.316

5.2. Parareal in time algorithm behavior with respect to the standard of the average flux317

on nuclear core318

In this subsection, we present a series of curves (see Figures 5 and 6) describing the319

state of the standard of the neutron flux in the engine in real time of the reaction.

Figure 5: Parareal in time algorithm behavior applied on neutron model (1-4 iteration). Complet model
with dynamic rods scenario τF = 10−1, τG = 4 et n̂ = 10.

320

5.3. Numerical study of the convergence of the parareal in time algorithm321

In this subsection we show the numerical convergence of the solutions calculated with
the parareal in time algorithm to the sequential solution (see Tables 5-6-7-8) of which
we vary the physics we treat. The error considered in these curves is the maximum one
among ε p

n , where :

ε p
n :=

‖Xp
n − Xn‖L2(R8(q+p))

‖Xn‖L2(R8(q+p))
.
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Figure 6: Parareal in time algorithm behavior applied on neutron model (1-4 iteration). Complet model
with static rods scenario.τF = 100, τG = 4 et n̂ = 10.

We first present curves relating to the dynamic scenario with the complete model. In the322

second time, we present error curves obtained with the static scenario of a reduced-data323

model.324

Taking into account the accuracy of the time-discretization scheme against referred to325

solution (reproduced with a very small time step e.g. 10−2). We were thus interested in326

errors of the same order as this one. It is thus necessary to consider a convergence of the327

parareal in time algorithm to an error of order 10−2 or of 10−3. Nevertheless, we have328

more thorough results of convergence (see Figure 7–10–11) to show convergence towards329

the sequential numerical solution.330

Remark 3. We note that the error curves in Figure 7 (and in Figure 10 respectively)331

correspond to the experiment results of the behavior of the flux norm presented in Fig-332

ure 5 (respectively in Figure 6)333

5.4. Reduced coarse solver using static rods scenario334

We present in this sub-section a degradation of the coarse model allowing an ac-335

celeration of the resolution without harming the convergence of the algorithm. This336

degradation is carried out for the coarse solver at which we use static scenario. This337
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Figure 7: Convergence of the algorithm (iteration 00-09), complete model with dynamic rods scenario
for both serial and parallel computation; τF = 10−1, τG = 4 et n̂ = 10.

scenario as explained before uses a variation of the reactivity of the system on two inter-338

vals of physical time of the reaction. The employed procedure enables us to accelerate339

calculation by no computing the matrix of production at all time steps. Indeed, only one340

multiplication per a real coefficient of the matrix (already in memory) is enough.341

To have an order of idea, the sequential simulation (execution with only one processor)342

lasts 03h:06mn:57s.343

We present in Figure 11 the acceleration of the resolution according to the number344

of subdivisions by temporal sub steps. The resolution on each sub steps is entrusted to a345

processor of the machine massively parallel. As we are interested in the errors of conver-346

gence about 10−2 or about 10−3 we note a saving of parallel time CPU of treatment of the347

neutron kinetics compared to a sequential calculation. Moreover, the fact of passing from348

8 processors to 16 processors makes it possible to pass from 2h : 45mn with 1h : 15mn349

of treatment. We notice a division by two (approximate) of the time CPU, which is in350

adequacy with a local effectiveness of a machine with 8 proc the USSR by processor.351

Notes that if the number of the subdivisions n̂ increases then the number of the pro-352

cessors agents in parallel also increases. The communication thus becomes increasingly353

important. This explains the fact that the curve of error in time wallclock (CPU) relating354

to the use of 40 processors is worse than that for 20 processors. The machine on which355

we submitted these numerical tests thus reached its saturation of speedup.356
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Table 5: Iteration 1 & 2 of the algorithm, complet model with dynamic rods scenario.

τF τG max
n≥0

ε1
n

0.01 2 1.42e-02
0.01 4 2.93e-02
0.01 8 6.09e-02
0.1 0.5 0.29e-02
0.1 1 0.65e-02
0.1 2 1.35e-02
0.1 4 2.88e-02
0.1 8 6.04e-02
0.5 2 1.13e-02
0.5 4 2.68e-02
0.5 8 5.83e-02
1 2 0.75e-02
1 4 2.29e-02
1 8 5.43e-02

τF τG max
n≥0

ε2
n

0.01 2 3.04e-04
0.01 4 1.16e-03
0.01 8 4.11e-03
0.1 0.5 1.31e-05
0.1 1 6.48e-05
0.1 2 0.28e-04
0.1 4 1.11-03
0.1 8 4.02e-03
0.5 2 1.71e-04
0.5 4 0.88e-03
0.5 8 3.55e-03
1 2 7.42e-05
1 4 0.63e-04
1 8 3.01e-03

Table 6: Iteration 3 & 4 of the algorithm, complet model with dynamic rods scenario.

τF τG max
n≥0

ε3
n

0.01 2 3.04e-04
0.01 4 1.16e-03
0.01 8 4.11e-03
0.1 0.5 1.31e-05
0.1 1 6.48e-05
0.1 2 2.81e-04
0.1 4 1.11e-03
0.1 8 4.02e-03
0.5 2 1.71e-04
0.5 4 8.80e-04
0.5 8 3.55e-03
1 2 7.42e-05
1 4 6.30e-04
1 8 3.01e-03

τF τG max
n≥0

ε4
n

0.01 2 1.73e-05
0.01 4 1.22e-04
0.01 8 7.85e-04
0.1 0.5 1.41e-07
0.1 1 1.67-06
0.1 2 1.51e-05
0.1 4 1.13e-04
0.1 8 7.53e-04
0.5 2 7.02e-06
0.5 4 7.80e-05
0.5 8 6.17e-04
1 2 1.94e-06
1 4 4.64e-05
1 8 4.77e-04

Table 7: Iteration 1 & 2 of the algorithm, reduced model with dynamic rods scenario.

τF τG max
n≥0

ε1
n

0.1 2 1.39e-02
0.1 4 2.78e-02
0.1 8 5.34e-02
0.5 2 1.09e-02
0.5 4 2.48e-02
0.5 8 5.03e-02
1 2 7.22e-03
1 4 2.10e-02
1 8 4.65e-02

τF τG max
n≥0

ε2
n

0.1 2 5.19e-05
0.1 4 1.88e-04
0.1 8 5.64e-04
0.5 2 3.17e-05
0.5 4 1.47e-04
0.5 8 4.91e-04
1 2 1.33e-05
1 4 1.03e-04
1 8 4.06e-04
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Figure 8: Norm of flux, behavior against (iteration 1-2-3-4) of the algorithm with complete model using
static rods scenario for the coarse solver and dynamic rods scenario for the fine solver; τF = 10−1, τG = 2
and n̂ = 10.

Remark 4. The parareal in time algorithm is implemented with a master-slave config-357

uration for which we have two types of communications: a distribution and a collection358

communication. In the distribution communication, the main processor sends informa-359

tion towards all its processors agents. On the other hand in the collection communication;360

the Master himself receives and collects information since his agents. In both cases, it is361

about the same quantity of informations which passes in the two directions. The second362

type of communication is devoted to the correction of the coarse error, which requires363

fine information to be communicated by agent processors toward master. Those commu-364

nications are important and influence directly the period of information’s passing. This365

is clear, in particular, if one increases the number of agent processors or the number of366

subintervals.367

6. Conclusion368

In this paper we present a time parallelization of the simulation of the neutron model,369

which is governed by the Boltzmann PDEs. The parallelization in time direction is370
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Figure 9: Convergence of the algorithm (iteration 00-09), complete model with dynamic rods scenario for
the parallel computation and static rods scenario with reduced model for the coarse serial computation;
τF = 10−1, τG = 2 and n̂ = 10.

achieved with parareal in time algorithm. We showed that the neutron model could be371

reduced, in number of concentration of delayed neutrons also in the dynamic of the geom-372

etry, in such way the coarse propagator of the parareal in time algorithm is lightweight373

and can predict solution i.e. spatial flux distribution with a higher speedup. Furthermore,374

in the numerical point of view we can consider space domain decomposition (e.g. multi375

grid) in order to more reduce the model. This direction was inversigated in the static376

case (see [2]) and is under study with more complicated neutron model. In the experi-377

ments point of view, we showed convergence rate and performance of the parallelization378

using supercomputer with MPI implementation of the parareal in time algorithm. The379

efficiency of the parallelization could be much more enhanced with some particular im-380

plementation using MPI non-blocking communications and managing agent processor’s381

topology in a supercomputer.382
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Table 8: Iteration 3 & 4 of the algorithm, reduced model with dynamic rods scenario..

τF τG max
n≥0

ε3
n

0.1 2 1.91e-07
0.1 4 1.74e-06
0.1 8 1.63e-05
0.5 2 1.01e-07
0.5 4 1.30e-06
0.5 8 1.21e-05
1 2 3.18e-08
1 4 8.35e-07
1 8 9.42e-06

τF τG max
n≥0

ε4
n

0.1 2 5.71e-09
0.1 4 1.52e-07
0.1 8 2.53e-06
0.5 2 2.69e-09
0.5 4 7.39e-08
0.5 8 2.17e-06
1 2 6.96e-10
1 4 5.50e-08
1 8 1.86e-06

Figure 10: Convergence of the algorithm (iteration 00-09), complete model with dynamic rods scenario for
the parallel computation and static rods scenario with reduced model for the coarse serial computation;
τF = 10−1, τG = 4 and n̂ = 10.
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Figure 11: Real time machine simulation CPU (Wallclock format: h:m). Relative errors between solution
computed with the parareal in time algorithm and the serial one, we vary the number of used processor
per subinterval; τF = 10−1, τG = 2 and n̂ ∈ {1, 4, 8, 10, 16, 20, 40}.
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