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We have studied the dynamics of the correlated diffusion of pairs of random walkers of
opposite signs. The use of populations of such pairs has been proposed for the Monte Carlo
treatment of many-fermion systems, where the possibility of their cancellation might prevent
the characteristic decay of signal–to–noise ratio. For four model systems– free fermions, the
harmonic oscillator, an N-body system of attractive and repulsive harmonic forces, and an
extensive system interacting by Pöschl-Teller potentials– we have explored analytically and
by computation the behavior of the time to cancellation as a function of initial conditions
and, equally important, as a function of system size. We find that for these systems the
computational efficiency does not decay either with large imaginary time or with large N.

Keywords: Quantum Monte Carlo, Fermion Monte Carlo, Diffusion Monte Carlo,
correlated walkers, harmonic oscillator

1. Introduction

Quantum Monte Carlo (QMC) methods have become an important tool in the
study of many-body systems. They permit accurate solutions of systems of bosons.
No comparable methodology exists for fermionic systems, but with many theoret-
ical and practical improvements, the fixed-node approximation has proved to be a
powerful tool.

The impediments to a reliable many-fermion Monte Carlo method that does not
require the specification of a nodal surface can be enumerated in several ways,
but the following stands out: because the fermionic state has a larger eigenvalue
than the bosonic, the projection of the walker distribution using an antisymmetric
trial function decays exponentially fast in imaginary time, and the rate of decay
grows with the particle number N– linearly for extensive systems. Arnow et al. [1]
proposed using walkers of opposite signs and canceling close pairs using Green’s
functions. This scales badly in particle number since near neighbors become ex-
ponentially rare in the many-dimensional configuration space used, and because
accurate Green’s functions can easily be constructed only over small Euclidean
distances (or equivalently, over short intervals of imaginary time.)

Kalos and Pederiva have been studying for some time a class of methods in-
tended to provide exact results for many-fermion systems that does not depend
on the specification of a nodal surface [2, 3]. A key element of those methods is
a population of pairs of random walkers of opposite algebraic signs together with
correlation of the diffusion steps of the random walks of the members of a pair in
such a way that they can meet with high probability.

This paper is devoted to a critical analytic and experimental study of the corre-
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lated random walks to determine whether they are effective and especially to study
the dependence on particle number– i.e., on dimensionality– of the dynamics of
cancellation.

The current version of Fermion Monte Carlo (FMC) may be outlined as follows.
If the dimension of the physical space is d then the walkers that generate the

Monte Carlo solution of the Schrödinger equation move in a dN dimensional space.
We study the behavior of pairs of such walkers that carry plus and minus signs.
Each is moved according to the dynamics of simple diffusion Monte Carlo using
a trial function for the symmetric ground state as an importance function. The
diffusion moves are correlated for the two walkers, and when close, they can cancel
each other. Then a “second stage importance function,” which depends on the
coordinates of both walkers, is applied and the pair density is altered according to
the ratio of this function before and after the time step.

Because the branching weight using the symmetric importance function may
not be the same for both walkers, a special random process is invoked: half the
difference between the two weights is given to the walker with the larger weight,
which is then converted to a pair by applying an odd permutation. This creates no
bias, since the permuted walker is given the opposite sign and has the same future
expectation as its partner. This process is called “repairing”.

Cancellation of the pairs is essential to avoid the exponential growth of the
symmetric part of the walker density at the expense of the antisymmetric part.
Of course, the a priori chance of finding a pair close enough to cancel in dN
dimensions falls exponentially fast with N . The correlation of the walkers has the
effect of bringing them together so that cancellation becomes likely.

But the fermion-boson energy gap increases with N , growing linearly with N for
extensive systems, like 3He or the homogeneous electron gas. The question arises
whether the correlation process brings the walkers together fast enough for efficient
cancellation in large systems.

This question has motivated a series of experiments to study the behavior of the
cancellation time, i.e., the time necessary for a pair of walkers to get close and
cancel. To avoid additional sources of uncertainty, we have made the experiments
with three different systems with a known imaginary-time Green’s function for any
number of particles. These systems are the free gas, the harmonic oscillator, and
an atom-like system in which an attractive central harmonic force competes with
a weaker repulsive harmonic force between every pair of particles. This latter is a
simple solvable analog of an atom, which we call the “harmonium atom.”

2. Cancellation time

Let us denote by G(X, Y ; τ) the Green’s function for vectors X and Y with dN
components describing a move from Y to X for a system of N particles which
move in a d-dimensional space; τ is the imaginary time. Let us consider a pair of
walkers, denoted by (X+

0 , X−
0 ), comprising a positive walker, X+

0 , and a negative
one, X−

0 . The probability of cancellation of walkers of opposite sign is described by
the subtraction of Green’s functions in the following way: the density of positive
and negative walkers in the move of a pair from (X+

0 , X−
0 ) to (X+, X−) will be:

ρ+(X; X+
0 , X−

0 , τ) = max[0, G(X, X+
0 ; τ) − G(X, X−

0 ; τ)] (1)

ρ−(X; X+
0 , X−

0 , τ) = max[0, G(X, X−
0 ; τ) − G(X, X+

0 ; τ)] , (2)

respectively. The move of the pair in FMC is the following:
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(1) We move X+
0 to X+ according to G(X+, X+

0 ; τ).
(2) We accept X+ with probability

ρ+(X+; X+
0 , X−

0 , τ)

G(X+, X+
0 ; τ)

. (3)

If the move is not accepted, the pair is canceled; counting the number of steps
taken by the pair from birth to death gives its cancellation time.
(3) If accepted, we move X−

0 to X− using

X− = X−
0 + X+ − X+

0 − 2
(X+ − X+

0 ) · (X+
0 − X−

0 )

(X+
0 − X−

0 )2
(X+

0 − X−
0 ) . (4)

This correlated move implies that X− has the same probability of acceptance
as X+, Eq(3). (X+, X−) is the new position of the pair; we go back to the step
1 if the moves are accepted.

It is obvious that, apart from number of particles, N , and the dimension of the
space they move, d, the cancellation time will also depend on the initial distribution
of the two walkers in the pair.

3. Free gas

In the case of the free gas, the exact Green function is:

G(X, Y ; τ) =
1

(2πτ)Nd/2
exp

[

−(X − Y )2

2τ

]

, (5)

The symmetric ground state wave function is constant.
We have to consider the infinite images of the vectors created by periodic bound-

ary conditions. Since we know the behavior of this system as a function of density,
we will take ρ = 1. Then the N particles are in a hypercube with side, L, with
L = N1/d. In a practical calculation if τ is small enough compared to L2, we can
pair each X with its single nearest image.

We begin by studying the behavior of cancellation time with the number of
particles. As a first case, we will choose the positions of the walkers randomly and
uniformly in the box of volume, N . We show the results in Figure 1 for d = 1, 2, 3
as a function of the number of particles and compare to a fit in the form

tc = CN1+2/d . (6)

The values in Figure 1 correspond to C = 0.0412, 0.0806, 0.26 for d = 1, 2, 3,
respectively. This behavior can be easily explained since, as implied by Eq. (5), the
cancellation time scales with the square of the distance. The maximum distance
in an axis is L/2 so in the full space must be (Nd)1/2L/2. This, combined with
L = N1/d, explains the behavior that we observe.

This conclusion– that the cancellation time grows faster than the difference of
energy between the fermionic and the bosonic ground states– is a consequence of
choosing initial configurations at random. In fact, in FMC one has the freedom to
choose other relationships between plus and minus walkers. One important option is
to start with a pair of walkers with all the coordinates of the particles equal except
for one pair of particles that have their coordinates interchanged– that is that
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undergo a pair permutation. Interchanging the nearest pair of like-spin particles
gives the smallest initial Euclidean separation of the walkers.

In our experiments, we have studied two alternative strategies for generating
initial pairs of walkers. The coordinates of the plus walker are chosen at random in
the periodic box. We set the coordinates of the minus walker to be the same except
for two particles whose coordinates are interchanged. In the first case, we choose
this pair at random, and in the second, we exchange the closest pair. Following our
previous explanation, we can see that in the first case, the cancellation time must
scale as

tc = CN2/d . (7)

and this is what we get as shown in Figure 2. The parameters obtained from fits
to Eq. (7) are C = 0.165, 0.25 for d = 2, 3, respectively.

The results obtained for the second case, which is the one used by FMC, are
shown in Figure 3. In this case the cancellation time is independent of the number
of particles. This indicates that, at least for the free system, the cancellation of pairs
will remain an efficient tool when the number of particles of the system becomes
bigger.

It is qualitatively plausible that the mean time to cancellation is smaller when
pairs are created by permuting the closest pair; the average separation of close
pairs is smaller than that of pairs chosen at random. This is illustrated in Figures
4 and 5, where the average pair separation in the free system is compared when
pairs are chosen at random versus as closest, in the cases of d = 2, 3. This was
in fact the motivation for using close pairs in the formulation of Fermion Monte
Carlo.

There is another aspect that is present in FMC that we have not taken into
account. This is the fact that in FMC the pairs may produce new pairs– the process
we call “repairing”– while in our model the pairs can only annihilate. We simulate
repairing by artificially creating a new pair of walkers in the present position of the
pair with probability pδτ , with p a constant and δτ the time step. Of course, now the
cancellation time refers to the total time needed to annihilate the initial pair and all
its offspring. An immediate question is whether the inclusion of branching modifies
the scaling of the cancellation time with the number of particles. We studied this
and concluded that the cancellation time becomes longer but the tendency remains
the same.

4. Analytical results for the free gas

When a pair moves according to correlated sampling for the free gas, the Euclidean
distance between the walkers diffuses in one dimension. Because we use periodic
boundary conditions, the walker is absorbed at x = 0 and x = Z. The orientation
of the pair is not necessarily parallel to any coordinate axis so that Z varies from
L to d1/2L where L is the length of a side of the box.

The evolution simply requires the solution of the equation

D

2

∂2G(x, x0; t)

∂x2
− ∂G(x, x0; t)

∂t
= 0 , (8)

where D is the diffusion constant and with the initial condition G(x, x0; 0) =
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δ(x − x0). We can write

G(x, x0; t) =
∞

∑

k=1

φk(x)φk(x0)e
−Ekt (9)

where

−D

2

∂2φk(x)

∂x2
= Ekφk(x) , (10)

with φk(0) = φk(Z) = 0. This leads to the solutions

φk(x) =

√

2

Z
sin

(

kπx

Z

)

Ek =
D(kπ)2

2Z2
. (11)

In order to calculate the cancellation time of a pair, we build

ρ(x0; t) =

∫ Z

0
G(x, x0; t) dx , (12)

the probability of survival of a pair initially at a distance x0 during a time t
(ρ(x0; 0) = 1 and ρ(x0;∞) = 0). The probability of cancellation is 1 − ρ(x0; t).
If we differentiate this with respect to time, we obtain the distribution of times
of cancellation, and its mean will correspond to the time needed to cancel a pair
initially at x0. This is

tc(x0) =

∫ ∞

0
[−ρ′(x0; t)]t dt . (13)

So if we define

ck =

∫ Z

0
φk(x) dx =

√
2Z

kπ

[

1 − (−1)k
]

, (14)

we can write

ρ(x0; t) =

∞
∑

k=1

ckφk(x0)e
−Ekt (15)

−ρ′(x0; t) =
∞

∑

k=1

ckEkφk(x0)e
−Ekt (16)

tc(x0) =
∞

∑

k=1

ck

Ek
φk(x0) (17)

Consider the function f(x) = x(Z − x)/D and expand it in eigenfunctions
{φk(x)}∞k=1. The result is

f(x) =

∞
∑

k=1

ck

Ek
φk(x) = tc(x);

tc(x) = x(Z − x)/D. (18)
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The spatial variable we are using here is the difference between two variables with
perfect negative correlation so D is four times the diffusion constant of one of these
variables.

We present the results in Figure 6 and compare them with the function

tc = Ar(B − r) (19)

where for a three-dimension system and branching term of p = 1.15, we obtain
A = 0.79, 0.82 and B = 3.07, 5.96 for N = 10, 80, respectively. The fits are very
good.

5. Harmonic oscillator

We use the harmonic oscillator as a simple model of an interacting system. The
diffusion is described by the exact Green’s function [4], modified by the symmetric
ground state [5]. This is

eNdτ/2φ(X)G(X, Y ; τ)

φ(Y )
=

1

(2πe−τ sinh τ)Nd/2
exp

[

(X − e−τY )2

2e−τ sinh τ

]

(20)

where φ(X) = exp(−X2/2). In the case of the harmonic oscillator, the box is not
necessary and we have sampled the initial position of the walkers according to
|φ(X)|2.

The situation is now different from that in the free gas case since the size of
the system does not grow to keep the density constant. Moreover, the attraction
provided by the harmonic oscillator potential causes the walkers to stay close to
each other. Both facts will be reflected in the behavior of the cancellation time
with the number of particles. We will study the same three situations considered
in the case of the free gas.

Let us begin with the case where the two walkers in the pair are sampled indepen-
dently from the ground-state wave function. Figure 7 shows that the cancellation
time behaves as

tc = A + B ln(N) , (21)

with A = 0.67, 0.83 and B = 0.49, 0.50 for d = 2, 3, respectively. The cancellation
time grows with the number of particles but slower than any positive power of N .
This behavior is better than the two first cases for the free gas. We can also see
that, contrary to the behavior of the free gas, the cancellation time is larger for
the three dimensional case than for the two-dimensional case.

This first case is the worst of the three cases, since all the particles in both
walkers are chosen independently. In the rest of the study, all the particles in the
plus walker are chosen independently but all the particles of the minus walker but
two are chosen to have the same coordinates as the corresponding particle in the
plus walker. This pair of particles, whose coordinates are interchanged to create
the minus walker from the plus walker, can be chosen at random or chosen as the
nearest pair of particles in the plus walker.

Figure 8 shows that, when the pair of particles to be exchanged is randomly
chosen, the cancellation time is independent of the number of particles.

Finally, if the exchanged pair is the closest pair, the cancellation time actually
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decreases as the number of particles increases, as shown in Figure 9 where the form

tc = CN−2/d , (22)

provides a good fit with C = 2.19, 1.97 for d = 2, 3, respectively. From this, we
conclude that for the harmonic oscillator as well, the dynamic correlation of the
pairs will be an efficient mechanism for bringing pairs of walkers close together so
that cancellation becomes highly probable.

We present additional results using repairing with p = 1.25 for a system of 640
particles moving in a three-dimensional space in Figure 10. We show also a fit using

tc =
r(1 + Ar)

Br + C
; (23)

the values of the parameters are A = 7.6 × 10−3, B = 0.27 and C = 0.88.
We study again the dependence of the variation of cancellation time with the

number of particles when there is branching. The results show that when the num-
ber of particles is large enough, the branching case scales the same as with no
branching.

These results can be used to refine the “second-stage importance function” to
include its correct dependence on the separation of the two walkers.

This also suggests that using different permutations, which result in different
walker pair separations, may be a useful tool in the method.

6. Harmonium atom

Finally we consider a modification of the harmonic oscillator by including a re-
pulsive potential quadratic in the distance between pairs of particles. We use the
Hamiltonian

H = − ~
2

2m

N
∑

k=1

∇2
xk

+
1

2
mNω2

N
∑

k=1

x2
k − 1

2
mω′2

N
∑

l>k

x2
kl , (24)

where xk is a d-dimensional vector and xkl is the distance between particle k
and particle l. We have multiplied the attractive part by N to compensate for the
smaller number of particles as compared to the number of pairs. Making the change

of variables rk =

√

m
√

Nω
~

xk and defining β = ω′

ω , we can write

H =
~
√

Nω

2

[

−
N

∑

k=1

∇2
rk

+
N

∑

k=1

r2
k − β2

N

N
∑

l>k

r2
kl

]

. (25)

Since the potential is a quadratic form, we can look for a further change of variables
which diagonalizes it. This is provided by

R1 =
1√
N

N
∑

k=1

rk

Rk =
1

√

k(k − 1)

(

k−1
∑

l=1

rl − (k − 1)rk

)

k = 2, . . . , N.
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In terms of these new variables, we can rewrite the Hamiltonian as

H =
~
√

Nω

2

[

−
N

∑

k=1

∇2
Rk

+ R2
1 + (1 − β2)

N
∑

k=2

R2
k

]

, (26)

obtaining a system of uncoupled harmonic oscillators if γ2 = 1 − β2 ≥ 0.
We have studied this using d = 3 and γ = 0.1 and, as in the previous sections,

emphasizing the behavior with N and with three choices for creating pairs. The
results are presented in Figures 11, 12 and 13. The first one corresponds to the
case where the walkers in the pair are chosen independently. The cancellation time
increases linearly with the logarithm of N as was true in the case without repulsion
(γ = 1). We fit using Eq.(21) and obtained A = 8.1 and B = 5.

Figure 12 shows the results when the second walker is formed by exchanging a
randomly chosen pair of particles in the first walker. We obtain the same behavior
as in the case γ = 1: a constant cancellation time as a function of the number of
particles.

Finally, in Figure 13 the pair of particles exchanged is the closest. Here the
cancellation time decreases when the number of particles increases. We used Eq.(22)
to fit and obtained C = 19.8

In all cases the cancellation time is greater than when there is no no repulsion
(γ = 1). A comparison between the new values of A, B, C and the constant
cancellation time for the second case compared to those in the previous section
(which correspond to no repulsion) show that they are roughly multiplied by a
factor of 10. This can be easily explained by examining the exact Green’s function,
modified by the symmetric ground state when the oscillator constant is γ instead
of 1. This is

eγdτ/2φ(X)G(X, Y ; τ)

φ(Y )
=

(

γ

2πe−γτ sinh(γτ)

)d/2

exp

[

−γ(X − e−γτY )2

2e−γτ sinh(γτ)

]

(27)

where φ(X) = exp(−γX2/2). It reduces to the case where γ = 1 using τ ′ = γτ and
X ′ =

√
γX. This shows that the modified cancellation time is just the cancellation

time with no repulsion divided by γ.

7. A model system

As a final application, we study how the cancellation time scales with the number
of particles in a system whose Green’s function is not known exactly. We use an
approximate Green function in the short time limit [6]. The latter can be written
as:

G(X, Y ; τ) =
1

(2πτ)Nd/2
exp

[

−(X − Y − τF (Y ))2

2τ

]

exp[(ET − EL(X))τ ] , (28)

We have included importance sampling with a Jastrow approximation to a trial
function for the symmetric ground state φ(X) that determines

F (Y ) =
∇φ(Y )

φ(Y )
, (29)
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and the local energy

EL(X) =
H(X)φ(X)

φ(X)
= −∇2φ(X)

2φ(X)
+ V (X) . (30)

This short-time Green function implies “drift” and “diffusion” derived from the first
(shifted) exponential and a branching term, derived from the second exponential.
The Gaussian part has already been used in this paper and we treat it in the same
way as for the free and the harmonic systems. However, the branching part implies
population variations and causes plus and minus walkers to have different weights
given by

w± = exp[(ET − EL(X±))τ ] . (31)

In order to retain the structure of a population of pairs of walkers, we define

wp = min(w+, w−); (32)

wr =
max(w+, w−) − min(w+, w−)

2
. (33)

wp gives the expected number of pairs of new walkers generated by the smaller
of w+, w−; the extra weight wr gives the expected number of additional pairs
created by “repairing”. This consists in taking the walker with the larger weight,
max(w+, w−) and generating a new partner by exchanging only the closest pair of
particles of the original configuration. Because both of the walkers of this new pair
have the same expectation for future contributions weighted with antisymmetric
test functions, this accounts for all weights and is unbiased.

In studying the time to cancellation, it is not necessary to carry out the branch-
ing. Instead we may define:

pp =
wp

wp + wr
, pr =

wr

wp + wr
. (34)

Then with probability pp, the pair continues drift and correlated diffusion, and
otherwise the pair “repairs” using the nearest pair permutation as discussed above.

This avoids the necessity for population control and eigenvalue estimation, while
correctly balancing the correlated diffusion against its interruption by repairing. It
also correctly treats the decreased probability of repairing as the walkers become
close and the two weights, w+ and w−, become equal.

We present results with the so-called Pöschl-Teller potential [7]:

V (X) =
N

∑

j>i

V (rij) = −
N

∑

j>i

2µ2

cosh2(µrij)
. (35)

We use values of the parameter µ that give an infinite scattering length [8].
We will use a trial wavefunction of the form

φ(X) =
N
∏

l>k

f(rlk) , (36)
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where the correlation function f(r) is the solution of the equation

−∇2f(r) + V (r)f(r) = λf(r). (37)

We use a healing distance, dh defined by

ρ

2

∫ dh

0
f2(r) d~r = 1. (38)

and require that f(r ≥ dh) = 1 and f ′(dh) = 0.
We show in Fig. 14 results for the three dimensional case (d = 3) when both

walkers of the initial pair are chosen at random inside the box. In this example the
efficiency of the cancellation process improves as the number of particles grows. We
also show in this figure a fit using Eq. (22) with C = 0.24. This fit also appeared in
the harmonic oscillator case when the plus walker was chosen at random and the
minus walker was equal to the plus one except for the permutation of the nearest
pair of particles. This holds here without the special choice of initial pairs because
repairing is guaranteed to occur sometime in the random walk. The drifting force
caused by an attractive potential with a minimum at the origin brings the pairs
together, accelerating the annihilation process. Cancellation is as fast as in the case
of the harmonic oscillator. In other words, the repairing process, required because
an approximate importance function is used in the random walk, accelerates the
cancellation process. We expect this to hold quite generally.

8. Conclusions

Our study of the dynamics of correlated diffusion has been intended to clarify their
use in Quantum Monte Carlo computations of fermionic systems. It is possible, of
course, that they may be of wider interest, because in an important sense, they
show how correlated random walkers can be made to meet in spaces of very high
dimension.

Within the framework of Quantum Monte Carlo, our results confirm that for
systems like those we have studied– non-interacting fermions, harmonic oscillator
systems, and the extensive gas of atoms interacting by way of the Pöschl-Teller
potential– the exponential complexity thought to exist when a fixed node is not
imposed can be overcome.

The fact that walkers eventually meet implies that the decay of signal to noise in
the limit of very large imaginary time can be overcome with the use of correlated
diffusion leading to cancellation. The fact that the time to cancellation scales more
slowly than linearly in the number of particles means that a computation will not
require exponentially large computing time for large systems.

It remains to be seen whether these conclusions hold more generally, but at face
value, they imply strongly that the “fermion sign problem” is not computationally
intractable as is widely believed.
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FIGURE CAPTIONS

Figure 1. Behavior of the cancellation time with the number of particles, N ,
moving in a d-dimension space.The two walkers in the pair are sampled indepen-
dently from an uniform distribution. The straight lines show tc ∝ N1+2/d with:
dots line for d = 1, dashes line for d = 2 and full line for d = 3.

Figure 2. The same as Figure 1 but the two walkers now have the same coordi-
nates except for two particles,chosen at random, which are exchanged. The straight
lines show tc ∝ N2/d using the same convention as in Figure 1.

Figure 3. The same as Figure 2 but the two exchanged particles have been
chosen to be the closest among all pairs. The constant lines corresponds to d = 3
for the full line and d = 2 for the dashes line.

Figure 4. Average pair separation in a system of N particles when both config-
urations are chosen at random. The straight line represents < rij >∝ N1/d with:
full line for d = 3 and dashes line for d = 2.

Figure 5. Average pair separation in a system of N particles when the second
configuration is the same as the other except for permuting the closest particle
pair. The straight line represents < rij >∝ N−1/d using the same convention as in
Figure 4.

Figure 6. The cancellation time, tc, as a function of the initial distance of the
pair, r, for three-dimensional systems with N = 10 (full line) and N = 80 (dashes
line) particles.

Figure 7. Cancellation time versus the number of particles for the harmonic
oscillator when the walkers in the pair are chosen independently. The full line
corresponds to d = 3 and the dashes one to d = 2.

Figure 8. Cancellation time versus the number of particles for the harmonic
oscillator when the pair of particles exchanged in the pair of walkers is chosen at
random. The same convention as in Figure 7 is used.

Figure 9. Cancellation time versus the number of particles for the harmonic
oscillator when the pair of particles exchanged in the pair of walkers is the closest
one. The same convention as in Figure 7 is used.

Figure 10. The cancellation time, tc, as a function of the initial distance of
the pair, r, for a three-dimensional system with N = 640 particles in a harmonic
oscillator potential.

Figure 11. Cancellation time versus the number of particles for Harmonium
with γ = 0.1 and d = 3 when the walkers in the pair are chosen independently.

Figure 12. Cancellation time versus the number of particles for Harmonium
with γ = 0.1 and d = 3 when the pair of particles exchanged in the pair of walkers
is chosen at random.

Figure 13. Cancellation time versus the number of particles for Harmonium
with γ = 0.1 and d = 3 when the particles exchanged form the closest pair.

Figure 14. Cancellation time versus the number of particles in the short time
limit when the walkers in the pair are chosen independently.
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