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. Here we focus on the way the parameters involved in these functionals determine the features of the minimizers û. We give explicit relationships between the minimizers and these parameters.

Given an input digital image f , we prove that the error û-f ∞ obeys b-ε ≤ û-f ∞ ≤ b where b is a constant independent of the input image. Further we can set the parameters so that ε > 0 is arbitrarily close to zero. More precisely, we exhibit explicit formulae relating the model parameters, the input image f and the values b and ε. Conversely, we can fix the parameter values so that the error ûf ∞ meets some prescribed b, ε. All theoretical results are confirmed using numerical tests on natural digital images of different sizes with disparate content and quality.

Introduction

In [START_REF] Nikolova | Exact histogram specifcation for digital images using a variational approach[END_REF] a variational method using C 2 smoothed ℓ 1 -TV functionals were proposed. The goal was to process digital (quantized) images so that the obtained minimizer is quite close to the input digital image but its pixels are real-valued and can be ordered in a strict way. Indeed, the obtained minimizers were shown to enable faithful exact histogram specification outperforming the state-of-the-art methods [START_REF] Coltuc | Exact histogram specification[END_REF][START_REF] Wan | Joint exact histogram specification and image enhancement through the wavelet transform[END_REF]. The intuition behind these functionals was that their minimizer can up to some degree remove some quantization noise and in this way yield an ordering of the pixels close to the unknown original real-valued image. Such an effect can be observed in Fig. 1 where a synthetic real-valued image is quantized and then restored using the proposed variational method. The nonsmooth L 1 -TV model was originally studied in [START_REF] Chan | Aspects of total variation regularized l 1 function approximation[END_REF]. The main feature of its minimizers is that they contain parts that are equal to the data image and parts that are constant (living in a vanishing component of the TV term). Even though the model modification proposed in [START_REF] Nikolova | Exact histogram specifcation for digital images using a variational approach[END_REF] might seem trivial, the minimizers of these C 2 smoothed ℓ 1 -TV functionals exhibit a qualitatively different behavior. Unlike the L 1 -T V (ℓ 1 -TV) minimizers, it was shown in [START_REF] Nikolova | Exact histogram specifcation for digital images using a variational approach[END_REF] that the minimizers of the C 2 smoothed ℓ 1 -TV functionals generically do not have pixels equal to those of the data image and there are no equally valued pixels. Some of the authors of [START_REF] Nikolova | Exact histogram specifcation for digital images using a variational approach[END_REF] observed that once the parameters of the model were fixed, for all kind of realworld digital images f , the residual error obeyed û-f ∞ = b where the constant b typically met b < 0.5. For this reason, they qualified this variational approach as detail preserving. Therefore we were interested in monitoring the error ûf ∞ .

In this paper we consider a wider class of C 1 smoothed ℓ 1 -TV functionals involving also ℓ 2 data fidelity terms. We give explicit relationships between the minimizers and the parameters tuning the model. The observation that û-f ∞ = b, up to a small difference, is independent of Real-valued image f -quantized on {0, • • • , 15}

Restored û

Figure 1: The restored image is obtained by minimizing J(•, f ) of the form [START_REF] Aubert | Mathematical problems in image processing[END_REF] where ψ(t) = √ t 2 + α 1 and ϕ(t) = √ t 2 + α 2 for N 8.

the input image, is confirmed theoretically. Clear indications on the role of the parameter setting and the lower and upper bounds of ûf ∞ enable us to give restrictions on the parameter selection. All theoretical results are confirmed using numerical tests on a set of digital images of different sizes with disparate content and quality.

In spite of the progress in nonsmooth convex optimization [START_REF] Combettes | Proximal Splitting Methods in Signal Processing[END_REF], smooth approximations of nonsmooth objectives still remain a common approach in optimization [START_REF] Beck | Smoothing and First Order Methods: A Unified Framework[END_REF]. Our results can help to design smooth approximations of ℓ 1 /ℓ 2 -TV functionals in a proper way.

The outline of this paper is as follows: In the next Section 2 we describe the variational model. Then, in Section 3 we estimate the ℓ ∞ -error between the input image f and the minimizer of the functional. Section 4 provides explicit parameter estimates for the model. In Section 5 we give probability estimates for the behavior of neighboring pixels. Numerical tests demonstrate the quality of our estimates in Section 6. Finally, Section 7 finishes with conclusions and perspectives.

The Fully Smoothed ℓ 1 -TV Model

We consider M × N digital images f with gray values in {0, . . . , L -1}. Let n := M N . To simplify the notation we reorder the image columnwise into a vector of size n and address the pixels by the index set I n := {1, • • • , n}. Further, we denote by I int n ⊂ I n the subset of all inner pixels, i.e., all pixels which are not boundary pixels.

We are interested in the minimizer û of a functional of the form

J(u, f ) := Ψ(u, f ) + βΦ(u), β > 0 (1) with Ψ(u, f ) := i∈In ψ(u[i] -f [i]), Φ(u) := i∈In j∈N i ϕ(γ i,j (u[i] -u[j])) ,
where N i is a neighborhood of pixel i, the γ i,j > 0 are weighting terms for the distance between neighbors, and the functions ψ and ϕ depend on a positive parameter, α 1 and α 2 , respectively.

To emphasize this dependence we use the notation ψ(•, α 1 ) and ϕ(•, α 2 ) when necessary. So ψ : R × (0, +∞) → R and ϕ : R × (0, +∞) → R. The functions ψ and ϕ have to fulfill the properties stated below:

H0 The functions t → ψ(t, α 1 ) and t → ϕ(t, α 2 ) are continuously differentiable and even.

We denote

ψ ′ (t, α 1 ) := d dt ψ(t, α 1 ) and ϕ ′ (t, α 2 ) := d dt ϕ(t, α 2 ) .
When it is clear from the context, we write ψ ′ (t) for ψ ′ (t, α 1 ) and ϕ ′ (t) for ϕ ′ (t, α 2 ). By H0 , ψ ′ (t) and ϕ ′ (t) are continuous and odd functions.

These derivative functions have to satisfy certain conditions given next.

H1 ψ t → ψ ′ (t, α 1 ) : R → (-Y, Y )
, where Y > 0, is a strictly increasing function for any fixed α 1 ∈ (0, +∞) and maps onto (-Y, Y ).

H2 ψ There is a constant T > 0 such that for any fixed t ∈ (0, T ), the function α 1 → ψ ′ (t, α 1 ) is strictly decreasing on (0, +∞).

Here the cases T = +∞ and Y = +∞ are included.

H1 ϕ t → ϕ ′ (t, α 2
) is an increasing function for any fixed α 2 ∈ (0, +∞) satisfying

lim t→∞ ϕ ′ (t, α 2 ) = 1.
H2 ϕ For any fixed t > 0, the function α 2 → ϕ ′ (t, α 2 ) is continuous and decreasing on (0, +∞) and lim

α 2 ց0 ϕ ′ (t, α 2 ) = 1.
These properties imply further useful relations which are collected in the following remark.

Remark 1 i) By H1 ψ we know that ψ is strictly convex and monotone increasing on (0, +∞) and by H1 ϕ that ϕ is convex. Therefore there exists a unique minimizer of (1). This minimizer can be computed, e.g. by using a Weiszfeld-like semi-implicit algorithm, or the nonlinear (preconditioned) conjugate gradient method, see [START_REF] Chan | On the convergence of the lagged diffusivity fixed point method in total variation image restoration[END_REF][START_REF] Nikolova | Exact histogram specifcation for digital images using a variational approach[END_REF][START_REF] Weiszfeld | Sur le point pour lequel la somme des distances de n points donnés est minimum[END_REF], among other viable algorithms.

ii) By H1 ψ there exists the inverse function (ψ ′ ) -1 (•, α 1 ) : (-Y, Y ) → R, and this function is also odd, continuous and strictly increasing.

Some relevant choices of functions θ obeying all properties H0, H1 ψ , H2 ψ , H1 ϕ and H2 ϕ are given in Table 1. For the latter functions, t → θ ′ (t, α) maps onto (-1, 1), i.e., Y = 1 and T = +∞ for any α > 0. A typical graph of such a function, its derivative and inverse derivative is depicted in Fig. 2.

θ θ ′ (θ ′ ) -1 Θ1 t 2 + α t √ t 2 + α y α 1 -y 2 Θ2 |t| -α log 1 + |t| α t α + |t| αy 1 -|y| Θ3 α log cosh t α tanh t α α atanh(y)
Table 1: Options for functions θ obeying all the assumptions stated above. These functions are nearly affine beyond a neighborhood of zero. The size of the latter neighborhood is controlled by the parameter α > 0.

-3 1, where the plots for α = 0.05 are in blue solid line and for α = 0.5 in red dashed line.
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Another choice for ψ fulfilling H0, H1 ψ and H2 ψ is the scaled ℓ p -norm for p = α 1 + 1:

ψ(t) := 1 α 1 + 1 | t | α 1 +1 with ψ ′ (t) = | t | α 1 sign(t), (ψ ′ ) -1 (y) = | y | 1 α 1 , α 1 > 0. ( 2 
)
Here ψ ′ maps onto R so that Y = +∞. Moreover α 1 → ψ ′ (t, α 1 ) is strictly monotone decreasing for |t| < 1 hence T = 1 in this case. An upper bound for ûf ∞ when α 1 = 1 in (2) was derived in [START_REF] Nikolova | Analytical bounds on the minimizers of least squares[END_REF]. Some general results on the functionals J for α 1 = 1 in (2) can be found in [START_REF] Aubert | Mathematical problems in image processing[END_REF] in a continuous setting.

For ϕ we can also use the scaled Huber function

ϕ(t) :=      t 2 2α 2 if |t| ≤ α 2 , |t| - α 2 2 if |t| > α 2 with ϕ ′ (t) =    t α 2 if |t| ≤ α 2 , sign(t) if |t| > α 2 . (3) 
Note that the functions ψ and ϕ in Table 1 and (3) are nearly affine beyond a small neighborhood of the origin.

In this paper, we focus on the neighborhoods N4 and N8 depicted in Fig. 3 top. When taking the gradient of the functional in [START_REF] Aubert | Mathematical problems in image processing[END_REF] we have to take into account that the pixel combination u[i]u[j] appears for j ∈ N 2 i , where N 2 i denotes the "double" neighborhood associated with N i in Fig. 3 bottom. The usual choices are (see e. g. [START_REF] Geman | Constrained restoration and recovery of discontinuities[END_REF]) γ i,j := 1 for vertical and horizontal neighbors,

γ i,j := 1 √ 2 for diagonal neighbors. (4) 
In all cases we have γ i,j = γ j,i .

Functionals of the form (1) with functions ψ, ϕ ∈ C s , s ≥ 2 having alike properties (e.g. all functions in Table 1) were successfully used in [START_REF] Nikolova | Exact histogram specifcation for digital images using a variational approach[END_REF] to process digital images f so that the obtained minimizer û is quite close to the input digital image but its pixels can be ordered in a strict way. An analysis of the minimizers û of these functionals has shown that with a probability close to one, û has pixel values that are different from each other and different from the input pixels.

Bounds for the ℓ ∞ -Error

In this section, we give upper and lower estimates for the ℓ ∞ -error between the input image f and the image û obtained by minimizing the functional J(•, f ). The double neighborhoods N 4 2 and N 8 2 appear in the gradient of Φ(u), see [START_REF] Coltuc | Exact histogram specification[END_REF].

If û is a minimizer of u → J(u, f ) we denote by h ∈ R n the vector with components

h[i] := j∈N 2 i γ i,j ϕ ′ (γ i,j (û[i] -û[j])) , i ∈ I n . (5) 
First we provide a lemma which gives a useful expression for ûf ∞ .

Lemma 1 Let H0 , H1 ψ and H1 ϕ be satisfied. Let û be the minimizer of u → J(u, f ) and h be given by [START_REF] Chan | Aspects of total variation regularized l 1 function approximation[END_REF]. Then

û -f ∞ = (ψ ′ ) -1 (β h ∞ , α 1 ) . (6) 
Proof. In this proof we can omit the parameter α 1 . Using the definition of J and taking into account that ϕ ′ is odd, we have

∂Ψ ∂u[i] = ψ ′ (u[i] -f [i]) and ∂Φ ∂u[i] = j∈N 2 i γ i,j ϕ ′ (γ i,j (u[i] -u[j])) . (7) 
The minimizer û of J(•, f ) has to satisfy ∇ u J(û, f ) = 0 which can be rewritten as

∇ u Ψ(û, f ) = -β∇Φ(û) or as ψ ′ (û[i] -f [i]) = -β j∈N 2 i γ i,j ϕ ′ (γ i,j (û[i] -û[j])), i ∈ I n .
Using (5), the latter is equivalent to

ψ ′ (û[i] -f [i]) = -β h[i], i ∈ I n .
Since ψ ′ is by H0 and H1 ψ odd and strictly increasing,

ψ ′ û[i] -f [i] = ψ ′ (û[i] -f [i]) = β h[i] . (8) 
Using Remark 1ii), we see that ( 8) is equivalent to

û[i] -f [i] = (ψ ′ ) -1 β h[i] (9) 
where (ψ ′ ) -1 is strictly increasing, hence

û -f ∞ = max i∈In (ψ ′ ) -1 β h[i] = (ψ ′ ) -1 (β h ∞ ) .
For inner points i ∈ I int n we define

η := j∈N 2 i γ i,j . (10) 
Of course η does not depend on i but just on the choice of the neighborhood. If the weights are defined as in ( 4), we have

η = 4 for N4 , η = 4 + 4 √ 2 = 6
.8284 for N8 .

For i ∈ I n \ I int n we have

j∈N 2 i γ i,j
≤ η whose value depends on the boundary conditions.

In order to extend the obtained result, we shall use a property of (ψ ′ ) -1 which is stated below.

Lemma 2 Let ψ satisfy H0 , H1 ψ and H2 ψ . Set

Y := min{Y, ψ ′ (T )} , where ψ ′ (T ) := lim t→+∞ ψ ′ (t) if T = +∞. Then for any y ∈ (0, Y ), the function α 1 → (ψ ′ ) -1 (y, α 1 )
is strictly increasing on (0, +∞).

Proof. Let 0 < a 1 < a 2 and y ∈ (0, Y ) be arbitrarily fixed. Since t → ψ ′ (t, α 1 ) is one-to-one and odd, there exist t 1 , t 2 ∈ (0, T ) such that

ψ ′ (t 1 , a 1 ) = y = ψ ′ (t 2 , a 2 ) . (11) 
Thus we have (ψ ′ ) -1 (y, a 1 ) = t 1 and (ψ ′ ) -1 (y, a 2 ) = t 2 . ¿From H1 ψ , t → ψ ′ (t, α 1 ) is strictly increasing for any fixed α 1 > 0 and from H2 ψ , α 1 → ψ ′ (t, α 1 ) is strictly decreasing for any fixed t ∈ (0, T ). Therefore

t 2 ≤ t 1 ⇒ y = ψ ′ (t 1 , a 1 ) > ψ ′ (t 1 , a 2 ) ≥ ψ ′ (t 2 , a 2 ).
This contradicts [START_REF] Nikolova | Exact histogram specifcation for digital images using a variational approach[END_REF]. Consequently, t 1 < t 2 which implies the assertion.

For all functions in Table 1 and for ψ in (2) we have Y = 1.

The following theorem provides an upper bound for ||ûf || ∞ which is independent of f as well as of the particular shape of ϕ(t, α 2 ) provided that the latter meets the relevant assumptions.

Theorem 1 Assume that H0 , H1 ψ and H1 ϕ are satisfied. Let β η < Y , where η is given in [START_REF] Nikolova | Analytical bounds on the minimizers of least squares[END_REF].

Then the minimizer û of u → J(u, f ) satisfies û -f ∞ ≤ (ψ ′ ) -1 βη, α 1 =: b(β, α 1 ) . ( 12 
)
If, in addition, ψ fulfills H2 ψ and β η < Y , where Y = min{Y, ψ ′ (T )}, then α 1 → b(β, α 1 ) is strictly increasing on (0, +∞).

Proof. From H1 ϕ , ϕ ′ is increasing with |ϕ ′ (t)| ≤ 1 for any t ∈ R. Inserting this into the definition of h in (5) yields h ∞ ≤ η. (13) 
Since (ψ ′ ) -1 is by Remark 1ii) strictly increasing on (0, Y ), we deduce from ( 6) and ( 13) for

β η < Y that û -f ∞ = (ψ ′ ) -1 (β h ∞ , α 1 ) ≤ (ψ ′ ) -1 (β η, α 1 ) .
If ψ meets H2 ψ and β η < Y we obtain by Lemma 2 that the function α 1 → (ψ ′ ) -1 βη, α 1 is strictly increasing on (0, +∞).

We clarify the statement of Theorem 1 below.

• By Remark 1, the function β → b(β, α 1 ) is strictly increasing since η is a fixed number.

• The equality in [START_REF] Wan | Joint exact histogram specification and image enhancement through the wavelet transform[END_REF] can only be met if ϕ ′ attains the limit in H1 ψ , i.e., if ϕ ′ (t) = 1 for some t ∈ R. This is for example the case for the scaled Huber function in (3).

• The bound in [START_REF] Wan | Joint exact histogram specification and image enhancement through the wavelet transform[END_REF] depends only on ψ(•, α 1 ) and on β but it is independent of the selection of ϕ provided that H1 ϕ holds.

• For all functions ψ listed in Table 1 we have Y = 1 which limits the action of β to less than 1/η . So H2 ψ furnishes a flexible tool to control the upper bound b(β, α 1 ) by using α 1 under the condition that βη < Y , where we remind that Y = 1 for all ψ in Table 1 and in [START_REF] Beck | Smoothing and First Order Methods: A Unified Framework[END_REF].

The lower bound on ûf ∞ exhibited in the next Theorem 2 depends on ϕ(t, α 2 ) and on the input image f as well. In our formula, the reliance on f is expressed via the magnitude ν f defined below:

I := i ∈ I int n sign f [i] -f [j] = σ, ∀ j ∈ N i where σ ∈ {-1, +1} , ν f := max i∈I min j∈N i γ i,j f [i] -f [j] , (14) 
where we set ν f := 0 if I = ∅. The values of ν f for some real-world images can be seen in Fig. 7.

Theorem 2 Let H0 , H1 ψ , H2 ψ and H1 ϕ , H2 ϕ be verified. Let β η < Y , where η is given in [START_REF] Nikolova | Analytical bounds on the minimizers of least squares[END_REF]. Assume that ν f > 2b(β, α 1 ). Then the minimizer û of u → J(u, f ) fulfills

û -f ∞ ≥ (ψ ′ ) -1 (c β η, α 1 ) =: ℓ(β, α 1 , α 2 , ν f ) , (15) 
where c = c β, α 1 , α 2 , ν f := ϕ ′ ν f -2b(β, α 1 ), α 2 ≤ 1 . The function α 2 → ℓ(β, α 1 , α 2 , ν f ) is decreasing on (0, +∞) and ℓ(β, α 1 , α 2 , ν f ) ր b(β, α 1 ) as α 2 ց 0 . ( 16 
)
Moreover, for ε > 0 arbitrarily close to zero, α 2 can be set so that

û -f ∞ ≥ (ψ ′ ) -1 ((1 -ε) β η, α 1 ) . ( 17 
)
Proof. ¿From the definition on ν f , there exists i ∈ I int n such that

γ i,j f [i] -f [j] ≥ ν f , ∀ j ∈ N i .
We consider the case

γ i,j (f [i] -f [j]) ≥ ν f > 2b(β, α 1 ), ∀j ∈ N i . (18) 
The opposite case, namely

γ i,j (f [j] -f [i]) ≥ ν f > 2b(β, α 1
), ∀ j ∈ N i can be handled in the same way. By Theorem 1, the minimizer û of J(•, f ) meets

-b(β, α 1 ) ≤ û[i] -f [i], -b(β, α 1 ) ≤ f [j] -û[j], ∀j ∈ N i . Thus -2b(β, α 1 ) ≤ û[i] -û[j] -f [i] -f [j] , ∀j ∈ N i , -2b(β, α 1 ) + f [i] -f [j] ≤ û[i] -û[j], ∀j ∈ N i . (19) 
Combining ( 18) and ( 19) along with the fact that γ i,j ≤ 1 yields

0 < -2b(β, α 1 ) + ν f ≤ -2b(β, α 1 ) + γ i,j (f [i] -f [j]) ≤ γ i,j (û[i] -û[j]) ∀ j ∈ N i . Since t → ϕ ′ (t, α 2 ) is increasing by H1 ϕ , the value h[i] in (5) satisfies h[i] ≥ j∈N 2 i γ i,j ϕ ′ ν f -2b(β, α 1 ), α 2 = η c β, α 1 , α 2 , ν f .
Using yet again that y → (ψ ′ ) -1 (y, α 1 ) is strictly increasing (Remark 1ii)) we obtain by ( 9) that

û[i] -f [i] ≥ (ψ ′ ) -1 (c βη, α 1 ) = ℓ(β, α 1 , α 2 , ν f ) . Since û -f ∞ ≥ û[i] -f [i] , it follows that û -f ∞ ≥ (ψ ′ ) -1 (c βη, α 1 ) .
Using H2 ϕ , the function α 2 → c(β, α 1 , α 2 , ν f ) is continuous and decreasing on (0, +∞) and lim

α 2 ց0 c(β, α 1 , α 2 , ν f ) = 1. Combining the latter with Remark 1ii) entails that α 2 → ℓ(β, α 1 , α 2 , ν f )
is decreasing on (0, +∞). Then the definition of b(β, α 1 ) in ( 12) leads to (16).

Finally, H2 ϕ shows that for ε arbitrarily close to zero there is

α 2 > 0 such that c(β, α 1 , α 2 , ν f ) = (1 -ε) and consequently û -f ∞ ≥ (ψ ′ ) -1 ((1 -ε) βη).
Some comments on Theorem 2 may be useful.

• The expression in (17) tells us that by decreasing α 2 , the lower bound ℓ(•) can be adjusted arbitrarily close to the upper bound b(•). The amount of decrease of α 2 needed to reach (1ε) depends on the input image f and can be calculated.

• If t → ϕ ′ (t, α 2
) is nonstrictly increasing on [0, +∞), as the Huber function in (3), it is easy to see that there is α 2 such that c(β, α 1 , α 2 , ν f ) = 1 and hence ℓ(β, α 1 , α 2 , ν f ) = b(β, α 1 ).

Explicit Parameter Estimates

In this section we want to use the error bounds from the previous section to give explicit parameter estimates of β, α 1 and α 2 for the functions ψ, ϕ mentioned in Section 2. More precisely, for a given β satisfying a constraint and for δ fixed, we exhibit the value α 1 = α 1 ensuring that b(β, α 1 ) = δ and then calculate ℓ(β, α 1 , α 2 , ν f ).

For the functions ψ in Table 1 and in [START_REF] Beck | Smoothing and First Order Methods: A Unified Framework[END_REF] we have Y = 1. When the weights γ i,j are chosen as in (4) and H2 ψ holds, the assumption βη < Y = 1 in Theorem 1 reads β < 1 4 = 0.25 for N4, β < 1 6.8284 = 0.1464 for N8.

(20)

In the following we choose β > 0 such that β < 1 η . For δ > 0 fixed, let α 1 solve the equation

b(β, α 1 ) = (ψ ′ ) -1 (βη, α 1 ) = δ . (21) 
Then we have by Theorem 1 that ûf ∞ ≤ δ for all α 1 ∈ (0, α 1 ] and there does not exist α 1 > α 1 such that ûf ∞ ≤ δ holds true. In this sense we call α 1 optimal for δ. This claim is ensured thanks to H2 ψ which guarantees that α 1 → b(β, α 1 ) is strictly increasing (see Lemma 2). The value c in Theorem 2 depends on ϕ and on f via ν f . Given the input image f the constant ν f is easy to compute. When

z := ν f -2b(β, α 1 ) > 0, Theorem 2 indicates that the constant c reads c = ϕ ′ (z, α 2 ). (22) 
In our experiments on real-world digital images, we always had z ≫ 0 for δ = 0.5. By Theorem 2 a sharper lower bound requires a smaller value for α 2 . According to Theorem 1 and Theorem 2, the upper and lower bounds for fû ∞ and the optimal value for α 1 as defined in (21) for the functions ψ in Table 1 and in (2) are given in Table 2.

ψ(t) b(β, α 1 ) ℓ(β, α 1 , α 2 , ν f ) α 1 t 2 + α 1 α 1 (βη) 2 1 -(βη) 2 α 1 (cβη) 2 1 -(cβη) 2 δ 2 1 β 2 η 2 -1 |t| -α 1 log 1 + |t| α 1 α 1 βη 1 -βη α 1 cβη 1 -cβη δ 1 βη -1 α 1 log cosh t α 1 α 1 atanh(βη) α 1 atanh(cβη) δ atanh(βη) 1 α 1 + 1 | t | α 1 +1 (βη) 1 α 1 (cβη) 1 α 1 ln(βη) ln δ
Table 2: Bounds and parameter α 1 for various functions ψ in Table 1 and in [START_REF] Beck | Smoothing and First Order Methods: A Unified Framework[END_REF]. The parameter c depends on ϕ ′ by (22). The allowed values for β by Theorem 1 are given in (20).

If δ = 0.5 then û has the important property that it preserves the order of the pixel values in a digital image f ∈ {0, . . . , L -1} n . The corresponding values α 1 and β are presented in Table 3 3: Allowed values β < 1/η and the optimal α 1 for δ = b(β, α1 ) = 0.5.

• calculate δ when α 1 and β are given-this can be useful e.g. when ℓ 1 -TV or ℓ 2 -TV are approximated by a fully smooth functional;

• determine the optimal β for fixed α 1 and δ-we remind that from Remark 1, β → b(β, α 1 ) is strictly increasing, hence this value of β is unique.

Probability Estimates for Pixel Neighborhoods

Consider that the assumptions H0, H1 ψ , H1 ϕ and H2 ϕ are met and that the parameters β < Y /η, α 1 and α 2 are fixed. ¿From Theorem 2 we know that the upper bound b(β, α 1 ) in Theorem 1 provides a nearly perfect approximation of the true error û -

f ∞ when c = ϕ ′ (ν f -2b, α 2
) is close to one, which by H1 ϕ means that ν f is large enough. In order to get an intuition-even though very rough-on the behaviour of ν f , we assume in this section that the values of f are realizations of a discrete random variable X taking values in {0, . . . , L -1} whose probability density function (pdf) p X is specialized to real-world digital images. Fig. 4 shows an image together with its histogram which furnishes an empirical estimate of the corresponding pdf. First, we ask for the probability that an inner image pixel i ∈ I int n fulfills

f [i] -f [j] ≥ a and sign(f [i] -f [j]) = σ, ∀j ∈ N i ( 23 
)
where σ ∈ {-1, +1} and a > 0 is fixed.

Lemma 3 Let X, X i , i = 1, . . . , k be independent and identically distributed (iid) discrete random variables taking values in {0, . . . , L -1}. Then it holds for a > 0 that q(X, k, a)

:= P (X -X 1 ≥ a, . . . , X -X k ≥ a) = L-1 i=0 (P (X ≤ i -a)) k P (X = i). ( 24 
)
Proof. Since the random variables are iid we obtain

P (X -X 1 ≥ a, . . . , X -X k ≥ a) = L-1 i=0 (P (i -X 1 ≥ a, . . . , i -X k ≥ a, X = i) = L-1 i=0 (P (X ≤ i -a)) k P (X = i).
A case relevant to our context is when X is a given inner pixel and X i for i ∈ {1 • • • , k} are the pixels in the "double" neighborhood of X, see Fig. 3. Then the setting of Lemma 3 considers neighborhoods where the central pixel X is bigger than all its neighbors by at least the amount of a. It is clear that the opposite case (when X -X i ≤ -a for all i ∈ 1 • • • , k) is of the same interest and appears with the same probability P (X -X 1 ≤ -a, . . . , X -X k ≤ -a) = q(X, k, a). Of course the "iid" assumption is not realistic for natural images.

For k = 1, the probabilities P (X -X 1 ≥ a) and P (X -X 1 ≤ -a) can be easily exemplified. Let X and X 1 follow independently the same pdf p X . In order to obtain the joint pdf of X and X 1 , one has to compute P (X = i 1 )P (X = i 2 ) for all gray levels i 1 , i 2 obeying |i 1i 2 | ≥ a and then take their sum. Fig. 5 (left) shows for example the joint pdf of X and X 1 when X and X 1 are iid random variables following the pdf p X of the "ducks image" in Fig. 4 left. At position (i 1 , i 2 ) ∈ {0, . . . , 255} 2 the probability P (X = i 1 )P (X 1 = i 2 ) is visualized as a gray value where lighter areas correspond to higher probability.

In Fig. 5 (right) the shaded areas show the points where the pixel difference |i 1i 2 | is larger or equal to a. The sum of the probabilities corresponding to these areas is 2q(X, 1, a). Theorem 3 Assume that the M × N image f is the realization of a discrete iid random vector (X i ) n i=1 with iid components X i as X, where n = M N . Let ν f be defined as in (14) with respect to N4. Then the probability that ν f ≥ a > 0 is not smaller than

1 -(1 -2q(X, 4, a)) m , ( 25 
)
where q is defined in (24) and m = ⌊M/3⌋ × ⌊N/3⌋.

For N8 we have to replace q by q(X, 4, a) :=

L-1 i=0 (P (X ≤ i -a)) 4 P (X ≤ i - √ 2a) 4 P (X = i).
Proof. We consider only inner pixels i with non-overlapping neighborhoods as depicted in Fig. 6. Then, by Lemma 3, the probability that one of these pixels does not verify ( 23) is given by 1 -2q(X, 4, a). Hence the probability that all these inner pixels do not fulfill ( 23) is (1 -2q(X, 4, a)) m and the probability that at least one of these pixel satisfies (23

) is 1 -(1 -2q(X, 4, a)) m .
Note that for q(X, 4, a) > 0 the probability in ( 25) is indeed very close to 1 even for moderate sizes of m. For instance, if the random variables are uniformly iid, we have

q(X, 4, a) = 1 L L-1 i=a i -a + 1 L 4 . = (L -a)(L -a + 1)(2(L -a) + 1)(3(L -a) 2 + 3(L -a) -1) 30L 5 .
For a = 137 and L = 256 this formula gives q(X, 4, a) ≈ 0.0044 and for M = N = 128 further 1 -(1q(X, 4, a)) m ≈ 1 -10 -7 . We tested two functionals J(•, f ) as described in Section 2: the first corresponds to ψ = Θ1 and ϕ = Θ1 and the second to ψ = Θ2 and ϕ = Θ1 as given in Table 1. In all tests, N8 was adopted with the weights γ i,j given in [START_REF] Combettes | Proximal Splitting Methods in Signal Processing[END_REF]. Two choices for β satisfying (20) were considered along with different values for α 1 and α 2 . The minimizers û were computed using Polak-Ribière conjugated gradients [START_REF] Bonnans | Numerical Optimization (Theoretical and Practical Aspects)[END_REF] with high numerical precision. For each restored image we computed û-f ∞ and present the distance between the theoretical upper bound b(β, α 1 ) and the obtained û

-f ∞ : b(β, α 1 ) -û -f ∞ .
The tables show also the difference between the upper and the lower theoretical bounds on ûf ∞ : bℓ := b(β, α 1 )ℓ(β, α 1 , α 2 , ν f ) , computed using the explicit formulae given in Section 4. Furthermore, we evaluate the amount of pixels that closely approach the ℓ ∞ norm: Over the whole set of these images, for α 2 = 0.02 we have mean 0.5ûf ∞ = 2.968 × 10 -6 and mean 0.5ℓ(β, α 1 , α 2 , ν f ) = 6.0678 × 10 -6 . For α 2 = 100 these values read mean 0.5ûf ∞ = 1.307 × 10 -2 and mean 0.5

q = ♯ i ∈ I n û -f ∞ -| û[i] -f [i] |
-ℓ(β, α 1 , α 2 , ν f ) = 2.491 × 10 -2 .
where ♯ stands for cardinality and ε 0 in order to account for numerical errors. In the experiments, we set ε := 10 -3 .

In all tests, given 0 < β < 1/η, we fixed α 1 = α 1 so that b(β, α 1 ) = δ for δ = 1 2 .

The numerical outcomes confirm the theoretical results on û-f ∞ established in Sections 3 and 4. ¿From Tables 4, 5 and 6 the following observations can be drawn:

• Decreasing α 2 > 0 towards 0 enables to make the difference between the upper and the lower bounds on ûf ∞ arbitrarily small which leads to uf ∞ ≈ b(β, α 1 ).

In this case a large percentage of the pixels i meet |û

[i] -f [i]| ≈ b(β, α 1 ).
• An important increase of α 2 > 0 entails a decrease of the lower bound ℓ(β, α 1 , α 2 , ν f ). Moreover, the number of pixels i verifying |û

[i] -f [i]| ≈ b(β, α 1
) is reduced to a few ones.

Such a situation may be preferable when one wishes that there are not too many pixels close to the upper bound.

Tables 7 and8 show yet again that the gap between the upper bound b(β, α 1 ) and the lower bound ℓ(β, α 1 , α 2 , ν f ) vanishes when α 2 is close to zero and that it increases when α 2 increases. For α 2 fixed, we see that b(β, α 1 )ℓ(β, α 1 , α 2 , ν f ) tends to decrease along with β.

Fig. 8 shows the histograms of the differences {f [i]û[i], i ∈ I n } relevant to "moon", where the upper bound was set to b(β, α 1 ) = 0.5, for an increasing set of values of α 2 . These histograms were plotted for 100 bins equally spaced in [-0.5, +0.5]. For very small values of α 2 , there are many pixels meeting |f For α 2 = 0.02 we have mean 0.5ûf ∞ = 1.777 × 10 -6 and mean 0.5ℓ(β, α 1 , α 2 , ν f ) = 3.666 × 10 -6 . For α 2 = 100, we find mean 0.5ûf ∞ = 8.265 × 10 -3 and mean 0. 6: Results for ψ = Θ2, ϕ = Θ1, β = 0.05 and a small and large value of α 2 , respectively. For α 2 = 0.05 we have mean 0.5ûf ∞ = 5.441 × 10 -6 and mean 0.5ℓ(β, α 1 , α 2 , ν f ) = 10.29 × 10 -6 . For α 2 = 100, we find mean 0.5ûf ∞ = 1.09 × 10 -2 and mean 0.5ℓ(β, α 1 , α 2 , ν f ) = 2.11 × 10 -2 .

[i] -û[i]| ≈ f -û ∞ .
7 Conclusions and Open Questions ℓ 1 -TV and ℓ 2 -TV functionals have been often minimized using a smoothed version of the form we consider in this paper with ad hoc chosen smoothing parameters ("very small"). The results established in our work enable to clearly evaluate the resulting approximation. The functions (ψ, ϕ) studied here have a lot of similarities. However, they produce different image restorations. The question of what couple of functions (ψ, ϕ) would give a better result in the framework of a given application, remains open.

Extension to the rotational-invariant (in a discrete sense) smoothed TV, i.e. Φ(u) = i,j ϕ( ∇ i,j u ), where ∇ i,j u ∈ R 2 stands for a discrete approximation of the gradient of u at pixel (i, j), deserves attention.

Extensions to cases when f are the coefficients of the expansion of the input image using an orthogonal transform as the discrete cosine transform or a frame transform as the curvelet transform, see, e.g., [START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF] are of interest.

Applications to quantization noise reduction should be envisaged.
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 2 Figure 2: The function Θ1 in Table1, where the plots for α = 0.05 are in blue solid line and for α = 0.5 in red dashed line.
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Figure 3 :

 3 Figure 3: Neighborhoods N 4 (left) and N 8 (right) of a pixel (i, j) are used to formulate Φ(u).The double neighborhoods N 4 2 and N 8 2 appear in the gradient of Φ(u), see[START_REF] Coltuc | Exact histogram specification[END_REF].

Figure 4 :

 4 Figure 4: Left: Duck image. Right: Histogram of "duck image" furnishing an empirical estimate of the corresponding pdf.

Figure 5 :

 5 Figure 5: Left: Joint pdf of two iid random variables X, X 1 where X and X 1 follow the pdf of the "ducks image" in Fig. 4 right. Here light areas correspond to high probability. Right: Areas where |i 1i 2 | ≥ a, i 1 , i 2 ∈ {0, . . . , L -1}. The value 2q(X, 1, a) is the sum of the probabilities in the shaded areas.

Figure 6 :

 6 Figure 6: Disjoint 3 × 3-adjacencies with center pixels "x".

2 + α 2 α 2 =

 222 5ℓ(β, α 1 , α 2 , ν f ) = 1.610 × 10 -2 . N8, ψ(t) = |t|α 1 log 1 + |t| α 1 for α 1 = 0.9645, β = 0.05, hence b = 0.5, ϕ(t) = √ t b-û-f ∞ | ×10 -6 b-ℓ | ×10

.

  Remark 2 Equation (21) offers several other exploits than only fixing the optimal α 1 . For any

			ψ(t)	√	t 2 + α 1	|t| -α 1 log 1 +	|t| α 1
			neighborhood	β	α 1	β	α 1
			N4 N4 N8 N8	0.2 0.1406 0.1 1.3125 0.1 0.2862 0.05 1.8947	0.2 0.1250 0.1 0.7500 0.1 0.2322 0.05 0.9645
			Table		
	β <	Y η	one can also		

Table 4 :

 4 Figure 7: The set of images used in the tests provided in this section. The values of ν f are computed according to (14) in the case N8 for the weights in (4). Results for ψ = Θ1, ϕ = Θ1, β = 0.1 and a small and large value of α 2 , respectively.

	< ε	and Q% = 100	q n	,

Table 5 :

 5 When α 2 increases, such pixels become more and more rare and the differences |f [i]û[i]| become centered near zero. However they never reach zero: see the value of µ defined in the caption of the figure. Here again, the numerical tests were done with a high precision. Results for ψ = Θ1, ϕ = Θ1, β = 0.05 and a small and large value of α 2 , respectively.

	N8, ψ(t) =	√	t 2 + α 1 for α 1 = 1.895, β = 0.05 hence b = 0.5, ϕ(t) = α 2 = 0.02 α 2 = 100 √ t 2 + α 2
	image chemical	b-û-f ∞ | ×10 -6 b-ℓ | ×10 -6 Q % 2.561 9.055 4.54	b-û-f ∞ | ×10 -3 b-ℓ | ×10 -2 q 14.17 3.993 2
	moon	1.580		3.300	10.2	7.649	1.572	1
	aerial	0.872		2.093	3.92	4.229	1.015	2
	bark	1.673		4.254	6.82	8.239	2.000	1
	couple	1.642		3.432	3.25	7.830	1.632	4
	motioncar	12.39		20.35	0.28	51.43	7.847	1
	stream	0.727		1.240	7.19	3.291	0.608	3
	tank	1.020		1.701	8.31	5.678	0.829	1
	man	0.162		0.374	6.00	0.968	0.186	11
	Pentagon	0.871		1.442	10.2	3.877	0.706	1
	clock	1.013		2.220	2.88	4.193	1.073	1
	boat	0.799		2.795	7.14	5.136	1.342	2
	tree	0.993		2.009	6.06	4.895	0.975	2
	brick wall	0.125		0.329	11.9	1.115	0.164	99
	airplane	0.228		0.403	3.48	1.274	0.200	1

Table

  

	0.101	0.304	-6 Q % 2.79	b-û-f ∞ | ×10 -3 b-ℓ | ×10 -2 q 18.81 5.236 2
	5.347	11.06	7.03	10.22	2.090	1
	2.670	7.019	2.63	5.663	1.354	2
	5.843	14.26	5.55	11.01	2.653	1
	5.369	11.51	3.25	10.46	2.170	4
	41.36	68.23	0.09	66.99	0.101	1
	1.687	4.155	6.66	4.404	0.813	3
	3.869	5.703	4.45	7.592	1.107	1
	0.673	1.255	3.14	1.298	0.249	10
	2.723	4.837	6.55	5.188	0.943	1
	2.622	7.437	2.88	5.610	1.431	1
	3.879	9.373	3.97	6.874	1.786	2
	4.070	6.737	4.18	6.549	1.301	2
	0.721	1.102	11.3	1.710	0.219	61
	0.682	1.352	0.74	4.983	0.268	1

mean b(β, α 1 )ℓ(β, α 1 , α 2 , ν f ) , b(β, α 1 ) = 0.5, N8 α 2 = 0.01 α 2 = 100 The mean value of the difference b(β, α 1 )ℓ(β, α 1 , α 2 , ν f ) was computed over the selection of images shown in Fig. 7. Here we consider the N8 neighborhood for the weights in [START_REF] Combettes | Proximal Splitting Methods in Signal Processing[END_REF].

Table 8: The neighborhood here is N4 with the weights given in (4). The mean is calculated over the set of images in Fig. 7.