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Abstract

We consider a class of convex functionals that can be seen as C1 smooth approximations
of the ℓ1-TV model. The minimizers of such functionals were shown to exhibit a qualitatively
different behavior compared to the nonsmooth ℓ1-TV model [12]. Here we focus on the way
the parameters involved in these functionals determine the features of the minimizers û. We
give explicit relationships between the minimizers and these parameters.

Given an input digital image f , we prove that the error ∥û−f∥∞ obeys b−ε ≤ ∥û−f∥∞ ≤
b where b is a constant independent of the input image. Further we can set the parameters
so that ε > 0 is arbitrarily close to zero. More precisely, we exhibit explicit formulae relating
the model parameters, the input image f and the values b and ε. Conversely, we can fix
the parameter values so that the error ∥û− f∥∞ satisfy some prescribed b, ε. All theoretical
results are confirmed using numerical tests on natural digital images of different sizes with
disparate content and quality.

1 Introduction

In [12] a variational method using C2 smoothed ℓ1−TV functionals were proposed. The goal
was to process digital (quantized) images so that the obtained minimizer is quite close to the
input digital image but its pixels are real-valued and can be ordered in a strict way. Indeed, the
obtained minimizers were shown to enable faithful exact histogram specification outperforming
the state-of-the-art methods [8, 13]. The intuition behind these functionals was that their
minimizer can up to some degree remove some quantization noise and in this way yield an
ordering of the pixels close to the unknown original (unknown) real-valued image. Such an
effect can be observed in Fig. 1 where a synthetic real-valued image is quantized and then
restored using the proposed variational method. The nonsmooth L1−TV model was originally
studied in [6]. The main feature of its minimizers is that they contain parts that are equal
to the data image and parts that are constant (living in a vanishing component of the TV
term). Even though the model modification proposed in [12] might seem trivial, the minimizers
of these C2 smoothed ℓ1-TV functionals exhibit a qualitatively different behavior. Unlike the
L1 − TV (ℓ1−TV) minimizers, it was shown in [12] that the minimizers of the C2 smoothed
ℓ1-TV functionals generically do not have pixels equal to those of the data image and there
are no equally valued pixels. Some of the authors of [12] observed that once the parameters
of the model were fixed, for all kind of real-world digital images f , the residual error obeyed
∥û − f∥∞ = b where the constant b typically met b < 0.5. For this reason, they qualified this
variational approach as detail preserving. Therefore we were interested in monitoring the error
∥û− f∥∞.

In this paper we consider a wider class of C1 smoothed ℓ1−TV functionals involving also ℓ2
data fidelity terms. We give explicit relationships between the minimizers and the parameters
tuning the model. The observation that ∥û−f∥∞ = b, up to a small difference, is independent of
the input image, is confirmed theoretically. Clear indications on the role of the parameter setting
and the lower and upper bounds of ∥û − f∥∞ enable us to give restrictions on the parameter
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Real-valued image f—quantized on {0, · · · , 15} Restored û

Figure 1: The restored image is obtained by minimizing J(·, f) of the form (1) where ψ(t) =√
t2 + α1 and φ(t) =

√
t2 + α2 for N8.

selection. All theoretical results are confirmed using numerical tests on a set of digital images
of different sizes with disparate content and quality.

In spite of the progress in nonsmooth convex optimization [5], smooth approximations of
nonsmooth objectives still remain a common approach in optimization [2]. Our results can help
to design smooth approximations of ℓ1/ℓ2−TV functionals in a proper way.

The outline of this paper is as follows: In the next Section 2 we describe the variational
model. Then, in Section 3 we estimate the ℓ∞-error between the input image f and the min-
imizer of the functional. Section 4 provides explicit parameter estimates for the model. In
Section 5 we give probability estimates for the behavior of neighboring pixels. Numerical tests
demonstrate the quality of our estimates in Section 6. Finally, Section 7 finishes with conclusions
and perspectives.

2 The Fully Smoothed ℓ1-TV Model

We consider M × N digital images f with gray values in {0, . . . , L − 1}. Let n := MN . To
simplify the notations we reorder the image columnwise into a vector of size n and address the
pixels by the index set In := {1, · · · , n}. Further, we denote by Iintn ⊂ In the subset of all inner
pixels, i.e., all pixels which are not boundary pixels.

We are interested in the minimizer û of a functional of the form

J(u, f) := Ψ(u, f) + βΦ(u), β > 0 (1)

with

Ψ(u, f) :=
∑
i∈In

ψ(u[i]− f [i]),

Φ(u) :=
∑
i∈In

∑
j∈Ni

φ(γi,j(u[i]− u[j])) ,

where Ni is a neighborhood of pixel i, the γi,j > 0 are weighting terms for the distance between
neighbors, and the functions ψ and φ depend on a positive parameter, α1 and α2, respectively.
To emphasize this dependence we use the notation ψ(·, α1) and φ(·, α2) when necessary. So
ψ : R × (0,+∞) → R and φ : R × (0,+∞) → R. The functions ψ and φ have to fulfill the
properties stated below:

H0 The functions t 7→ ψ(t, α1) and t 7→ φ(t, α2) are continuously differentiable and even.
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We denote

ψ′(t, α1) :=
d

dt
ψ(t, α1) and φ′(t, α2) :=

d

dt
φ(t, α2) .

When it is clear from the context, we write ψ′(t) for ψ′(t, α1) and φ′(t) for φ′(t, α2). By
H0 , ψ′(t) and φ′(t) are continuous and odd functions.

These derivative functions have to satisfy certain conditions given next.

H1ψ t 7→ ψ′(t, α1) : R → (−Y, Y ), where Y > 0, is a strictly increasing function for any fixed
α1 ∈ (0,+∞) and maps onto (−Y, Y ).

H2ψ There is a constant T > 0 such that for any fixed t ∈ (0, T ), the function α1 7→ ψ′(t, α1)
is strictly decreasing on (0,+∞).

Here the cases T = +∞ and Y = +∞ are included.

H1φ t 7→ φ′(t, α2) is an increasing function for any fixed α2 ∈ (0,+∞) satisfying

lim
t→∞

φ′(t, α2) = 1.

H2φ For any fixed t > 0, the function α2 7→ φ′(t, α2) is continuous and decreasing on (0,+∞)
and

lim
α2↘0

φ′(t, α2) = 1.

These properties imply further useful relations which are collected in the following remark.

Remark 1 i) By H1ψ we know that ψ is strictly convex and monotone increasing on (0,+∞)
and by H1φ that φ is convex. Therefore there exists a unique minimizer of (1). This minimizer
can be computed, e.g. by using a Weiszfeld-like semi-implicit algorithm, or the nonlinear (pre-
conditioned) conjugate gradient method, see [7, 12, 14], among other viable algorithms.

ii) By H1ψ there exists the inverse function (ψ′)−1(·, α1) : (−Y, Y ) → R, and this function
is also odd, continuous and strictly increasing.

Some relevant choices of functions θ obeying all properties H0, H1ψ , H2ψ , H1φ and H2φ are
given in Table 1. For the latter functions, t 7→ θ′(t, α) maps onto (−1, 1), i.e., Y = 1 and
T = +∞ for any α > 0. A typical graph of such a function, its derivative and inverse derivative
is depicted in Fig. 2.

θ θ′ (θ′)−1

Θ1
√
t2 + α

t√
t2 + α

y

√
α

1− y2

Θ2 |t| − α log

(
1 +

|t|
α

)
t

α+ |t|
αy

1− |y|

Θ3 α log

(
cosh

(
t

α

))
tanh

(
t

α

)
α atanh(y)

Table 1: Options for functions θ obeying all the assumptions stated above. These functions are
nearly affine beyond a neighborhood of zero. The size of the latter neighborhood is controlled
by the parameter α > 0.
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θ(t) =
√
t2 + α θ′(t) = t√

t2+α
(θ′)−1 (y) = y

√
α

1−y2

Figure 2: The function Θ1 in Table 1, where the plots for α = 0.05 are in blue solid line and for
α = 0.5 in red dashed line.

Another choice for ψ fulfilling H0, H1ψ and H2ψ is the scaled ℓp-norm for p = α1 + 1:

ψ(t) :=
1

α1 + 1
| t |α1+1 with ψ′(t) = | t |α1sign(t), (ψ′)−1(y) = | y |

1
α1 , α1 > 0. (2)

Here ψ′ maps onto R so that Y = +∞. Moreover α1 7→ ψ′(t, α1) is strictly monotone decreasing
for |t| < 1 hence T = 1 in this case. An upper bound for ∥û − f∥∞ when α1 = 1 in (2) was
derived in [11]. Some general results on the functionals J for α1 = 1 in (2) can be found in [1]
in a continuous setting.

For φ we can also use the scaled Huber function

φ(t) :=


t2

2α2
if |t| ≤ α2,

|t| − α2

2
if |t| > α2

with φ′(t) =


t

α2
if |t| ≤ α2,

sign(t) if |t| > α2.
(3)

Note that the functions ψ and φ in Table 1 and (3) are nearly affine beyond a small neighborhood
of the origin.

In this paper, we focus on the neighborhoods N4 and N8 depicted in Fig. 3 top. When taking
the gradient of the functional in (1) we have to take into account that the pixel combination
u[i] − u[j] appears for j ∈ N 2

i , where N 2
i denotes the “double” neighborhood associated with

Ni in Fig. 3 bottom. The usual choices are (see e. g. [9])

γi,j := 1 for vertical and horizontal neighbors,

γi,j :=
1√
2

for diagonal neighbors.
(4)

In all cases we have γi,j = γj,i.

Functionals of the form (1) with functions ψ,φ ∈ Cs, s ≥ 2 having alike properties (e.g.
all functions in Table 1) were successfully used in [12] to process digital images f so that the
obtained minimizer û is quite close to the input digital image but its pixels can be ordered in a
strict way. An analysis of the minimizers û of these functionals has shown that almost surely, û
has pixel values that are different from each other and different from the input pixels.

3 Bounds for the ℓ∞-Error

In this section, we give upper and lower estimates for the ℓ∞-error between the input image f
and the image û obtained by minimizing the functional J(·, f).
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N4 N8

Double N42 Double N82

Figure 3: Neighborhoods N4 and N8 (right) of a pixel (i, j) are used to formulate Φ(u). The
double neighborhoods N42 and N82 appear in the gradient of Φ(u), see (7).

If û is a minimizer of u 7→ J(u, f) we denote by h ∈ Rn the vector with components

h[i] :=
∑
j∈N 2

i

γi,jφ
′ (γi,j(û[i]− û[j])) , i ∈ In. (5)

First we provide a lemma which gives a useful expression for ∥û− f∥∞.

Lemma 1 Let H0 , H1ψ and H1φ be satisfied. Let û be the minimizer of u 7→ J(u, f) and h be
given by (5). Then

∥û− f∥∞ = (ψ′)−1 (β ∥h ∥∞, α1) . (6)

Proof. In this proof we can omit the parameter α1. Using the definition of J and taking into
account that φ′ is odd, we have

∂Ψ

∂u[i]
= ψ′(u[i]− f [i]) and

∂Φ

∂u[i]
=

∑
j∈N 2

i

γi,jφ
′(γi,j(u[i]− u[j])) . (7)

The minimizer û of J(·, f) has to satisfy ∇uJ(û, f) = 0 which can be rewritten as ∇uΨ(û, f) =
−β∇Φ(û) or as

ψ′(û[i]− f [i]) = −β
∑
j∈N 2

i

γi,jφ
′(γi,j(û[i]− û[j])), i ∈ In.

Using (5), the latter is equivalent to

ψ′(û[i]− f [i]) = −β h[i], i ∈ In.

Since ψ′ is by H0 and H1ψ odd and strictly increasing,

ψ′ (∣∣ û[i]− f [i]
∣∣) = ∣∣ψ′(û[i]− f [i])

∣∣ = β
∣∣h[i] ∣∣ . (8)
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Using Remark 1ii), we see that (8) is equivalent to∣∣ û[i]− f [i]
∣∣ = (ψ′)−1

(
β
∣∣h[i] ∣∣) (9)

where (ψ′)−1 is strictly increasing, hence

∥û− f∥∞ = max
i∈In

(ψ′)−1
(
β
∣∣h[i] ∣∣) = (ψ′)−1 (β ∥h ∥∞) .

�

For inner points i ∈ Iintn we define

η :=
∑
j∈N 2

i

γi,j . (10)

Of course η does not depend on i but just on the choice of the neighborhood. If the weights are
defined as in (4), we have

η = 4 for N4 ,

η = 4 +
4√
2
= 6.8284 for N8 .

For i ∈ In \ Iintn we have
∑
j∈N 2

i

γi,j ≤ η whose value depends on the boundary conditions.

In order to extend the obtained result, we shall use a property of (ψ′)−1 which is stated
below.

Lemma 2 Let ψ satisfy H0 , H1ψ and H2ψ . Set

Ỹ := min{Y, ψ′(T )} ,

where ψ′(T ) := lim
t→+∞

ψ′(t) if T = +∞. Then for any y ∈ (0, Ỹ ), the function α1 7→ (ψ′)−1(y, α1)

is strictly increasing on (0,+∞).

Proof. Let 0 < a1 < a2 and y ∈ (0, Ỹ ) be arbitrarily fixed. Since t 7→ ψ′(t, α1) is one-to-one
and odd, there exist t1, t2 ∈ (0, T ) such that

ψ′(t1, a1) = y = ψ′(t2, a2) . (11)

Thus we have (ψ′)−1 (y, a1) = t1 and (ψ′)−1 (y, a2) = t2. From H1ψ , t 7→ ψ′(t, α1) is strictly
increasing for any fixed α1 > 0 and from H2ψ , α1 7→ ψ′(t, α1) is strictly decreasing for any fixed
t ∈ (0, T ). Therefore

t2 ≤ t1 ⇒ y = ψ′(t1, a1) > ψ′(t1, a2) ≥ ψ′(t2, a2).

This contradicts (11). Consequently, t1 < t2 which implies the assertion. �

For all functions in Table 1 and for ψ in (2) we have Ỹ = 1.

The following theorem provides an upper bound for ||û− f ||∞ which is independent of f as
well as of the particular shape of φ(t, α2) provided that the latter meets the relevant assumptions.

Theorem 1 Assume that H0 , H1ψ and H1φ are satisfied. Let β η < Y , where η is given in (10).
Then the minimizer û of u 7→ J(u, f) satisfies

∥û− f∥∞ ≤ (ψ′)−1
(
βη, α1

)
=: b(β, α1) . (12)

If, in addition, ψ fulfills H2ψ and β η < Ỹ , where Ỹ = min{Y, ψ′(T )}, then α1 7→ b(β, α1) is
strictly increasing on (0,+∞).
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Proof. From H1φ , φ′ is increasing with |φ′(t)| ≤ 1 for any t ∈ R. Inserting this into the
definition of h in (5) yields

∥h∥∞ ≤ η. (13)

Since (ψ′)−1 is by Remark 1ii) strictly increasing on (0, Y ), we deduce from (6) and (13) for
β η < Y that

∥û− f∥∞ = (ψ′)−1 (β ∥h ∥∞, α1) ≤ (ψ′)−1 (β η, α1) .

If ψ meets H2ψ and β η < Ỹ we obtain by Lemma 2 that the function α1 7→ (ψ′)−1
(
βη, α1

)
is

strictly increasing on (0,+∞). �

We clarify the statement of Theorem 1 below.

• By Remark 1, the function β 7→ b(β, α1) is strictly increasing since η is a fixed number.

• The equality in (12) can only be met if φ′ attains the limit in H1ψ , i.e., if φ′(t) = 1 for
some t ∈ R. This is for example the case for the scaled Huber function in (3).

• The bound in (12) depends only on ψ(·, α1) and on β but it is independent of the selection
of φ provided that H1φ holds.

• For all functions ψ listed in Table 1 we have Y = 1 which limits the action of β to less
than 1/η . So H2ψ furnishes a flexible tool to control the upper bound b(β, α1) by using
α1 under the condition that βη < Ỹ , where we remind that Ỹ = 1 for all ψ in Table 1 and
in (2).

The lower bound on ∥û− f∥∞ exhibited in the next Theorem 2 depends on φ(t, α2) and on
the input image f as well. In our formula, the reliance on f is expressed via the magnitude νf
defined below:

I :=
{
i ∈ Iintn

∣∣ sign(f [i]− f [j]
)
= σ, ∀ j ∈ Ni where σ ∈ {−1,+1}

}
,

νf := max
i∈I

min
j∈Ni

(
γi,j

∣∣ f [i]− f [j]
∣∣) , (14)

where we set νf := 0 if I = ∅. The values of νf for some real-world images can be seen in Fig. 7.

Theorem 2 Let H0 , H1ψ , H2ψ and H1φ , H2φ be verified. Let β η < Y , where η is given
in (10). Assume that νf > 2b(β, α1). Then the minimizer û of u 7→ J(u, f) fulfills

∥û− f∥∞ ≥ (ψ′)−1 (c β η, α1) =: ℓ(β, α1, α2, νf ) , (15)

where
c = c

(
β, α1, α2, νf

)
:= φ′

(
νf − 2b(β, α1), α2

)
≤ 1 .

The function α2 7→ ℓ(β, α1, α2, νf ) is decreasing on (0,+∞) and

ℓ(β, α1, α2, νf ) ↗ b(β, α1) as α2 ↘ 0 . (16)

Moreover, for ε > 0 arbitrarily close to zero, α2 can be set so that

∥û− f∥∞ ≥ (ψ′)−1 ((1− ε)β η, α1) . (17)
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Proof. From the definition on νf , there exists i ∈ Iintn such that

γi,j
∣∣ f [i]− f [j]

∣∣ ≥ νf , ∀ j ∈ Ni.

We consider the case
γi,j(f [i]− f [j]) ≥ νf > 2b(β, α1), ∀j ∈ Ni. (18)

The opposite case, namely γi,j(f [j] − f [i]) ≥ νf > 2b(β, α1), ∀ j ∈ Ni can be handled in the
same way. By Theorem 1, the minimizer û of J(·, f) meets

−b(β, α1) ≤ û[i]− f [i],

−b(β, α1) ≤ f [j]− û[j], ∀j ∈ Ni .

Thus

−2b(β, α1) ≤ û[i]− û[j]−
(
f [i]− f [j]

)
, ∀j ∈ Ni ,

−2b(β, α1) +
(
f [i]− f [j]

)
≤ û[i]− û[j], ∀j ∈ Ni . (19)

Combining (18) and (19) along with the fact that γi,j ≤ 1 yields

0 < −2b(β, α1) + νf ≤ −2b(β, α1) + γi,j(f [i]− f [j]) ≤ γi,j(û[i]− û[j]) ∀ j ∈ Ni .

Since t 7→ φ′(t, α2) is increasing by H1φ , the value h[i] in (5) satisfies

h[i] ≥
∑
j∈N 2

i

γi,j φ
′
(
νf − 2b(β, α1), α2

)
= η c

(
β, α1, α2, νf

)
.

Using yet again that y 7→ (ψ′)−1(y, α1) is strictly increasing (Remark 1ii)) we obtain by (9) that∣∣ û[i]− f [i]
∣∣ ≥ (ψ′)−1 (c βη, α1) .

Since ∥û− f∥∞ ≥
∣∣ û[i]− f [i]

∣∣, it follows that
∥û− f∥∞ ≥ (ψ′)−1 (c βη, α1) .

Using H2φ , the function α2 7→ c(β, α1, α2, νf ) is continuous and decreasing on (0,+∞) and
lim
α2↘0

c(β, α1, α2, νf ) = 1. Combining the latter with Remark 1ii) entails that α2 7→ ℓ(β, α1, α2, νf )

is decreasing on (0,+∞). Then the definition of b(β, α1) in (12) leads to (16).

Finally, H2φ shows that for ε arbitrarily close to zero there is α2 > 0 such that c(β, α1, α2, νf ) =
(1− ε) and consequently ∥û− f∥∞ ≥ (ψ′)−1 ((1− ε)βη). �

Some comments on Theorem 2 may be useful.

• The expression in (17) tells us that by decreasing α2, the lower bound ℓ(·) can be adjusted
arbitrarily close to the upper bound b(·). The amount of decrease of α2 needed to reach
(1− ε) depends on the input image f and can be calculated.

• If t 7→ φ′(t, α2) is nonstrictly increasing on [0,+∞), as the Huber function in (3), it easy
to see that there is α2 such that c(β, α1, α2, νf ) = 1 and hence ℓ(β, α1, α2, νf ) = b(β, α1).
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4 Explicit Parameter Estimates

In this section we want to use the error bounds from the previous section to give explicit
parameter estimates of β, α1 and α2 for the functions ψ, φ mentioned in Section 2. More
precisely, for a given β satisfying a constraint and for δ fixed, we exhibit the value α1 = α̂1

ensuring that b(β, α̂1) = δ and then calculate ℓ(β, α̂1, α2, νf ).

For the functions ψ in Table 1 and in (2) we have Ỹ = 1. When the weights γi,j are chosen

as in (4) and H2ψ holds, the assumption βη < Ỹ = 1 in Theorem 1 reads

β < 1
4 = 0.25 for N4,

β < 1
6.8284 = 0.1464 for N8.

(20)

In the following we choose β > 0 such that β <
1

η
. For δ > 0 fixed, let α̂1 solve the equation

b(β, α1) = (ψ′)−1(βη, α1) = δ . (21)

Then we have by Theorem 1 that ∥û − f∥∞ ≤ δ for all α1 ∈ (0, α̂1] and there does not exist
α1 > α̂1 such that ∥û− f∥∞ ≤ δ holds true. In this sense we call α̂1 optimal for δ. This claim
is ensured thanks to H2ψ which guarantees that α1 7→ b(β, α̂1) is strictly increasing. The value
c in Theorem 2 depends on φ and on f via νf . Given the input image f the constant νf is easy
to compute. When

z := νf − 2b(β, α1) > 0,

Theorem 2 indicates that the constant c reads

c = φ′(z, α2). (22)

In our experiments on real-world digital images, we always had z ≫ 0 for δ = 0.5. By Theorem 2
a sharper lower bound requires a smaller value for α2. According to Theorem 1 and Theorem 2,
the upper and lower bounds for ∥f − û∥∞ and the optimal value for α1 as defined in (21) for
the functions ψ in Table 1 and in (2) are given in Table 2.

ψ(t) b(β, α1) ℓ(β, α1, α2, νf ) α̂1

√
t2 + α1

√
α1(βη)2

1− (βη)2

√
α1(cβη)2

1− (cβη)2
δ2

(
1

β2η2
− 1

)
|t| − α1 log

(
1 +

|t|
α1

)
α1 βη

1− βη

α1 cβη

1− cβη
δ

(
1

βη
− 1

)
α1 log

(
cosh

(
t

α1

))
α1 atanh(βη) α1 atanh(cβη)

δ

atanh(βη)
1

α1 + 1
| t |α1+1 (βη)

1
α1 (cβη)

1
α1

ln(βη)

ln δ

Table 2: Bounds and parameter α̂1 for various functions ψ in Table 1 and in (2). The parameter
c depends on φ′ by (22). The allowed values for β by Theorem 1 are given in (20).

If δ = 0.5 then û has the important property that it preserves the order of the pixel values
in a digital image f ∈ {0, . . . , L − 1}n. The corresponding values α̂1 and β are presented in
Table 3.

Remark 2 Equation (21) offers several other exploits than only fixing the optimal α̂1. For any

β <
Y

η
one can also
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ψ(t)
√
t2 + α1 |t| − α1 log

(
1 +

|t|
α1

)
neighborhood

N4
N4
N8
N8

β α̂1

0.2 0.1406
0.1 1.3125
0.1 0.2862
0.05 1.8947

β α̂1

0.2 0.1250
0.1 0.7500
0.1 0.2322
0.05 0.9645

Table 3: Allowed values β < 1/η and the optimal α̂1 for δ = b(β, α̂1) = 0.5.

• calculate δ when α1 and β are given—this can be useful e.g. when ℓ1−TV or ℓ2−TV are
approximated by a fully smooth functional;

• determine the optimal β for fixed α1 and δ—we remind that from Remark 1, β 7→ b(β, α1)
is strictly increasing, hence this value of β is unique.

5 Probability Estimates for Pixel Neighborhoods

Consider that the assumptions H0, H1ψ , H1φ and H2φ are met and that the parameters β < Y/η,
α1 and α2 are fixed. From Theorem 2 we know that the upper bound b(β, α1) in Theorem 1
provides a nearly perfect approximation of the true error ∥û− f∥∞ when c = φ′(νf − 2b, α2) is
close to one, which by H1φ means that νf is large enough. In order to get an intuition—even
though very rough—on the behaviour of νf , we assume in this section that the values of f are
realizations of a discrete random variable X taking values in {0, . . . , L − 1} whose probability
density function (pdf) pX is specialized to real-world digital images. Fig. 4 shows an image
together with its histogram which furnishes an empirical estimate of the corresponding pdf.

Figure 4: Left: Duck image. Right: Histogram of “duck image” furnishing an empirical estimate
of the corresponding pdf.

First, we ask for the probability that an inner image pixel i ∈ Iintn fulfills∣∣ f [i]− f [j]
∣∣ ≥ a and sign(f [i]− f [j]) = σ, ∀j ∈ Ni (23)

where σ ∈ {−1,+1} for some fixed a > 0.

Lemma 3 Let X,Xi, i = 1, . . . , k be independent and identically distributed (iid) discrete ran-
dom variables taking values in {0, . . . , L− 1}. Then it holds for a > 0 that

q(X, k, a) := P (X −X1 ≥ a, . . . ,X −Xk ≥ a) =

L−1∑
i=0

(P (X ≤ i− a))k P (X = i). (24)

10



Proof. Since the random variables are iid we obtain

P (X −X1 ≥ a, . . . ,X −Xk ≥ a) =
L−1∑
i=0

(P (i−X1 ≥ a, . . . , i−Xk ≤ a,X = i)

=

L−1∑
i=0

(P (X ≤ i− a))k P (X = i). �

A case relevant to our context is when X is a given inner pixel and Xi for i ∈ {1 · · · , k} are
the pixels in the “double” neighborhood of X, see Fig. 3. Then the setting of Lemma 3 considers
neighborhoods where the central pixel X is bigger than all its neighbors by at least the amount
of a. It is clear that the opposite case (when X − Xi ≤ −a for all i ∈ 1 · · · , k) is of the same
interest and appears with the same probability P (X−X1 ≤ −a, . . . ,X−Xk ≤ −a) = q(X, k, a).
Of course the “iid” assumption is not realistic for natural images.

For k = 1, the probabilities P (X −X1 ≥ a) and P (X −X1 ≤ −a) can be easily exemplified.
Let X and X1 follow independently the same pdf pX . In order to obtain the joint pdf of X and
X1, one has to compute P (X = i1)P (X = i2) for all gray levels i1, i2 obeying |i1 − i2| ≥ a and
then take their sum. Fig. 5 (left) shows for example the joint pdf of X and X1 when X and X1

are iid random variables following the pdf pX of the “ducks image” in Fig. 4 left. At position
(i1, i2) ∈ {0, . . . , 255}2 the probability P (X = i1)P (X1 = i2) is visualized as a gray value where
lighter areas correspond to higher probability.

In Fig. 5 (right) the shaded areas show the points where the pixel difference |i1− i2| is larger
or equal to a. The sum of the probabilities corresponding to these areas is 2q(X, 1, a).

Figure 5: Left: Joint pdf of two iid random variables X,X1 where X and X1 follow the pdf of
the “ducks image” in Fig. 4 right. Here light areas correspond to high probability. Right: Areas
where |i1 − i2| ≥ a, i1, i2 ∈ {0, . . . , L− 1}. The value 2q(X, 1, a) is the sum of the probabilities
in the shaded areas.

Theorem 3 Assume that the M ×N image f is the realization of a discrete iid random vector
(Xi)

n
i=1 with iid components Xi as X, where n =MN . Let νf be defined as in (14) with respect

to N4. Then the probability that νf ≥ a > 0 is not smaller than

1− (1− 2q(X, 4, a))m, (25)

where q is defined in (24) and m = ⌊M/3⌋ × ⌊N/3⌋.

For N8 we have to replace q by q̃(X, 4, a) :=
L−1∑
i=0

(P (X ≤ i− a))4
(
P (X ≤ i−

√
2a)

)4
P (X = i).
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Proof. We consider only inner pixels i with non-overlapping neighborhoods as depicted in
Fig. 6. Then, by Lemma 3, the probability that one of these pixels does not verify (23)
is given by 1 − 2q(X, 4, a). Hence the probability that all these inner pixels do not fulfill
(23) is (1 − 2q(X, 4, a))m and the probability that at least one of these pixel satisfies (23) is
1− (1− 2q(X, 4, a))m. �

Note that for q(X, 4, a) > 0 the probability in (25) is indeed very close to 1 even for moderate
sizes of m. For instance, if the random variables are uniformly iid, we have

q(X, 4, a) =
1

L

L−1∑
i=a

(
i− a+ 1

L

)4

. =
(L− a)(L− a+ 1)(2(L− a) + 1)(3(L− a)2 + 3(L− a)− 1)

30L5
.

For a = 137 and L = 256 this formula gives q(X, 4, a) ≈ 0.0044 and for M = N = 128 further
1− (1− q(X, 4, a))m ≈ 1− 10−7.

Figure 6: Disjoint 3× 3-adjacencies with center pixels “x”.

6 Numerical Tests

The bounds on ∥û− f∥∞ with respect to the model parameters were tested on a wide amount
of images. Here we present the results on 15 digital images of different sizes, with gray values in
{0, · · · , 255}, available at http://sipi.usc.edu/database/. In our selection the images have various
quality and content (presence or quasi-absence of edges, textures, nearly flat regions). They
are displayed in Fig. 7. The values of νf for N8 under each image shows that the assumption
νf−2b(β, α1) > 0 in Theorem 2 is generously satisfied in all these cases as far as we are interested
to fix b(β, α1) ≤ 0.5. We also performed tests with 104 random 256 × 256 images with pixel
values uniformly distributed in {0, · · · , 255}. For N4 we obtained mean(νf ) = 224.2267 and for
N8, mean(νf ) = 137.7871.

We tested two functionals J(·, f) as described in Section 2: the first corresponds to ψ = Θ1
and φ = Θ1 and the second to ψ = Θ2 and φ = Θ1 as given in Table 1. In all tests, N8 was
adopted with the weights γi,j given in (4). Two choices for β satisfying (20) were considered
along with different values for α1 and α2. The minimizers û were computed using Polak-Ribière
conjugated gradients [4] with high numerical precision. For each restored image we computed
∥û−f∥∞ and present the distance between the theoretical upper bound b(β, α1) and the obtained
∥û− f∥∞:

b(β, α1)− ∥û− f∥∞ .

The tables show also the difference between the upper and the lower theoretical bounds on
∥û− f∥∞:

b− ℓ := b(β, α1)− ℓ(β, α1, α2, νf ) ,

computed using the explicit formulae given in Section 4. Furthermore, we evaluate the amount
of pixels that closely approach the ℓ∞ norm:

q = ♯
{
i ∈ In

∣∣ ∥û− f∥∞ − | û[i]− f [i] | < ε
}

and Q% = 100
q

n
,
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chemical (2562) moon (2562) aerial (5122) bark (5122) couple (5122)

νf = 26 νf = 42.43 νf = 53 νf = 37.48 νf = 41.61

motioncar (5122) stream (5122) tank (5122) man (10242) Pentagon (10242)

νf = 17.7 νf = 68.58 νf = 58.68 νf = 124 νf = 63.64

clock (2562) boat (5122) tree (2562) brick wall (5122) airplane (5122)

νf = 51.52 νf = 46 νf = 54 νf = 132.2 νf = 119.5

Figure 7: The set of images used in the tests provided in this section. The values of νf are
computed according to (14) in the case N8 for the weights in (4).
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N8, ψ(t) =
√
t2 + α1 for α1 = 0.2862, β = 0.1 hence b = 0.5, φ(t) =

√
t2 + α2

α2 = 0.02 α2 = 100

image

chemical
moon
aerial
bark
couple
motioncar
stream
tank
man
Pentagon
clock
boat
tree
brick wall
airplane

b−∥û−f∥∞ | ×10−6 b−ℓ | ×10−6 Q%

4.764 14.90 4.04
2.438 5.459 9.27
2.066 3.465 3.46
2.977 7.041 6.57
2.485 2.568 3.25
19.98 33.68 0.18
0.918 2.051 7.14
1.960 2.815 6.95
0.025 0.619 4.94
1.181 2.388 9.12
2.079 3.671 2.88
1.707 4.626 6.04
1.202 3.325 5.27
0.334 0.544 11.8
0.412 0.667 1.73

b−∥û−f∥∞ | ×10−3 b−ℓ | ×10−2 q

22.85 6.143 2
12.49 2.525 1
6.949 1.647 1
13.44 3.188 1
12.77 2.619 4
77.56 11.35 1
5.412 0.995 2
9.297 1.351 1
1.581 0.307 8
6.368 1.153 1
6.884 1.740 1
8.425 2.164 2
8.026 1.584 1
1.842 0.270 43
2.089 0.330 1

Table 4: Results for ψ = Θ1, φ = Θ1, β = 0.1 and a small and large value of α2, respectively.
Over the whole set of these images, for α2 = 0.02 we have mean

(
0.5−∥û−f∥∞

)
= 2.968×10−6

and mean
(
0.5 − ℓ(β, α1, α2, νf )

)
= 6.0678 × 10−6. For α2 = 100 these values read mean

(
0.5 −

∥û− f∥∞
)
= 1.307× 10−2 and mean

(
0.5− ℓ(β, α1, α2, νf )

)
= 2.491× 10−2.

where ♯ stands for cardinality and ε ' 0 in order to account for numerical errors. In the
experiments, we set ε := 10−3.

In all tests, given 0 < β < 1/η, we fixed α1 = α̂1 so that

b(β, α̂1) = δ for δ =
1

2
.

The numerical outcomes confirm the theoretical results on ∥û−f∥∞ established in Sections 3
and 4. From Tables 4, 5 and 6 the following observations can be drawn:

• Decreasing α2 > 0 towards 0 enables to make the difference between the upper and the
lower bounds on ∥û− f∥∞ arbitrarily small which leads to ∥u− f∥∞ ≈ b(β, α1).

In this case a large percentage of the pixels i meet |û[i]− f [i]| ≈ b(β, α1).

• An important increase of α2 > 0 entails a decrease of the lower bound ℓ(β, α1, α2, νf ).
Moreover, the number of pixels i verifying |û[i]− f [i]| ≈ b(β, α1) is reduced to a few ones.

Such a situation may be preferable when one wishes that there are not too many pixels
close to the upper bound.

Tables 7 and 8 show yet again that the gap between the upper bound b(β, α1) and the lower
bound ℓ(β, α1, α2, νf ) vanishes when α2 is close to zero and that it increases when α2 increases.
For α2 fixed, we see that b(β, α1)− ℓ(β, α1, α2, νf ) tends to decrease along with β.

Fig. 8 shows the histograms of the differences {f [i]− û[i], i ∈ In} relevant to “moon”, where
the upper bound was set to b(β, α1) = 0.5, for an increasing set of values of α2. These histograms
were plotted for 100 bins equally spaced in [−0.5,+0.5]. For very small values of α2, there are
many pixels meeting |f [i]− û[i]| ≈ ∥f − û∥∞. When α2 increases, such pixels become more and
more rare and the differences |f [i]− û[i]| become centered near zero. However they never reach
zero: see the value of µ defined in the caption of the figure. Here again, the numerical test were
done with a high precision.
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N8, ψ(t) =
√
t2 + α1 for α1 = 1.895, β = 0.05 hence b = 0.5, φ(t) =

√
t2 + α2

α2 = 0.02 α2 = 100

image

chemical
moon
aerial
bark
couple
motioncar
stream
tank
man
Pentagon
clock
boat
tree
brick wall
airplane

b−∥û−f∥∞ | ×10−6 b−ℓ | ×10−6 Q%

2.561 9.055 4.54
1.580 3.300 10.2
0.872 2.093 3.92
1.673 4.254 6.82
1.642 3.432 3.25
12.39 20.35 0.28
0.727 1.240 7.19
1.020 1.701 8.31
0.162 0.374 6.00
0.871 1.442 10.2
1.013 2.220 2.88
0.799 2.795 7.14
0.993 2.009 6.06
0.125 0.329 11.9
0.228 0.403 3.48

b−∥û−f∥∞ | ×10−3 b−ℓ | ×10−2 q

14.17 3.993 2
7.649 1.572 1
4.229 1.015 2
8.239 2.000 1
7.830 1.632 4
51.43 7.847 1
3.291 0.608 3
5.678 0.829 1
0.968 0.186 11
3.877 0.706 1
4.193 1.073 1
5.136 1.342 2
4.895 0.975 2
1.115 0.164 99
1.274 0.200 1

Table 5: Results for ψ = Θ1, φ = Θ1, β = 0.05 and a small and large value of α2, respectively.
For α2 = 0.02 we have mean

(
0.5−∥û− f∥∞

)
= 1.777× 10−6 and mean

(
0.5− ℓ(β, α1, α2, νf )

)
=

3.666 × 10−6. For α2 = 100, we find mean
(
0.5 − ∥û − f∥∞

)
= 8.265 × 10−3 and mean

(
0.5 −

ℓ(β, α1, α2, νf )
)
= 1.610× 10−2.

N8, ψ(t) = |t| − α1 log

(
1 +

|t|
α1

)
for α1 = 0.9645, β = 0.05, hence b = 0.5, φ(t) =

√
t2 + α2

α2 = 0.05 α2 = 100

image

chemical
moon
aerial
bark
couple
motioncar
stream
tank
man
Pentagon
clock
boat
tree
brick wall
airplane

b−∥û−f∥∞ | ×10−6 b−ℓ | ×10−6 Q%

0.101 0.304 2.79
5.347 11.06 7.03
2.670 7.019 2.63
5.843 14.26 5.55
5.369 11.51 3.25
41.36 68.23 0.09
1.687 4.155 6.66
3.869 5.703 4.45
0.673 1.255 3.14
2.723 4.837 6.55
2.622 7.437 2.88
3.879 9.373 3.97
4.070 6.737 4.18
0.721 1.102 11.3
0.682 1.352 0.74

b−∥û−f∥∞ | ×10−3 b−ℓ | ×10−2 q

18.81 5.236 2
10.22 2.090 1
5.663 1.354 2
11.01 2.653 1
10.46 2.170 4
66.99 0.101 1
4.404 0.813 3
7.592 1.107 1
1.298 0.249 10
5.188 0.943 1
5.610 1.431 1
6.874 1.786 2
6.549 1.301 2
1.710 0.219 61
4.983 0.268 1

Table 6: Results for ψ = Θ2, φ = Θ1, β = 0.05 and a small and large value of α2, respectively.
For α2 = 0.05 we have mean

(
0.5−∥û− f∥∞

)
= 5.441× 10−6 and mean

(
0.5− ℓ(β, α1, α2, νf )

)
=

10.29 × 10−6. For α2 = 100, we find mean
(
0.5 − ∥û − f∥∞

)
= 1.09 × 10−2 and mean

(
0.5 −

ℓ(β, α1, α2, νf )
)
= 2.11× 10−2.
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mean
(
b(β, α1)− ℓ(β, α1, α2, νf )

)
, b(β, α1) = 0.5, N8

α2 = 0.01 α2 = 100

ψ = Θ1, φ = Θ1
ψ = Θ2, φ = Θ1
ψ(t) = 1

α1+1 | t |
α1+1, φ = Θ1

β = 0.1 β = 0.05

3.034× 10−6 1.833× 10−6

5.106× 10−6 2.459× 10−6

2.994× 10−6 1.045× 10−6

β = 0.1 β = 0.05

2.491× 10−2 1.610× 10−2

3.985× 10−2 2.112× 10−2

2.542× 10−2 0.941× 10−2

Table 7: The mean value of the difference b(β, α1) − ℓ(β, α1, α2, νf ) was computed over the
selection of images shown in Fig. 7. Here we consider the N8 neighborhood for the weights
in (4).

mean
(
b(β, α1)− ℓ(β, α1, α2, νf )

)
, b(β, α1) = 0.5, N4

α2 = 0.01 α2 = 100

ψ = Θ1, φ = Θ1
ψ = Θ2, φ = Θ1
ψ(t) = 1

α1+1 | t |
α1+1, φ = Θ1

β = 0.2 β = 0.1

2.980× 10−6 1.278× 10−6

5.364× 10−6 1.788× 10−6

3.333× 10−6 0.812× 10−6

β = 0.2 β = 0.1

2.253× 10−2 1.104× 10−2

3.780× 10−2 1.504× 10−2

2.718× 10−2 0.722× 10−2

Table 8: The neighborhood here is N4 with the weights given in (4). The mean is calculated
over the set of images in Fig.7.

−0.5 0 0.5

1000

4000

−0.5 0 0.5

500

1000

−0.5 0 0.5

500

1400

−0.5 0 0.5

1000

1500

α2 = 0.02, q = 6700 α2 = 5, q = 48 α2 = 50, q = 3 α2 = 100, q = 1
µ = 6.6× 10−9 µ = 5.556× 10−8 µ = 1.523× 10−6 µ = 2.249× 10−6

Figure 8: Histograms of {f [i] − û[i], i ∈ In} for “moon” restored using ψ = Θ1, φ = Θ1, N8,
β = 0.05 and for different values of α2. The parameter α1 = 1.8947 was set so that b(β, α1) = 0.5.
The image has n = 65536 pixels. The value µ is defined by µ := min

i∈In
|f [i]− û[i]|.
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7 Conclusions and Open Questions

ℓ1−TV and ℓ2−TV functionals have been often minimized using a smoothed version of the form
we consider in this paper with ad hoc chosen smoothing parameters (“very small”). The results
established in our work enable to clearly evaluate the resulting approximation.

The functions (ψ,φ) studied here have a lot of similarities. However, they produce different
image restorations. The question of what couple of functions (ψ,φ) would give a better result
in the framework of a given application, remains open.

Extension to the rotational-invariant (in a discrete sense) smoothed TV, i.e.
Φ(u) =

∑
i,j φ(∥∇i,ju∥), where ∇i,ju ∈ R2 stands for a discrete approximation of the gradient

of u at pixel (i, j), deserves attention.
Extensions to cases when f are the coefficients of the expansion of the input image using

an orthogonal transform as the discrete cosine transform or a frame transform as the curvelet
transform, see, e.g., [10] are of interest.

Applications to quantization noise reduction should be envisaged.
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