Fully smoothed $\ell 1$-TV models: Bounds for the minimizers and parameter choice

F. Baus, Mila Nikolova, Gabriele Steidl

To cite this version:

F. Baus, Mila Nikolova, Gabriele Steidl. Fully smoothed $\ell 1$-TV models: Bounds for the minimizers and parameter choice. 2012. hal-00722743v2

HAL Id: hal-00722743
https://hal.science/hal-00722743v2
Preprint submitted on 16 Oct 2012 (v2), last revised 4 Feb 2013 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Fully smoothed $\ell_{1}-T V$ models: Bounds for the minimizers and parameter choice

F. Baus, M. Nikolova, and G. Steidl

October 15, 2012

Abstract

We consider a class of convex functionals that can be seen as \mathcal{C}^{1} smooth approximations of the $\ell_{1}-T V$ model. The minimizers of such functionals were shown to exhibit a qualitatively different behavior compared to the nonsmooth $\ell_{1}-T V$ model [12]. Here we focus on the way the parameters involved in these functionals determine the features of the minimizers \hat{u}. We give explicit relationships between the minimizers and these parameters.

Given an input digital image f, we prove that the error $\|\hat{u}-f\|_{\infty}$ obeys $b-\varepsilon \leq\|\hat{u}-f\|_{\infty} \leq$ b where b is a constant independent of the input image. Further we can set the parameters so that $\varepsilon>0$ is arbitrarily close to zero. More precisely, we exhibit explicit formulae relating the model parameters, the input image f and the values b and ε. Conversely, we can fix the parameter values so that the error $\|\hat{u}-f\|_{\infty}$ satisfy some prescribed b, ε. All theoretical results are confirmed using numerical tests on natural digital images of different sizes with disparate content and quality.

1 Introduction

In [12] a variational method using \mathcal{C}^{2} smoothed $\ell_{1}-\mathrm{TV}$ functionals were proposed. The goal was to process digital (quantized) images so that the obtained minimizer is quite close to the input digital image but its pixels are real-valued and can be ordered in a strict way. Indeed, the obtained minimizers were shown to enable faithful exact histogram specification outperforming the state-of-the-art methods $[8,13]$. The intuition behind these functionals was that their minimizer can up to some degree remove some quantization noise and in this way yield an ordering of the pixels close to the unknown original (unknown) real-valued image. Such an effect can be observed in Fig. 1 where a synthetic real-valued image is quantized and then restored using the proposed variational method. The nonsmooth $L_{1}-$ TV model was originally studied in [6]. The main feature of its minimizers is that they contain parts that are equal to the data image and parts that are constant (living in a vanishing component of the TV term). Even though the model modification proposed in [12] might seem trivial, the minimizers of these \mathcal{C}^{2} smoothed ℓ_{1}-TV functionals exhibit a qualitatively different behavior. Unlike the $L_{1}-T V\left(\ell_{1}-T V\right)$ minimizers, it was shown in [12] that the minimizers of the \mathcal{C}^{2} smoothed ℓ_{1}-TV functionals generically do not have pixels equal to those of the data image and there are no equally valued pixels. Some of the authors of [12] observed that once the parameters of the model were fixed, for all kind of real-world digital images f, the residual error obeyed $\|\hat{u}-f\|_{\infty}=b$ where the constant b typically met $b<0.5$. For this reason, they qualified this variational approach as detail preserving. Therefore we were interested in monitoring the error $\|\hat{u}-f\|_{\infty}$.

In this paper we consider a wider class of \mathcal{C}^{1} smoothed $\ell_{1}-\mathrm{TV}$ functionals involving also ℓ_{2} data fidelity terms. We give explicit relationships between the minimizers and the parameters tuning the model. The observation that $\|\hat{u}-f\|_{\infty}=b$, up to a small difference, is independent of the input image, is confirmed theoretically. Clear indications on the role of the parameter setting and the lower and upper bounds of $\|\hat{u}-f\|_{\infty}$ enable us to give restrictions on the parameter

Real-valued image

f-quantized on $\{0, \cdots, 15\}$

Restored \hat{u}

Figure 1: The restored image is obtained by minimizing $J(\cdot, f)$ of the form (1) where $\psi(t)=$ $\sqrt{t^{2}+\alpha_{1}}$ and $\varphi(t)=\sqrt{t^{2}+\alpha_{2}}$ for $\mathcal{N} 8$.
selection. All theoretical results are confirmed using numerical tests on a set of digital images of different sizes with disparate content and quality.

In spite of the progress in nonsmooth convex optimization [5], smooth approximations of nonsmooth objectives still remain a common approach in optimization [2]. Our results can help to design smooth approximations of $\ell_{1} / \ell_{2}-\mathrm{TV}$ functionals in a proper way.

The outline of this paper is as follows: In the next Section 2 we describe the variational model. Then, in Section 3 we estimate the ℓ_{∞}-error between the input image f and the minimizer of the functional. Section 4 provides explicit parameter estimates for the model. In Section 5 we give probability estimates for the behavior of neighboring pixels. Numerical tests demonstrate the quality of our estimates in Section 6. Finally, Section 7 finishes with conclusions and perspectives.

2 The Fully Smoothed ℓ_{1}-TV Model

We consider $M \times N$ digital images f with gray values in $\{0, \ldots, L-1\}$. Let $n:=M N$. To simplify the notations we reorder the image columnwise into a vector of size n and address the pixels by the index set $\mathbb{I}_{n}:=\{1, \cdots, n\}$. Further, we denote by $\mathbb{I}_{n}^{\text {int }} \subset \mathbb{I}_{n}$ the subset of all inner pixels, i.e., all pixels which are not boundary pixels.

We are interested in the minimizer \hat{u} of a functional of the form

$$
\begin{equation*}
J(u, f):=\Psi(u, f)+\beta \Phi(u), \quad \beta>0 \tag{1}
\end{equation*}
$$

with

$$
\begin{aligned}
\Psi(u, f) & :=\sum_{i \in \mathbb{I}_{n}} \psi(u[i]-f[i]) \\
\Phi(u) & :=\sum_{i \in \mathbb{I}_{n}} \sum_{j \in \mathcal{N}_{i}} \varphi\left(\gamma_{i, j}(u[i]-u[j])\right),
\end{aligned}
$$

where \mathcal{N}_{i} is a neighborhood of pixel i, the $\gamma_{i, j}>0$ are weighting terms for the distance between neighbors, and the functions ψ and φ depend on a positive parameter, α_{1} and α_{2}, respectively. To emphasize this dependence we use the notation $\psi\left(\cdot, \alpha_{1}\right)$ and $\varphi\left(\cdot, \alpha_{2}\right)$ when necessary. So $\psi: \mathbb{R} \times(0,+\infty) \rightarrow \mathbb{R}$ and $\varphi: \mathbb{R} \times(0,+\infty) \rightarrow \mathbb{R}$. The functions ψ and φ have to fulfill the properties stated below:

H0 The functions $t \mapsto \psi\left(t, \alpha_{1}\right)$ and $t \mapsto \varphi\left(t, \alpha_{2}\right)$ are continuously differentiable and even.

We denote

$$
\psi^{\prime}\left(t, \alpha_{1}\right):=\frac{d}{d t} \psi\left(t, \alpha_{1}\right) \quad \text { and } \quad \varphi^{\prime}\left(t, \alpha_{2}\right):=\frac{d}{d t} \varphi\left(t, \alpha_{2}\right) .
$$

When it is clear from the context, we write $\psi^{\prime}(t)$ for $\psi^{\prime}\left(t, \alpha_{1}\right)$ and $\varphi^{\prime}(t)$ for $\varphi^{\prime}\left(t, \alpha_{2}\right)$. By H0, $\psi^{\prime}(t)$ and $\varphi^{\prime}(t)$ are continuous and odd functions.
These derivative functions have to satisfy certain conditions given next.
$\mathbf{H} \mathbf{1}^{\psi} t \mapsto \psi^{\prime}\left(t, \alpha_{1}\right): \mathbb{R} \rightarrow(-Y, Y)$, where $Y>0$, is a strictly increasing function for any fixed $\alpha_{1} \in(0,+\infty)$ and maps onto $(-Y, Y)$.
$\mathbf{H} \mathbf{2}{ }^{\psi}$ There is a constant $T>0$ such that for any fixed $t \in(0, T)$, the function $\alpha_{1} \mapsto \psi^{\prime}\left(t, \alpha_{1}\right)$ is strictly decreasing on $(0,+\infty)$.

Here the cases $T=+\infty$ and $Y=+\infty$ are included.
$\mathbf{H 1}{ }^{\boldsymbol{\varphi}} t \mapsto \varphi^{\prime}\left(t, \alpha_{2}\right)$ is an increasing function for any fixed $\alpha_{2} \in(0,+\infty)$ satisfying

$$
\lim _{t \rightarrow \infty} \varphi^{\prime}\left(t, \alpha_{2}\right)=1
$$

$\mathbf{H 2}^{\varphi}$ For any fixed $t>0$, the function $\alpha_{2} \mapsto \varphi^{\prime}\left(t, \alpha_{2}\right)$ is continuous and decreasing on $(0,+\infty)$ and

$$
\lim _{\alpha_{2} \backslash 0} \varphi^{\prime}\left(t, \alpha_{2}\right)=1 .
$$

These properties imply further useful relations which are collected in the following remark.
Remark 1 i) By $\mathrm{H} 1^{\psi}$ we know that ψ is strictly convex and monotone increasing on $(0,+\infty)$ and by H^{φ} that φ is convex. Therefore there exists a unique minimizer of (1). This minimizer can be computed, e.g. by using a Weiszfeld-like semi-implicit algorithm, or the nonlinear (preconditioned) conjugate gradient method, see [7, 12, 14], among other viable algorithms.
ii) By $\mathrm{H} 1^{\psi}$ there exists the inverse function $\left(\psi^{\prime}\right)^{-1}\left(\cdot, \alpha_{1}\right):(-Y, Y) \rightarrow \mathbb{R}$, and this function is also odd, continuous and strictly increasing.

Some relevant choices of functions θ obeying all properties $\mathrm{H} 0, \mathrm{H} 1^{\psi}, \mathrm{H} 2^{\psi}, \mathrm{H} 1^{\varphi}$ and $\mathrm{H} 2^{\varphi}$ are given in Table 1. For the latter functions, $t \mapsto \theta^{\prime}(t, \alpha)$ maps onto ($-1,1$), i.e., $Y=1$ and $T=+\infty$ for any $\alpha>0$. A typical graph of such a function, its derivative and inverse derivative is depicted in Fig. 2.

	θ	θ^{\prime}	$\left(\theta^{\prime}\right)^{-1}$
$\Theta 1$	$\sqrt{t^{2}+\alpha}$	$\frac{t}{\sqrt{t^{2}+\alpha}}$	$y \sqrt{\frac{\alpha}{1-y^{2}}}$
$\Theta 2$	$\|t\|-\alpha \log \left(1+\frac{\|t\|}{\alpha}\right)$	$\frac{t}{\alpha+\|t\|}$	$\frac{\alpha y}{1-\|y\|}$
$\Theta 3$	$\alpha \log \left(\cosh \left(\frac{t}{\alpha}\right)\right)$	$\tanh \left(\frac{t}{\alpha}\right)$	$\alpha \operatorname{atanh}(y)$

Table 1: Options for functions θ obeying all the assumptions stated above. These functions are nearly affine beyond a neighborhood of zero. The size of the latter neighborhood is controlled by the parameter $\alpha>0$.

Figure 2: The function $\Theta 1$ in Table 1, where the plots for $\alpha=0.05$ are in blue solid line and for $\alpha=0.5$ in red dashed line.

Another choice for ψ fulfilling $\mathrm{H} 0, \mathrm{H} 1^{\psi}$ and $\mathrm{H} 2^{\psi}$ is the scaled ℓ_{p}-norm for $p=\alpha_{1}+1$:

$$
\begin{equation*}
\psi(t):=\frac{1}{\alpha_{1}+1}|t|^{\alpha_{1}+1} \quad \text { with } \quad \psi^{\prime}(t)=|t|^{\alpha_{1}} \operatorname{sign}(t), \quad\left(\psi^{\prime}\right)^{-1}(y)=|y|^{\frac{1}{\alpha_{1}}}, \quad \alpha_{1}>0 \tag{2}
\end{equation*}
$$

Here ψ^{\prime} maps onto \mathbb{R} so that $Y=+\infty$. Moreover $\alpha_{1} \mapsto \psi^{\prime}\left(t, \alpha_{1}\right)$ is strictly monotone decreasing for $|t|<1$ hence $T=1$ in this case. An upper bound for $\|\hat{u}-f\|_{\infty}$ when $\alpha_{1}=1$ in (2) was derived in [11]. Some general results on the functionals J for $\alpha_{1}=1$ in (2) can be found in [1] in a continuous setting.

For φ we can also use the scaled Huber function

$$
\varphi(t):=\left\{\begin{array}{lll}
\frac{t^{2}}{2 \alpha_{2}} & \text { if } & |t| \leq \alpha_{2}, \tag{3}\\
|t|-\frac{\alpha_{2}}{2} & \text { if } & |t|>\alpha_{2}
\end{array} \quad \text { with } \quad \varphi^{\prime}(t)=\left\{\begin{array}{lll}
\frac{t}{\alpha_{2}} & \text { if } & |t| \leq \alpha_{2} \\
\operatorname{sign}(t) & \text { if } & |t|>\alpha_{2}
\end{array}\right.\right.
$$

Note that the functions ψ and φ in Table 1 and (3) are nearly affine beyond a small neighborhood of the origin.

In this paper, we focus on the neighborhoods $\mathcal{N} 4$ and $\mathcal{N} 8$ depicted in Fig. 3 top. When taking the gradient of the functional in (1) we have to take into account that the pixel combination $u[i]-u[j]$ appears for $j \in \mathcal{N}_{i}^{2}$, where \mathcal{N}_{i}^{2} denotes the "double" neighborhood associated with \mathcal{N}_{i} in Fig. 3 bottom. The usual choices are (see e. g. [9])

$$
\begin{array}{ll}
\gamma_{i, j}:=1 & \text { for vertical and horizontal neighbors, } \\
\gamma_{i, j}:=\frac{1}{\sqrt{2}} & \text { for diagonal neighbors. } \tag{4}
\end{array}
$$

In all cases we have $\gamma_{i, j}=\gamma_{j, i}$.
Functionals of the form (1) with functions $\psi, \varphi \in \mathcal{C}^{s}, s \geq 2$ having alike properties (e.g. all functions in Table 1) were successfully used in [12] to process digital images f so that the obtained minimizer \hat{u} is quite close to the input digital image but its pixels can be ordered in a strict way. An analysis of the minimizers \hat{u} of these functionals has shown that almost surely, \hat{u} has pixel values that are different from each other and different from the input pixels.

3 Bounds for the ℓ_{∞}-Error

In this section, we give upper and lower estimates for the ℓ_{∞}-error between the input image f and the image \hat{u} obtained by minimizing the functional $J(\cdot, f)$.

Figure 3: Neighborhoods $\mathcal{N} 4$ and $\mathcal{N} 8$ (right) of a pixel (i, j) are used to formulate $\Phi(u)$. The double neighborhoods $\mathcal{N} 4^{2}$ and $\mathcal{N} 8^{2}$ appear in the gradient of $\Phi(u)$, see (7).

If \hat{u} is a minimizer of $u \mapsto J(u, f)$ we denote by $h \in \mathbb{R}^{n}$ the vector with components

$$
\begin{equation*}
h[i]:=\sum_{j \in \mathcal{N}_{i}^{2}} \gamma_{i, j} \varphi^{\prime}\left(\gamma_{i, j}(\hat{u}[i]-\hat{u}[j])\right), \quad i \in \mathbb{I}_{n} . \tag{5}
\end{equation*}
$$

First we provide a lemma which gives a useful expression for $\|\hat{u}-f\|_{\infty}$.
Lemma 1 Let H 0 , $\mathrm{H} 1^{\psi}$ and H^{φ} be satisfied. Let \hat{u} be the minimizer of $u \mapsto J(u, f)$ and h be given by (5). Then

$$
\begin{equation*}
\|\hat{u}-f\|_{\infty}=\left(\psi^{\prime}\right)^{-1}\left(\beta\|h\|_{\infty}, \alpha_{1}\right) . \tag{6}
\end{equation*}
$$

Proof. In this proof we can omit the parameter α_{1}. Using the definition of J and taking into account that φ^{\prime} is odd, we have

$$
\begin{equation*}
\frac{\partial \Psi}{\partial u[i]}=\psi^{\prime}(u[i]-f[i]) \quad \text { and } \quad \frac{\partial \Phi}{\partial u[i]}=\sum_{j \in \mathcal{N}_{i}^{2}} \gamma_{i, j} \varphi^{\prime}\left(\gamma_{i, j}(u[i]-u[j])\right) . \tag{7}
\end{equation*}
$$

The minimizer \hat{u} of $J(\cdot, f)$ has to satisfy $\nabla_{u} J(\hat{u}, f)=0$ which can be rewritten as $\nabla_{u} \Psi(\hat{u}, f)=$ $-\beta \nabla \Phi(\hat{u})$ or as

$$
\psi^{\prime}(\hat{u}[i]-f[i])=-\beta \sum_{j \in \mathcal{N}_{i}^{2}} \gamma_{i, j} \varphi^{\prime}\left(\gamma_{i, j}(\hat{u}[i]-\hat{u}[j])\right), \quad i \in \mathbb{I}_{n} .
$$

Using (5), the latter is equivalent to

$$
\psi^{\prime}(\hat{u}[i]-f[i])=-\beta h[i], \quad i \in \mathbb{I}_{n} .
$$

Since ψ^{\prime} is by H 0 and $\mathrm{H} 1^{\psi}$ odd and strictly increasing,

$$
\begin{equation*}
\psi^{\prime}(|\hat{u}[i]-f[i]|)=\left|\psi^{\prime}(\hat{u}[i]-f[i])\right|=\beta|h[i]| . \tag{8}
\end{equation*}
$$

Using Remark 1ii), we see that (8) is equivalent to

$$
\begin{equation*}
|\hat{u}[i]-f[i]|=\left(\psi^{\prime}\right)^{-1}(\beta|h[i]|) \tag{9}
\end{equation*}
$$

where $\left(\psi^{\prime}\right)^{-1}$ is strictly increasing, hence

$$
\|\hat{u}-f\|_{\infty}=\max _{i \in \mathbb{I}_{n}}\left(\psi^{\prime}\right)^{-1}(\beta|h[i]|)=\left(\psi^{\prime}\right)^{-1}\left(\beta\|h\|_{\infty}\right)
$$

For inner points $i \in \mathbb{I}_{n}^{\text {int }}$ we define

$$
\begin{equation*}
\eta:=\sum_{j \in \mathcal{N}_{i}^{2}} \gamma_{i, j} \tag{10}
\end{equation*}
$$

Of course η does not depend on i but just on the choice of the neighborhood. If the weights are defined as in (4), we have

$$
\begin{array}{ll}
\eta=4 & \text { for } \mathcal{N} 4 \\
\eta=4+\frac{4}{\sqrt{2}}=6.8284 & \text { for } \mathcal{N} 8
\end{array}
$$

For $i \in \mathbb{I}_{n} \backslash \mathbb{I}_{n}^{\text {int }}$ we have $\sum_{j \in \mathcal{N}_{i}^{2}} \gamma_{i, j} \leq \eta$ whose value depends on the boundary conditions.
In order to extend the obtained result, we shall use a property of $\left(\psi^{\prime}\right)^{-1}$ which is stated below.

Lemma 2 Let ψ satisfy H0, H1 ${ }^{\psi}$ and $\mathrm{H}^{*}{ }^{\psi}$. Set

$$
\widetilde{Y}:=\min \left\{Y, \psi^{\prime}(T)\right\}
$$

where $\psi^{\prime}(T):=\lim _{t \rightarrow+\infty} \psi^{\prime}(t)$ if $T=+\infty$. Then for any $y \in(0, \widetilde{Y})$, the function $\alpha_{1} \mapsto\left(\psi^{\prime}\right)^{-1}\left(y, \alpha_{1}\right)$ is strictly increasing on $(0,+\infty)$.
Proof. Let $0<a_{1}<a_{2}$ and $y \in(0, \tilde{Y})$ be arbitrarily fixed. Since $t \mapsto \psi^{\prime}\left(t, \alpha_{1}\right)$ is one-to-one and odd, there exist $t_{1}, t_{2} \in(0, T)$ such that

$$
\begin{equation*}
\psi^{\prime}\left(t_{1}, a_{1}\right)=y=\psi^{\prime}\left(t_{2}, a_{2}\right) \tag{11}
\end{equation*}
$$

Thus we have $\left(\psi^{\prime}\right)^{-1}\left(y, a_{1}\right)=t_{1}$ and $\left(\psi^{\prime}\right)^{-1}\left(y, a_{2}\right)=t_{2}$. From H1 ${ }^{\psi}, t \mapsto \psi^{\prime}\left(t, \alpha_{1}\right)$ is strictly increasing for any fixed $\alpha_{1}>0$ and from $\mathrm{H} 2^{\psi}, \alpha_{1} \mapsto \psi^{\prime}\left(t, \alpha_{1}\right)$ is strictly decreasing for any fixed $t \in(0, T)$. Therefore

$$
t_{2} \leq t_{1} \quad \Rightarrow \quad y=\psi^{\prime}\left(t_{1}, a_{1}\right)>\psi^{\prime}\left(t_{1}, a_{2}\right) \geq \psi^{\prime}\left(t_{2}, a_{2}\right)
$$

This contradicts (11). Consequently, $t_{1}<t_{2}$ which implies the assertion.
For all functions in Table 1 and for ψ in (2) we have $\tilde{Y}=1$.
The following theorem provides an upper bound for $\|\hat{u}-f\|_{\infty}$ which is independent of f as well as of the particular shape of $\varphi\left(t, \alpha_{2}\right)$ provided that the latter meets the relevant assumptions.

Theorem 1 Assume that $\mathrm{H} 0, \mathrm{H} 1^{\psi}$ and $\mathrm{H} 1^{\varphi}$ are satisfied. Let $\beta \eta<Y$, where η is given in (10). Then the minimizer \hat{u} of $u \mapsto J(u, f)$ satisfies

$$
\begin{equation*}
\|\hat{u}-f\|_{\infty} \leq\left(\psi^{\prime}\right)^{-1}\left(\beta \eta, \alpha_{1}\right)=: b\left(\beta, \alpha_{1}\right) \tag{12}
\end{equation*}
$$

If, in addition, ψ fulfills $\mathrm{H} 2^{\psi}$ and $\beta \eta<\tilde{Y}$, where $\widetilde{Y}=\min \left\{Y, \psi^{\prime}(T)\right\}$, then $\alpha_{1} \mapsto b\left(\beta, \alpha_{1}\right)$ is strictly increasing on $(0,+\infty)$.

Proof. From $\mathrm{H}^{\varphi}, \varphi^{\prime}$ is increasing with $\left|\varphi^{\prime}(t)\right| \leq 1$ for any $t \in \mathbb{R}$. Inserting this into the definition of h in (5) yields

$$
\begin{equation*}
\|h\|_{\infty} \leq \eta \tag{13}
\end{equation*}
$$

Since $\left(\psi^{\prime}\right)^{-1}$ is by Remark 1ii) strictly increasing on (0, Y), we deduce from (6) and (13) for $\beta \eta<Y$ that

$$
\|\hat{u}-f\|_{\infty}=\left(\psi^{\prime}\right)^{-1}\left(\beta\|h\|_{\infty}, \alpha_{1}\right) \leq\left(\psi^{\prime}\right)^{-1}\left(\beta \eta, \alpha_{1}\right)
$$

If ψ meets $\mathrm{H} 2^{\psi}$ and $\beta \eta<\widetilde{Y}$ we obtain by Lemma 2 that the function $\alpha_{1} \mapsto\left(\psi^{\prime}\right)^{-1}\left(\beta \eta, \alpha_{1}\right)$ is strictly increasing on $(0,+\infty)$.

We clarify the statement of Theorem 1 below.

- By Remark 1, the function $\beta \mapsto b\left(\beta, \alpha_{1}\right)$ is strictly increasing since η is a fixed number.
- The equality in (12) can only be met if φ^{\prime} attains the limit in $\mathrm{H} 1^{\psi}$, i.e., if $\varphi^{\prime}(t)=1$ for some $t \in \mathbb{R}$. This is for example the case for the scaled Huber function in (3).
- The bound in (12) depends only on $\psi\left(\cdot, \alpha_{1}\right)$ and on β but it is independent of the selection of φ provided that H^{φ} holds.
- For all functions ψ listed in Table 1 we have $Y=1$ which limits the action of β to less than $1 / \eta$. So $\mathrm{H} 2^{\psi}$ furnishes a flexible tool to control the upper bound $b\left(\beta, \alpha_{1}\right)$ by using α_{1} under the condition that $\beta \eta<\widetilde{Y}$, where we remind that $\widetilde{Y}=1$ for all ψ in Table 1 and in (2).

The lower bound on $\|\hat{u}-f\|_{\infty}$ exhibited in the next Theorem 2 depends on $\varphi\left(t, \alpha_{2}\right)$ and on the input image f as well. In our formula, the reliance on f is expressed via the magnitude ν_{f} defined below:

$$
\begin{align*}
\mathcal{I} & :=\left\{i \in \mathbb{I}_{n}^{\operatorname{int}} \mid \operatorname{sign}(f[i]-f[j])=\sigma, \forall j \in \mathcal{N}_{i} \text { where } \sigma \in\{-1,+1\}\right\} \\
\nu_{f} & :=\max _{i \in \mathcal{I}} \min _{j \in \mathcal{N}_{i}}\left(\gamma_{i, j}|f[i]-f[j]|\right) \tag{14}
\end{align*}
$$

where we set $\nu_{f}:=0$ if $\mathcal{I}=\emptyset$. The values of ν_{f} for some real-world images can be seen in Fig. 7 .
Theorem 2 Let $\mathrm{H} 0, ~ \mathrm{H} 1^{\psi}, ~ \mathrm{H} 2^{\psi}$ and H^{φ}, $\mathrm{H} 2^{\varphi}$ be verified. Let $\beta \eta<Y$, where η is given in (10). Assume that $\nu_{f}>2 b\left(\beta, \alpha_{1}\right)$. Then the minimizer \hat{u} of $u \mapsto J(u, f)$ fulfills

$$
\begin{equation*}
\|\hat{u}-f\|_{\infty} \geq\left(\psi^{\prime}\right)^{-1}\left(c \beta \eta, \alpha_{1}\right)=: \ell\left(\beta, \alpha_{1}, \alpha_{2}, \nu_{f}\right) \tag{15}
\end{equation*}
$$

where

$$
c=c\left(\beta, \alpha_{1}, \alpha_{2}, \nu_{f}\right):=\varphi^{\prime}\left(\nu_{f}-2 b\left(\beta, \alpha_{1}\right), \alpha_{2}\right) \leq 1
$$

The function $\alpha_{2} \mapsto \ell\left(\beta, \alpha_{1}, \alpha_{2}, \nu_{f}\right)$ is decreasing on $(0,+\infty)$ and

$$
\begin{equation*}
\ell\left(\beta, \alpha_{1}, \alpha_{2}, \nu_{f}\right) \nearrow b\left(\beta, \alpha_{1}\right) \quad \text { as } \quad \alpha_{2} \searrow 0 . \tag{16}
\end{equation*}
$$

Moreover, for $\varepsilon>0$ arbitrarily close to zero, α_{2} can be set so that

$$
\begin{equation*}
\|\hat{u}-f\|_{\infty} \geq\left(\psi^{\prime}\right)^{-1}\left((1-\varepsilon) \beta \eta, \alpha_{1}\right) \tag{17}
\end{equation*}
$$

Proof. From the definition on ν_{f}, there exists $i \in \mathbb{I}_{n}^{\text {int }}$ such that

$$
\gamma_{i, j}|f[i]-f[j]| \geq \nu_{f}, \quad \forall j \in \mathcal{N}_{i}
$$

We consider the case

$$
\begin{equation*}
\gamma_{i, j}(f[i]-f[j]) \geq \nu_{f}>2 b\left(\beta, \alpha_{1}\right), \quad \forall j \in \mathcal{N}_{i} \tag{18}
\end{equation*}
$$

The opposite case, namely $\gamma_{i, j}(f[j]-f[i]) \geq \nu_{f}>2 b\left(\beta, \alpha_{1}\right), \forall j \in \mathcal{N}_{i}$ can be handled in the same way. By Theorem 1, the minimizer \hat{u} of $J(\cdot, f)$ meets

$$
\begin{aligned}
-b\left(\beta, \alpha_{1}\right) & \leq \hat{u}[i]-f[i] \\
-b\left(\beta, \alpha_{1}\right) & \leq f[j]-\hat{u}[j], \quad \forall j \in \mathcal{N}_{i}
\end{aligned}
$$

Thus

$$
\begin{align*}
-2 b\left(\beta, \alpha_{1}\right) & \leq \hat{u}[i]-\hat{u}[j]-(f[i]-f[j]), \quad \forall j \in \mathcal{N}_{i} \\
-2 b\left(\beta, \alpha_{1}\right)+(f[i]-f[j]) & \leq \hat{u}[i]-\hat{u}[j], \quad \forall j \in \mathcal{N}_{i} \tag{19}
\end{align*}
$$

Combining (18) and (19) along with the fact that $\gamma_{i, j} \leq 1$ yields

$$
0<-2 b\left(\beta, \alpha_{1}\right)+\nu_{f} \leq-2 b\left(\beta, \alpha_{1}\right)+\gamma_{i, j}(f[i]-f[j]) \leq \gamma_{i, j}(\hat{u}[i]-\hat{u}[j]) \quad \forall j \in \mathcal{N}_{i}
$$

Since $t \mapsto \varphi^{\prime}\left(t, \alpha_{2}\right)$ is increasing by H^{φ}, the value $h[i]$ in (5) satisfies

$$
h[i] \geq \sum_{j \in \mathcal{N}_{i}^{2}} \gamma_{i, j} \varphi^{\prime}\left(\nu_{f}-2 b\left(\beta, \alpha_{1}\right), \alpha_{2}\right)=\eta c\left(\beta, \alpha_{1}, \alpha_{2}, \nu_{f}\right)
$$

Using yet again that $y \mapsto\left(\psi^{\prime}\right)^{-1}\left(y, \alpha_{1}\right)$ is strictly increasing (Remark 1ii)) we obtain by (9) that

$$
|\hat{u}[i]-f[i]| \geq\left(\psi^{\prime}\right)^{-1}\left(c \beta \eta, \alpha_{1}\right)
$$

Since $\|\hat{u}-f\|_{\infty} \geq|\hat{u}[i]-f[i]|$, it follows that

$$
\|\hat{u}-f\|_{\infty} \geq\left(\psi^{\prime}\right)^{-1}\left(c \beta \eta, \alpha_{1}\right)
$$

Using $\mathrm{H} 2^{\varphi}$, the function $\alpha_{2} \mapsto c\left(\beta, \alpha_{1}, \alpha_{2}, \nu_{f}\right)$ is continuous and decreasing on $(0,+\infty)$ and $\lim _{\alpha_{2} \searrow 0} c\left(\beta, \alpha_{1}, \alpha_{2}, \nu_{f}\right)=1$. Combining the latter with Remark 1ii) entails that $\alpha_{2} \mapsto \ell\left(\beta, \alpha_{1}, \alpha_{2}, \nu_{f}\right)$ is decreasing on $(0,+\infty)$. Then the definition of $b\left(\beta, \alpha_{1}\right)$ in (12) leads to (16).

Finally, $\mathrm{H} 2^{\varphi}$ shows that for ε arbitrarily close to zero there is $\alpha_{2}>0$ such that $c\left(\beta, \alpha_{1}, \alpha_{2}, \nu_{f}\right)=$ $(1-\varepsilon)$ and consequently $\|\hat{u}-f\|_{\infty} \geq\left(\psi^{\prime}\right)^{-1}((1-\varepsilon) \beta \eta)$.

Some comments on Theorem 2 may be useful.

- The expression in (17) tells us that by decreasing α_{2}, the lower bound $\ell(\cdot)$ can be adjusted arbitrarily close to the upper bound $b(\cdot)$. The amount of decrease of α_{2} needed to reach $(1-\varepsilon)$ depends on the input image f and can be calculated.
- If $t \mapsto \varphi^{\prime}\left(t, \alpha_{2}\right)$ is nonstrictly increasing on $[0,+\infty)$, as the Huber function in (3), it easy to see that there is α_{2} such that $c\left(\beta, \alpha_{1}, \alpha_{2}, \nu_{f}\right)=1$ and hence $\ell\left(\beta, \alpha_{1}, \alpha_{2}, \nu_{f}\right)=b\left(\beta, \alpha_{1}\right)$.

4 Explicit Parameter Estimates

In this section we want to use the error bounds from the previous section to give explicit parameter estimates of β, α_{1} and α_{2} for the functions ψ, φ mentioned in Section 2. More precisely, for a given β satisfying a constraint and for δ fixed, we exhibit the value $\alpha_{1}=\widehat{\alpha}_{1}$ ensuring that $b\left(\beta, \widehat{\alpha}_{1}\right)=\delta$ and then calculate $\ell\left(\beta, \widehat{\alpha}_{1}, \alpha_{2}, \nu_{f}\right)$.

For the functions ψ in Table 1 and in (2) we have $\widetilde{Y}=1$. When the weights $\gamma_{i, j}$ are chosen as in (4) and $\mathrm{H} 2^{\psi}$ holds, the assumption $\beta \eta<\widetilde{Y}=1$ in Theorem 1 reads

$$
\begin{array}{lll}
\beta<\frac{1}{4}=0.25 & \text { for } & \mathcal{N} 4, \\
\beta<\frac{1}{6.8284}=0.1464 & \text { for } & \mathcal{N} 8 . \tag{20}
\end{array}
$$

In the following we choose $\beta>0$ such that $\beta<\frac{1}{\eta}$. For $\delta>0$ fixed, let $\widehat{\alpha}_{1}$ solve the equation

$$
\begin{equation*}
b\left(\beta, \alpha_{1}\right)=\left(\psi^{\prime}\right)^{-1}\left(\beta \eta, \alpha_{1}\right)=\delta . \tag{21}
\end{equation*}
$$

Then we have by Theorem 1 that $\|\hat{u}-f\|_{\infty} \leq \delta$ for all $\alpha_{1} \in\left(0, \widehat{\alpha}_{1}\right]$ and there does not exist $\alpha_{1}>\widehat{\alpha}_{1}$ such that $\|\hat{u}-f\|_{\infty} \leq \delta$ holds true. In this sense we call $\widehat{\alpha}_{1}$ optimal for δ. This claim is ensured thanks to $\mathrm{H} 2^{\psi}$ which guarantees that $\alpha_{1} \mapsto b\left(\beta, \widehat{\alpha}_{1}\right)$ is strictly increasing. The value c in Theorem 2 depends on φ and on f via ν_{f}. Given the input image f the constant ν_{f} is easy to compute. When

$$
z:=\nu_{f}-2 b\left(\beta, \alpha_{1}\right)>0,
$$

Theorem 2 indicates that the constant c reads

$$
\begin{equation*}
c=\varphi^{\prime}\left(z, \alpha_{2}\right) . \tag{22}
\end{equation*}
$$

In our experiments on real-world digital images, we always had $z \gg 0$ for $\delta=0.5$. By Theorem 2 a sharper lower bound requires a smaller value for α_{2}. According to Theorem 1 and Theorem 2, the upper and lower bounds for $\|f-\hat{u}\|_{\infty}$ and the optimal value for α_{1} as defined in (21) for the functions ψ in Table 1 and in (2) are given in Table 2.

$\psi(t)$	$b\left(\beta, \alpha_{1}\right)$	$\ell\left(\beta, \alpha_{1}, \alpha_{2}, \nu_{f}\right)$	$\widehat{\alpha}_{1}$
$\sqrt{t^{2}+\alpha_{1}}$	$\sqrt{\frac{\alpha_{1}(\beta \eta)^{2}}{1-(\beta \eta)^{2}}}$	$\sqrt{\frac{\alpha_{1}(c \beta \eta)^{2}}{1-(c \beta \eta)^{2}}}$	$\delta^{2}\left(\frac{1}{\beta^{2} \eta^{2}}-1\right)$
$\|t\|-\alpha_{1} \log \left(1+\frac{\|t\|}{\alpha_{1}}\right)$	$\frac{\alpha_{1} \beta \eta}{1-\beta \eta}$	$\frac{\alpha_{1} c \beta \eta}{1-c \beta \eta}$	$\delta\left(\frac{1}{\beta \eta}-1\right)$
$\alpha_{1} \log \left(\cosh \left(\frac{t}{\alpha_{1}}\right)\right)$	$\alpha_{1} \operatorname{atanh}(\beta \eta)$	$\alpha_{1} \operatorname{atanh}(c \beta \eta)$	$\frac{\delta}{\operatorname{atanh}(\beta \eta)}$
$\frac{1}{\alpha_{1}+1}\|t\|^{\alpha_{1}+1}$	$(\beta \eta)^{\frac{1}{\alpha_{1}}}$	$(c \beta \eta)^{\frac{1}{\alpha_{1}}}$	$\frac{\ln (\beta \eta)}{\ln \delta}$

Table 2: Bounds and parameter $\widehat{\alpha}_{1}$ for various functions ψ in Table 1 and in (2). The parameter c depends on φ^{\prime} by (22). The allowed values for β by Theorem 1 are given in (20).

If $\delta=0.5$ then \hat{u} has the important property that it preserves the order of the pixel values in a digital image $f \in\{0, \ldots, L-1\}^{n}$. The corresponding values $\widehat{\alpha}_{1}$ and β are presented in Table 3.

Remark 2 Equation (21) offers several other exploits than only fixing the optimal $\widehat{\alpha}_{1}$. For any $\beta<\frac{Y}{\eta}$ one can also

$\psi(t)$	$\sqrt{t^{2}+\alpha_{1}}$		$\|t\|-\alpha_{1} \log \left(1+\frac{\|t\|}{\alpha_{1}}\right)$	
neighborhood	β	$\widehat{\alpha}_{1}$	β	$\widehat{\alpha}_{1}$
$\mathcal{N} 4$	0.2	0.1406	0.2	0.1250
$\mathcal{N} 4$	0.1	1.3125	0.1	0.7500
$\mathcal{N} 8$	0.1	0.2862	0.1	0.2322
$\mathcal{N} 8$	0.05	1.8947	0.05	0.9645

Table 3: Allowed values $\beta<1 / \eta$ and the optimal $\widehat{\alpha}_{1}$ for $\delta=b\left(\beta, \hat{\alpha}_{1}\right)=0.5$.

- calculate δ when α_{1} and β are given-this can be useful e.g. when $\ell_{1}-T V$ or $\ell_{2}-T V$ are approximated by a fully smooth functional;
- determine the optimal β for fixed α_{1} and δ-we remind that from Remark $1, \beta \mapsto b\left(\beta, \alpha_{1}\right)$ is strictly increasing, hence this value of β is unique.

5 Probability Estimates for Pixel Neighborhoods

Consider that the assumptions $\mathrm{H} 0, \mathrm{H}^{\psi}, \mathrm{H}^{\varphi}$ and H^{φ} are met and that the parameters $\beta<Y / \eta$, α_{1} and α_{2} are fixed. From Theorem 2 we know that the upper bound $b\left(\beta, \alpha_{1}\right)$ in Theorem 1 provides a nearly perfect approximation of the true error $\|\hat{u}-f\|_{\infty}$ when $c=\varphi^{\prime}\left(\nu_{f}-2 b, \alpha_{2}\right)$ is close to one, which by H^{φ} means that ν_{f} is large enough. In order to get an intuition - even though very rough - on the behaviour of ν_{f}, we assume in this section that the values of f are realizations of a discrete random variable X taking values in $\{0, \ldots, L-1\}$ whose probability density function (pdf) p_{X} is specialized to real-world digital images. Fig. 4 shows an image together with its histogram which furnishes an empirical estimate of the corresponding pdf.

Figure 4: Left: Duck image. Right: Histogram of "duck image" furnishing an empirical estimate of the corresponding pdf.

First, we ask for the probability that an inner image pixel $i \in \mathbb{I}_{n}^{\text {int }}$ fulfills

$$
\begin{equation*}
|f[i]-f[j]| \geq a \text { and } \operatorname{sign}(f[i]-f[j])=\sigma, \quad \forall j \in \mathcal{N}_{i} \tag{23}
\end{equation*}
$$

where $\sigma \in\{-1,+1\}$ for some fixed $a>0$.
Lemma 3 Let $X, X_{i}, i=1, \ldots, k$ be independent and identically distributed (iid) discrete random variables taking values in $\{0, \ldots, L-1\}$. Then it holds for $a>0$ that

$$
\begin{equation*}
q(X, k, a):=P\left(X-X_{1} \geq a, \ldots, X-X_{k} \geq a\right)=\sum_{i=0}^{L-1}(P(X \leq i-a))^{k} P(X=i) . \tag{24}
\end{equation*}
$$

Proof. Since the random variables are iid we obtain

$$
\begin{aligned}
P\left(X-X_{1} \geq a, \ldots, X-X_{k} \geq a\right) & =\sum_{i=0}^{L-1}\left(P\left(i-X_{1} \geq a, \ldots, i-X_{k} \leq a, X=i\right)\right. \\
& =\sum_{i=0}^{L-1}(P(X \leq i-a))^{k} P(X=i) .
\end{aligned}
$$

A case relevant to our context is when X is a given inner pixel and X_{i} for $i \in\{1 \cdots, k\}$ are the pixels in the "double" neighborhood of X, see Fig. 3. Then the setting of Lemma 3 considers neighborhoods where the central pixel X is bigger than all its neighbors by at least the amount of a. It is clear that the opposite case (when $X-X_{i} \leq-a$ for all $i \in 1 \cdots, k$) is of the same interest and appears with the same probability $P\left(X-X_{1} \leq-a, \ldots, X-X_{k} \leq-a\right)=q(X, k, a)$. Of course the "iid" assumption is not realistic for natural images.

For $k=1$, the probabilities $P\left(X-X_{1} \geq a\right)$ and $P\left(X-X_{1} \leq-a\right)$ can be easily exemplified. Let X and X_{1} follow independently the same pdf p_{X}. In order to obtain the joint pdf of X and X_{1}, one has to compute $P\left(X=i_{1}\right) P\left(X=i_{2}\right)$ for all gray levels i_{1}, i_{2} obeying $\left|i_{1}-i_{2}\right| \geq a$ and then take their sum. Fig. 5 (left) shows for example the joint pdf of X and X_{1} when X and X_{1} are iid random variables following the pdf p_{X} of the "ducks image" in Fig. 4 left. At position $\left(i_{1}, i_{2}\right) \in\{0, \ldots, 255\}^{2}$ the probability $P\left(X=i_{1}\right) P\left(X_{1}=i_{2}\right)$ is visualized as a gray value where lighter areas correspond to higher probability.

In Fig. 5 (right) the shaded areas show the points where the pixel difference $\left|i_{1}-i_{2}\right|$ is larger or equal to a. The sum of the probabilities corresponding to these areas is $2 q(X, 1, a)$.

Figure 5: Left: Joint pdf of two iid random variables X, X_{1} where X and X_{1} follow the pdf of the "ducks image" in Fig. 4 right. Here light areas correspond to high probability. Right: Areas where $\left|i_{1}-i_{2}\right| \geq a, i_{1}, i_{2} \in\{0, \ldots, L-1\}$. The value $2 q(X, 1, a)$ is the sum of the probabilities in the shaded areas.

Theorem 3 Assume that the $M \times N$ image f is the realization of a discrete iid random vector $\left(X_{i}\right)_{i=1}^{n}$ with iid components X_{i} as X, where $n=M N$. Let ν_{f} be defined as in (14) with respect to $\mathcal{N} 4$. Then the probability that $\nu_{f} \geq a>0$ is not smaller than

$$
\begin{equation*}
1-(1-2 q(X, 4, a))^{m}, \tag{25}
\end{equation*}
$$

where q is defined in (24) and $m=\lfloor M / 3\rfloor \times\lfloor N / 3\rfloor$.
For $\mathcal{N} 8$ we have to replace q by $\tilde{q}(X, 4, a):=\sum_{i=0}^{L-1}(P(X \leq i-a))^{4}(P(X \leq i-\sqrt{2} a))^{4} P(X=i)$.

Proof. We consider only inner pixels i with non-overlapping neighborhoods as depicted in Fig. 6. Then, by Lemma 3, the probability that one of these pixels does not verify (23) is given by $1-2 q(X, 4, a)$. Hence the probability that all these inner pixels do not fulfill (23) is $(1-2 q(X, 4, a))^{m}$ and the probability that at least one of these pixel satisfies (23) is $1-(1-2 q(X, 4, a))^{m}$.

Note that for $q(X, 4, a)>0$ the probability in (25) is indeed very close to 1 even for moderate sizes of m. For instance, if the random variables are uniformly iid, we have
$q(X, 4, a)=\frac{1}{L} \sum_{i=a}^{L-1}\left(\frac{i-a+1}{L}\right)^{4} .=\frac{(L-a)(L-a+1)(2(L-a)+1)\left(3(L-a)^{2}+3(L-a)-1\right)}{30 L^{5}}$.
For $a=137$ and $L=256$ this formula gives $q(X, 4, a) \approx 0.0044$ and for $M=N=128$ further $1-(1-q(X, 4, a))^{m} \approx 1-10^{-7}$.

Figure 6: Disjoint 3×3-adjacencies with center pixels " x ".

6 Numerical Tests

The bounds on $\|\hat{u}-f\|_{\infty}$ with respect to the model parameters were tested on a wide amount of images. Here we present the results on 15 digital images of different sizes, with gray values in $\{0, \cdots, 255\}$, available at http://sipi.usc.edu/database/. In our selection the images have various quality and content (presence or quasi-absence of edges, textures, nearly flat regions). They are displayed in Fig. 7. The values of ν_{f} for $\mathcal{N} 8$ under each image shows that the assumption $\nu_{f}-2 b\left(\beta, \alpha_{1}\right)>0$ in Theorem 2 is generously satisfied in all these cases as far as we are interested to fix $b\left(\beta, \alpha_{1}\right) \leq 0.5$. We also performed tests with 10^{4} random 256×256 images with pixel values uniformly distributed in $\{0, \cdots, 255\}$. For $\mathcal{N} 4$ we obtained mean $\left(\nu_{f}\right)=224.2267$ and for $\mathcal{N} 8, \operatorname{mean}\left(\nu_{f}\right)=137.7871$.

We tested two functionals $J(\cdot, f)$ as described in Section 2: the first corresponds to $\psi=\Theta 1$ and $\varphi=\Theta 1$ and the second to $\psi=\Theta 2$ and $\varphi=\Theta 1$ as given in Table 1. In all tests, $\mathcal{N} 8$ was adopted with the weights $\gamma_{i, j}$ given in (4). Two choices for β satisfying (20) were considered along with different values for α_{1} and α_{2}. The minimizers \hat{u} were computed using Polak-Ribière conjugated gradients [4] with high numerical precision. For each restored image we computed $\|\hat{u}-f\|_{\infty}$ and present the distance between the theoretical upper bound $b\left(\beta, \alpha_{1}\right)$ and the obtained $\|\hat{u}-f\|_{\infty}$:

$$
b\left(\beta, \alpha_{1}\right)-\|\hat{u}-f\|_{\infty} .
$$

The tables show also the difference between the upper and the lower theoretical bounds on $\|\hat{u}-f\|_{\infty}$:

$$
b-\ell:=b\left(\beta, \alpha_{1}\right)-\ell\left(\beta, \alpha_{1}, \alpha_{2}, \nu_{f}\right),
$$

computed using the explicit formulae given in Section 4. Furthermore, we evaluate the amount of pixels that closely approach the ℓ_{∞} norm:

$$
q=\sharp\left\{i \in \mathbb{I}_{n}\left|\|\hat{u}-f\|_{\infty}-|\hat{u}[i]-f[i]|<\varepsilon\right\} \quad \text { and } \quad Q \%=100 \frac{q}{n},\right.
$$

chemical $\left(256^{2}\right)$

$$
\nu_{f}=26
$$

motioncar (512 ${ }^{2}$)

clock $\left(256^{2}\right)$
$\nu_{f}=51.52$

moon (256^{2})
$\nu_{f}=42.43$

stream $\left(512^{2}\right)$
$\nu_{f}=68.58$

boat $\left(512^{2}\right)$
$\nu_{f}=46$

aerial $\left(512^{2}\right)$
$\nu_{f}=53$

$\operatorname{tank}\left(512^{2}\right)$
$\nu_{f}=58.68$

tree $\left(256^{2}\right)$
$\nu_{f}=54$

bark (512 ${ }^{2}$)

couple (512 ${ }^{2}$)

$\operatorname{man}\left(1024^{2}\right)$
Pentagon (1024 ${ }^{2}$)
$\nu_{f}=124$

airplane (512 ${ }^{2}$)
$\nu_{f}=119.5$

Figure 7: The set of images used in the tests provided in this section. The values of ν_{f} are computed according to (14) in the case $\mathcal{N} 8$ for the weights in (4).

	$\alpha_{2}=0.02$				$\alpha_{2}=100$						
image	$b-\\|\hat{u}-f\\|_{\infty}$	$\times 10^{-6}$	$b-\ell \mid \times \mathbf{1 0}^{-6}$	Q\%	$b-\\|\hat{u}-f\\|_{\infty} \mid \times \mathbf{1 0}^{-3}$	$b-\ell \mid \times \mathbf{1 0}^{-\mathbf{2}}$	q				
chemical	4.764		14.90	4.04	22.85	6.143	2				
moon	2.438		5.459	9.27	12.49	2.525	1				
aerial	2.066		3.465	3.46	6.949	1.647	1				
bark	2.977		7.041	6.57	13.44	3.188	1				
couple	2.485		2.568	3.25	12.77	2.619	4				
motioncar	19.98		33.68	0.18	77.56	11.35	1				
stream	0.918		2.051	7.14	5.412	0.995	2				
tank	1.960		2.815	6.95	9.297	1.351	1				
man	0.025		0.619	4.94	1.581	0.307	8				
Pentagon	1.181		2.388	9.12	6.368	1.153	1				
clock	2.079		3.671	2.88	6.884	1.740	1				
boat	1.707		4.626	6.04	8.425	2.164	2				
tree	1.202		3.325	5.27	8.026	1.584	1				
brick wall	0.334		0.544	11.8	1.842	0.270	43				
airplane	0.412		0.667	1.73	2.089	0.330	1				

Table 4: Results for $\psi=\Theta 1, \varphi=\Theta 1, \beta=0.1$ and a small and large value of α_{2}, respectively. Over the whole set of these images, for $\alpha_{2}=0.02$ we have mean $\left(0.5-\|\hat{u}-f\|_{\infty}\right)=2.968 \times 10^{-6}$ and mean $\left(0.5-\ell\left(\beta, \alpha_{1}, \alpha_{2}, \nu_{f}\right)\right)=6.0678 \times 10^{-6}$. For $\alpha_{2}=100$ these values read mean $(0.5-$ $\left.\|\hat{u}-f\|_{\infty}\right)=1.307 \times 10^{-2}$ and mean $\left(0.5-\ell\left(\beta, \alpha_{1}, \alpha_{2}, \nu_{f}\right)\right)=2.491 \times 10^{-2}$.
where \sharp stands for cardinality and $\varepsilon \gtrsim 0$ in order to account for numerical errors. In the experiments, we set $\varepsilon:=10^{-3}$.

In all tests, given $0<\beta<1 / \eta$, we fixed $\alpha_{1}=\widehat{\alpha}_{1}$ so that

$$
b\left(\beta, \widehat{\alpha}_{1}\right)=\delta \quad \text { for } \quad \delta=\frac{1}{2} .
$$

The numerical outcomes confirm the theoretical results on $\|\hat{u}-f\|_{\infty}$ established in Sections 3 and 4. From Tables 4, 5 and 6 the following observations can be drawn:

- Decreasing $\alpha_{2}>0$ towards 0 enables to make the difference between the upper and the lower bounds on $\|\hat{u}-f\|_{\infty}$ arbitrarily small which leads to $\|u-f\|_{\infty} \approx b\left(\beta, \alpha_{1}\right)$.
In this case a large percentage of the pixels i meet $|\hat{u}[i]-f[i]| \approx b\left(\beta, \alpha_{1}\right)$.
- An important increase of $\alpha_{2}>0$ entails a decrease of the lower bound $\ell\left(\beta, \alpha_{1}, \alpha_{2}, \nu_{f}\right)$. Moreover, the number of pixels i verifying $|\hat{u}[i]-f[i]| \approx b\left(\beta, \alpha_{1}\right)$ is reduced to a few ones.
Such a situation may be preferable when one wishes that there are not too many pixels close to the upper bound.

Tables 7 and 8 show yet again that the gap between the upper bound $b\left(\beta, \alpha_{1}\right)$ and the lower bound $\ell\left(\beta, \alpha_{1}, \alpha_{2}, \nu_{f}\right)$ vanishes when α_{2} is close to zero and that it increases when α_{2} increases. For α_{2} fixed, we see that $b\left(\beta, \alpha_{1}\right)-\ell\left(\beta, \alpha_{1}, \alpha_{2}, \nu_{f}\right)$ tends to decrease along with β.

Fig. 8 shows the histograms of the differences $\left\{f[i]-\hat{u}[i], i \in \mathbb{I}_{n}\right\}$ relevant to "moon", where the upper bound was set to $b\left(\beta, \alpha_{1}\right)=0.5$, for an increasing set of values of α_{2}. These histograms were plotted for 100 bins equally spaced in $[-0.5,+0.5]$. For very small values of α_{2}, there are many pixels meeting $|f[i]-\hat{u}[i]| \approx\|f-\hat{u}\|_{\infty}$. When α_{2} increases, such pixels become more and more rare and the differences $|f[i]-\hat{u}[i]|$ become centered near zero. However they never reach zero: see the value of μ defined in the caption of the figure. Here again, the numerical test were done with a high precision.
$\mathcal{N} 8, \psi(t)=\sqrt{t^{2}+\alpha_{1}}$ for $\alpha_{1}=1.895, \beta=0.05$ hence $b=0.5, \quad \varphi(t)=\sqrt{t^{2}+\alpha_{2}}$

	$\alpha_{2}=0.02$			$\alpha_{2}=100$						
image	$b-\\|\hat{u}-f\\|_{\infty} \mid \times \mathbf{1 0}^{-\mathbf{6}}$	$b-\ell \mid \times \mathbf{1 0}^{-\mathbf{6}}$	$Q \%$	$b-\\|\hat{u}-f\\|_{\infty} \mid \times \mathbf{1 0}^{-\mathbf{3}}$	$b-\ell \mid \times \mathbf{1 0}^{-\mathbf{2}}$	q				
chemical	2.561	9.055	4.54	14.17	3.993	2				
moon	1.580	3.300	10.2	7.649	1.572	1				
aerial	0.872	2.093	3.92	4.229	1.015	2				
bark	1.673	4.254	6.82	8.239	2.000	1				
couple	1.642	3.432	3.25	7.830	1.632	4				
motioncar	12.39	20.35	0.28	51.43	7.847	1				
stream	0.727	1.240	7.19	3.291	0.608	3				
tank	1.020	1.701	8.31	5.678	0.829	1				
man	0.162	0.374	6.00	0.968	0.186	11				
Pentagon	0.871	1.442	10.2	3.877	0.706	1				
clock	1.013	2.220	2.88	4.193	1.073	1				
boat	0.799	2.795	7.14	5.136	1.342	2				
tree	0.993	2.009	6.06	4.895	0.975	2				
brick wall	0.125	0.329	11.9	1.115	0.164	99				
airplane	0.228	0.403	3.48	1.274	0.200	1				

Table 5: Results for $\psi=\Theta 1, \varphi=\Theta 1, \beta=0.05$ and a small and large value of α_{2}, respectively. For $\alpha_{2}=0.02$ we have mean $\left(0.5-\|\hat{u}-f\|_{\infty}\right)=1.777 \times 10^{-6}$ and mean $\left(0.5-\ell\left(\beta, \alpha_{1}, \alpha_{2}, \nu_{f}\right)\right)=$ 3.666×10^{-6}. For $\alpha_{2}=100$, we find mean $\left(0.5-\|\hat{u}-f\|_{\infty}\right)=8.265 \times 10^{-3}$ and mean $(0.5-$ $\left.\ell\left(\beta, \alpha_{1}, \alpha_{2}, \nu_{f}\right)\right)=1.610 \times 10^{-2}$.
$\mathcal{N} 8, \psi(t)=|t|-\alpha_{1} \log \left(1+\frac{|t|}{\alpha_{1}}\right)$ for $\alpha_{1}=0.9645, \beta=0.05$, hence $b=0.5, \varphi(t)=\sqrt{t^{2}+\alpha_{2}}$

	$\alpha_{2}=0.05$			$\alpha_{2}=100$						
image	$b-\\|\hat{u}-f\\|_{\infty} \mid \times \mathbf{1 0}^{\mathbf{- 6}}$	$b-\ell \mid \times \mathbf{1 0}^{\mathbf{- 6}}$	$Q \%$	$b-\\|\hat{u}-f\\|_{\infty} \mid \times \mathbf{1 0}^{-\mathbf{3}}$	$b-\ell \mid \times \mathbf{1 0}^{\mathbf{- 2}}$	q				
chemical	0.101	0.304	2.79	18.81	5.236	2				
moon	5.347	11.06	7.03	10.22	2.090	1				
aerial	2.670	7.019	2.63	5.663	1.354	2				
bark	5.843	14.26	5.55	11.01	2.653	1				
couple	5.369	11.51	3.25	10.46	2.170	4				
motioncar	41.36	68.23	0.09	66.99	0.101	1				
stream	1.687	4.155	6.66	4.404	0.813	3				
tank	3.869	5.703	4.45	7.592	1.107	1				
man	0.673	1.255	3.14	1.298	0.249	10				
Pentagon	2.723	4.837	6.55	5.188	0.943	1				
clock	2.622	7.437	2.88	5.610	1.431	1				
boat	3.879	9.373	3.97	6.874	1.786	2				
tree	4.070	6.737	4.18	6.549	1.301	2				
brick wall	0.721	1.102	11.3	1.710	0.219	61				
airplane	0.682	1.352	0.74	4.983	0.268	1				

Table 6: Results for $\psi=\Theta 2, \varphi=\Theta 1, \beta=0.05$ and a small and large value of α_{2}, respectively. For $\alpha_{2}=0.05$ we have mean $\left(0.5-\|\hat{u}-f\|_{\infty}\right)=5.441 \times 10^{-6}$ and mean $\left(0.5-\ell\left(\beta, \alpha_{1}, \alpha_{2}, \nu_{f}\right)\right)=$ 10.29×10^{-6}. For $\alpha_{2}=100$, we find mean $\left(0.5-\|\hat{u}-f\|_{\infty}\right)=1.09 \times 10^{-2}$ and mean $(0.5-$ $\left.\ell\left(\beta, \alpha_{1}, \alpha_{2}, \nu_{f}\right)\right)=2.11 \times 10^{-2}$.

$\operatorname{mean}\left(b\left(\beta, \alpha_{1}\right)-\ell\left(\beta, \alpha_{1}, \alpha_{2}, \nu_{f}\right)\right), \quad b\left(\beta, \alpha_{1}\right)=0.5, \mathcal{N} 8$				
	$\alpha_{2}=0.01$		$\alpha_{2}=100$	
$\psi=\Theta 1, \varphi=\Theta 1$	$\beta=0.1$	$\beta=0.05$	$\beta=0.1$	$\beta=0.05$
$\psi=\Theta 2, \varphi=\Theta 1$	3.034×10^{-6}	1.833×10^{-6}	2.491×10^{-2}	1.610×10^{-2}
$\psi(t)=\frac{1}{\alpha_{1}+1}\|t\|^{\alpha_{1}+1}, \varphi=\Theta 1$	2.994×10^{-6}	1.045×10^{-6}	2.542×10^{-2}	0.941×10^{-2}

Table 7: The mean value of the difference $b\left(\beta, \alpha_{1}\right)-\ell\left(\beta, \alpha_{1}, \alpha_{2}, \nu_{f}\right)$ was computed over the selection of images shown in Fig. 7. Here we consider the $\mathcal{N} 8$ neighborhood for the weights in (4).

$\operatorname{mean}\left(b\left(\beta, \alpha_{1}\right)-\ell\left(\beta, \alpha_{1}, \alpha_{2}, \nu_{f}\right)\right), \quad b\left(\beta, \alpha_{1}\right)=0.5, \mathcal{N} 4$				
	$\alpha_{2}=0.01$		$\alpha_{2}=100$	
$\psi=\Theta 1, \varphi=\Theta 1$	$\beta=0.2$	$\beta=0.1$	$\beta=0.2$	$\beta=0.1$
$\psi=\Theta 2, \varphi=\Theta 1$	2.980×10^{-6}	1.278×10^{-6}	2.253×10^{-2}	1.104×10^{-2}
$\psi(t)=\frac{1}{\alpha_{1}+1}\|t\|^{\alpha_{1}+1}, \varphi=\Theta 1$	5.364×10^{-6}	1.788×10^{-6}	3.780×10^{-2}	1.504×10^{-2}
	3.333×10^{-6}	0.812×10^{-6}	2.718×10^{-2}	0.722×10^{-2}

Table 8: The neighborhood here is $\mathcal{N} 4$ with the weights given in (4). The mean is calculated over the set of images in Fig.7.

$$
\alpha_{2}=0.02, q=6700
$$

$$
\mu=6.6 \times 10^{-9}
$$

$\alpha_{2}=5, q=48$
$\mu=5.556 \times 10^{-8}$

$\alpha_{2}=50, q=3$
$\mu=1.523 \times 10^{-6}$

$\alpha_{2}=100, q=1$
$\mu=2.249 \times 10^{-6}$

Figure 8: Histograms of $\left\{f[i]-\hat{u}[i], i \in \mathbb{I}_{n}\right\}$ for "moon" restored using $\psi=\Theta 1, \varphi=\Theta 1, \mathcal{N} 8$, $\beta=0.05$ and for different values of α_{2}. The parameter $\alpha_{1}=1.8947$ was set so that $b\left(\beta, \alpha_{1}\right)=0.5$. The image has $n=65536$ pixels. The value μ is defined by $\mu:=\min _{i \in \mathbb{I}_{n}}|f[i]-\hat{u}[i]|$.

7 Conclusions and Open Questions

$\ell_{1}-\mathrm{TV}$ and $\ell_{2}-\mathrm{TV}$ functionals have been often minimized using a smoothed version of the form we consider in this paper with ad hoc chosen smoothing parameters ("very small"). The results established in our work enable to clearly evaluate the resulting approximation.

The functions (ψ, φ) studied here have a lot of similarities. However, they produce different image restorations. The question of what couple of functions (ψ, φ) would give a better result in the framework of a given application, remains open.

Extension to the rotational-invariant (in a discrete sense) smoothed TV, i.e.
$\Phi(u)=\sum_{i, j} \varphi\left(\left\|\nabla_{i, j} u\right\|\right)$, where $\nabla_{i, j} u \in \mathbb{R}^{2}$ stands for a discrete approximation of the gradient of u at pixel (i, j), deserves attention.

Extensions to cases when f are the coefficients of the expansion of the input image using an orthogonal transform as the discrete cosine transform or a frame transform as the curvelet transform, see, e.g., [10] are of interest.

Applications to quantization noise reduction should be envisaged.

References

[1] G. Aubert and P. Kornprobst, Mathematical problems in image processing, SpringerVerlag, Berlin, 2 ed., 2006.
[2] A. Beck and M. Teboulle, Smoothing and First Order Methods: A Unified Framework, SIAM Journal on Optimization, 22(2) (2012), pp. 557-580.
[3] M. Black and A. Rangarajan, On the unification of line processes, outlier rejection, and robust statistics with applications to early vision, International Journal of Computer Vision, 19 (1996), pp. 57-91.
[4] J. F. Bonnans, J.-C. Gilbert, C. Lemaréchal, and C. A. Sagastizábal, Numerical Optimization (Theoretical and Practical Aspects), Springer, Berlin ; New York NY ; Hong Kong, 2003.
[5] P. L. Combettes and J.-C. Pesquet, Proximal Splitting Methods in Signal Processing, In "Fixed-Point Algorithms for Inverse Problems in Science and Engineering", H. H. Bauschke, R. S. Burachik, P. L. Combettes, V. Elser, D. R. Luke and H. Wolkowicz (Eds.), SpringerVerlag, 2011, pp. 185-212.
[6] T. Chan and S. Esedoglu, Aspects of total variation regularized l^{1} function approximation, SIAM Journal on Applied Mathematics, 65 (2005), pp. 1817-1837.
[7] T. Chan and P. Mulet, On the convergence of the lagged diffusivity fixed point method in total variation image restoration, SIAM Journal on Numerical Analysis, 36 (1999), pp. 354367.
[8] D. Coltuc and P. Bolon, Exact histogram specification, IEEE Transactions on Image Processing, 15 (2006), pp. 1143-1152.
[9] D. Geman and G. Reynolds, Constrained restoration and recovery of discontinuities, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-14 (1992), pp. 367383.
[10] S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, San Diego, 2009.
[11] M. Nikolova, Analytical bounds on the minimizers of least squares, Inverse Problems in Imaging 1(4) (2007), pp. 661-677.
[12] M. Nikolova, Y.-W. Wen, and R. Chan, Exact histogram specifcation for digital images using a variational approach, Tech. Report, HAL-00723448, 2012.
[13] Y. Wan and D. Shi, Joint exact histogram specification and image enhancement through the wavelet transform, IEEE Transactions on Image Processing, 16 (2007), pp. 2245-2250.
[14] E. Weiszfeld, Sur le point pour lequel la somme des distances de n points donnés est minimum, Tôhoku Mathematics Journal 43 (1937), pp. 355-386.

Addresses:
F. Baus

Fraunhofer ITWM
Fraunhofer Platz 1
67663 Kaiserslautern
Germany
M. Nikolova

CMLA
ENS Cachan
CNRS, PRES UniverSud. 61 av. du President Wilson
94235 Cachan Cedex
France
nikolova@cmla.ens-cachan.fr
G. Steidl

University of Kaiserslautern
Department of Mathematics
Paul-Ehrlich-Str. 31
67663 Kaiserslautern
Germany
steidl@mathematik.uni-kl.de

