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Abstract

We examine properties of the minimizer û of a class of differentiable functionals where
both the data-term and the regularization term are symmetric and nearly affine beyond
a small neighborhood of the origin. Customarily, such functions are used to regularize a
quadratic data-fidelity term in order to produce solutions where edges are preserved. The
functionals we consider in this paper behave quite differently. They were recently successfully
applied to provide a strict order for the pixels of digital (quantized) images f thus enabling
exact histogram specification. We give upper and lower bounds for the error ∥û − f∥∞,
where the upper bound is independent of the input image f . Interestingly, in the numerical
experiments with natural digital images f , the estimated upper bound is easily reached up
to a small error. To explain this phenomenon we give simple statistical estimates for the
behavior of neighboring pixels. We apply our estimates to specify the parameters of the
model.

1 Introduction

In [9] a variational method using differentiable functionals where both the data-term and the
regularization terms are symmetric and nearly linear beyond a small neighborhood of the origin
was proposed. The goal was to process digital (quantized) images so that the obtained minimizer
is quite close to the input digital image but its pixels are real-valued and can be ordered in a strict
way. Indeed, the obtained minimizers were shown to enable faithful exact histogram specification
outperforming the state-of-the-art methods [6, 10]. The intuition behind the conception of these
functionals was also that their minimizer can up to some degree remove some quantization noise
and in this way yield an ordering of the pixels close to the unknown original real-valued image.
Such an effect can be observed in Fig. 1 where a synthetic real-valued image is quantized and
then restored using the proposed variational method. This functional can also be seen as a fully
smoothed version of the L1 − TV model, studied originally in [4]. However, it was shown in
[9] that its minimizers have a qualitatively different behavior: unlike the L1 − TV minimizers,
generically there are no pixels equal to those of the input image and there are no equally valued
pixels.

Some of the authors of [9] observed that once the parameters of the model were fixed, for
all kind of real-world digital images f , the residual error obeyed ∥û − f∥∞ = C where the
constant C typically met C < 0.5. For this reason, they qualified this variational approach as
detail preserving. It is worth to remained that such nearly linear functionals, known as edge-
preserving, are customarily used along with a quadratic term in order to maintain edges in
the restored images, see, e.g., [1, 2]. The latter are quite well understood and the literature is
abundant; in particular, minimizers cannot satisfy ∥û−f∥∞ = C for a certain number of different
input images f . Even though the model modification proposed in [9] might be seemingly trivial,
the relevant minimizers obviously exhibit a qualitatively different behavior. Therefore we were
interested in monitoring the error ∥û− f∥∞. We have computed the minimizer of the proposed
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Real-valued image f—quantized on {0, · · · , 15} Restored û

Figure 1: The restored image is obtained by minimizing J(·, f) of the form (1) where ψ(t) =√
t2 + α1 and φ(t) =

√
t2 + α2 for N8.

functionals for various parameter settings and a wide variety of digital input images of different
sizes and with disparate content. The observation that ∥û − f∥∞ = C, up to a very small
difference, is independent of the input image, was confirmed. In this paper, we will give an
explanation for this behavior which also enables us to give restrictions on the choice of the
parameters involved in the model.

The outline of this paper is as follows: In the next Section 2 we review the variational model.
Then, in Section 3 we estimate the ℓ∞-error between the input image f and the minimizer of
the functional. Section 4 provides explicit parameter estimates for the model. In Section 5 we
give probability estimates for the behavior of neighboring pixels. Numerical tests demonstrate
the quality of our estimates in Section 6. Finally, Section 7 finishes with conclusions.

2 The Fully Smoothed ℓ1-TV Model

We consider M × N digitized images f with gray values in {0, . . . , L − 1}. Let n := MN . To
simplify the notation we reorder the image columnwise into a vector of size n and address the
pixels by the index set In := {1, · · · , n}. Further, we denote by I

int
n ⊂ In the subset of all inner

pixels, i.e., all pixels which are not boundary pixels.
We are interested in the minimizer û of a functional of the form

J(u, f) := Ψ(u, f) + βΦ(u), β > 0 (1)

with

Ψ(u, f) :=
∑

i∈In
ψ(u[i]− f [i]),

Φ(u) :=
∑

i∈In

∑

j∈Ni

φ(γi,j(u[i]− u[j])) ,

where Ni is a neighborhood of pixel i, the γi,j > 0 are weighting terms for the distance between
neighbors, and the functions ψ and φ are nearly affine beyond a small neighborhood of the
origin. Both ψ and φ depend on a positive parameter, α1 and α2, respectively. To emphasize this
dependence we use the notation ψ(·, α1) and φ(·, α2) when necessary. So ψ : R× (0,+∞) → R

and φ : R× (0,+∞) → R. The functions ψ and φ have to fulfill the properties stated below.

H0 The functions t 7→ ψ(t, α1) and t 7→ φ(t, α2) are continuously differentiable and even.

We denote

ψ′(t, α1) :=
d

dt
ψ(t, α1) and φ′(t, α2) :=

d

dt
φ(t, α2) .
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When it is clear from the context, we write ψ′(t) for ψ′(t, α1) and φ′(t) for φ′(t, α2). By
H0 , ψ′(t) and φ′(t) are continuous and odd functions.

These derivative functions have to satisfy certain conditions given next.

H1ψ ψ′ : R → (−Y, Y ), where Y > 0, is a strictly increasing function which maps onto (−Y, Y ).

H2ψ There is a constant T > 0 such that for any fixed t ∈ (0, T ), the function α1 7→ ψ′(t, α1)
is strictly decreasing on (0,+∞).

Here the cases T = +∞ and Y = +∞ are included.

H1φ φ′ is an increasing function satisfying

lim
t→∞

φ′(t) = 1.

H2φ For any fixed t > 0, the function α2 7→ φ′(t, α2) is continuous and decreasing on (0,+∞)
and

lim
α2→0

φ′(t, α2) = 1.

These properties imply further useful relations which are collected in the following remark.

Remark 1 i) By H1ψ we know that ψ is strictly convex and monotone increasing on (0,+∞)
and by H1ϕ that φ is convex. Therefore there exists a unique minimizer of (1). This minimizer
can be computed, e.g., by using a Weiszfeld-like semi-implicit algorithm, or the nonlinear (pre-
conditioned) conjugate gradient method, see [5, 9, 11].

ii) By H1ψ there exists the inverse function (ψ′)−1 : (−Y, Y ) → R, and this function is also
odd, continuous and strictly increasing.

Some relevant choices of functions θ obeying both H1ψ , H2ψ and H1ϕ , H2ϕ are given in
Table 1. Here the functions θ′ map onto (−1, 1), i.e., Y = 1 and T = +∞ A typical graph of
such a function, its derivative and inverse derivative is depicted in Fig. 2.

θ θ′ (θ′)−1

Θ1
√
t2 + α

t√
t2 + α

y

√
α

1− y2

Θ2 |t| − α log

(
1 +

|t|
α

)
t

α+ |t|
αy

1− |y|
Θ3 α log

(
cosh

(
t

α

))
tanh

(
t

α

)
α atanh(y)

Table 1: Options for functions θ obeying all the assumptions stated above. The size of the
neighborhood of zero where these functions are not nearly affine is controlled by the parameter
α > 0.

Another relevant choice for ψ is the scaled ℓp-norm:

ψ(t) :=
1

α1 + 1
| t |α1+1 with ψ′(t) = | t |α1sign(t), (ψ′)−1(y) = | y |

1

α1 , α1 > 0. (2)

Here ψ′ maps onto R so that Y = +∞. Moreover α1 7→ ψ′(t, α1) is strictly monotone decreasing
for |t| < 1 so that T = 1 here.
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θ(t) =
√
t2 + α θ′(t) = t√

t2+α
(θ′)−1 (y) = y

√
α
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Figure 2: The function Θ1 in Table 1, where the plots for α = 0.05 are in blue solid line and for
α = 0.5—in red dashed line.

For φ we can also use the scaled Huber function

φ(t) :=





t2

2α2

if |t| 6 α2,

|t| − α2

2
if |t| > α2

with φ′(t) =





t

α2

if |t| 6 α2,

sign(t) if |t| > α2.
(3)

In this paper, we focus on the neighborhoods N4 and N8 depicted in Fig. 3 top. When taking
the gradient of the functional in (1) we have to take into account that the pixel combinations
u[i]− u[j] appears for j ∈ N 2

i , where N 2
i denotes the ’double’ neighborhood associated with Ni

in Fig. 3 bottom. The usual choices are (see e. g. [7])

γi,j := 1 for vertical and horizontal neighbors,

γi,j :=
1√
2

for diagonal neighbors.
(4)

In all cases we have γi,j = γj,i.

Functionals of the form (1) with functions ψ, φ ∈ Cs, s ≥ 2 having certain properties were
successfully used in [9] to process digital images f so that the obtained minimizer û is quite
close to the input digital image but its pixels can be ordered in a strict way. An analysis of
the minimizers û of these functionals has shown that almost surely, û has pixel values that are
different from each other and different from the input pixels.

3 Bounds for the ℓ∞-Error

In this section, we give upper and lower estimates for the ℓ∞-error between the input image f
and the image û obtained by minimizing the functional J(·, f).

If û is a minimizer of u 7→ J(u, f) we denote by h ∈ R
n the vector with components

h[i] :=
∑

j∈N 2

i

γi,jφ
′ (γi,j(û[i]− û[j])) , i ∈ In. (5)

First we provide a lemma which gives a useful expression for ∥û− f∥∞.

Lemma 1 Let H0 , H1ψ and H1ϕ be satisfied. Let û be the minimizer of u 7→ J(u, f) and h be
given by (5). Then

∥û− f∥∞ = (ψ′)−1 (β ∥h ∥∞) . (6)
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N4 N8

Double N42 Double N82

Figure 3: Neighborhoods N4 and N8 (right) of a pixel (i, j) are used to formulate Φ(u). The
double neighborhoods N42 and N82 appear in the gradient of Φ(u), see (7).

Proof. By definition of J and taking into account that φ′ is odd, we have

∂Ψ

∂u[i]
= ψ′(u[i]− f [i]) and

∂Φ

∂u[i]
=

∑

j∈N 2

i

γi,jφ
′(γi,j(u[i]− u[j])) . (7)

The minimizer û of J(·, f) has to satisfy ∇uJ(û, f) = 0 which can be rewritten as ∇uΨ(û, f) =
−β∇Φ(û) or as

ψ′(û[i]− f [i]) = −β
∑

j∈N 2

i

γi,jφ
′(γi,j(û[i]− û[j])), i ∈ In.

Using (5), the latter is equivalent to

ψ′(û[i]− f [i]) = −β h[i], i ∈ In.

Since ψ′ is by H0 and H1ψ odd and strictly increasing,

ψ′ (∣∣ û[i]− f [i]
∣∣) =

∣∣ψ′(û[i]− f [i])
∣∣ = β

∣∣h[i]
∣∣ . (8)

Using Remark 1ii), we see that (8) is equivalent to
∣∣ û[i]− f [i]

∣∣ = (ψ′)−1
(
β
∣∣h[i]

∣∣) (9)

where (ψ′)−1 is strictly increasing, hence

∥û− f∥∞ = max
i∈In

(ψ′)−1
(
β
∣∣h[i]

∣∣) = (ψ′)−1 (β ∥h ∥∞) .

�

For inner points i ∈ I
int
n we define

η :=
∑

j∈N 2

i

γi,j . (10)
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Of course η does not depend on i but just on the choice of the neighborhood. If the weighs are
are defined as in (4), we have

η = 4 for N4,

η = 4 +
4√
2
= 6.8284 for N8.

For i ∈ In \ Iintn we have
∑

j∈N 2

i

γi,j 6 η whose value depends on the boundary conditions.

In order to extend the obtained result, we shall further use a property of (ψ′)−1 which is
stated in the following lemma.

Lemma 2 Let ψ satisfy H0 , H1ψ and H2ψ . Set

Ỹ := min{Y, ψ′(T )} .

Then for any y ∈ (0, Ỹ ), the function α1 7→ (ψ′)−1(y, α1) is strictly increasing on (0,+∞).

Proof. Let 0 < α1 < α2 and y ∈ (0, Ỹ ) be arbitrarily fixed. Since t 7→ ψ′(t, α) is one-to-one
and odd, there exist t1, t2 ∈ (0, T ) such that

ψ′(t1, α1) = y = ψ′(t2, α2) (11)

and thus (ψ′)−1 (y, α1) = t1 and (ψ′)−1 (y, α2) = t2. From H1ψ , t 7→ ψ′(t, α) is strictly increasing
for fixed α > 0 and from H2ψ , α 7→ ψ′(t, α) is strictly decreasing for fixed t ∈ (0, T ). Therefore

t2 6 t1 ⇒ y = ψ′(t1, α1) > ψ′(t1, α2) > ψ′(t2, α2).

This contradicts (11). Consequently, t1 < t2 which implies the assertion. �

Note that Ỹ = 1 both for all functions in Table 1 and for ψ in (2).

The following theorem provides an upper bound for ||û− f ||∞ which is independent of f as
well as of the particular shape of φ(t, α2) provided that the latter meets H1ϕ .

Theorem 1 Assume that H0 , H1ψ and H1ϕ are satisfied. Let β η < Y , where η is given in (10).
Then the minimizer û of u 7→ J(u, f) fulfills

∥û− f∥∞ ≤ (ψ′)−1
(
βη, α1

)
:= b(β, α1) . (12)

If ψ fulfills in addition H2ψ and β η < Ỹ , where Ỹ = min{Y, ψ′(T )}, then α1 7→ b(β, α1) is
strictly increasing on (0,+∞).

Note that equality in (12) can only be fulfilled if φ′ attains the limit in H1ϕ , i.e., if φ′(t) = 1
for some t ∈ R. This is for example the case for the scaled Huber function in (3).

Proof. By definition of h and since φ′ is increasing with |φ′(t)| ≤ 1 for any t ∈ R we obtain

∥h∥∞ ≤ η. (13)

Since (ψ′)−1 is by Remark 1ii) strictly increasing on (0, Y ), we deduce from (6) and (13) for
β η < Y that

∥û− f∥∞ = (ψ′)−1 (β ∥h ∥∞) ≤ (ψ′)−1 (β η) .

Note that this bound depends only on ψ (and hence on α1) and on β, so that the expression for
the constant b(·) in (12) follows. If ψ fulfills H2ψ and β η < Ỹ we obtain by Lemma 2 that the
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function α1 7→ (ψ′)−1
(
βη, α1

)
is strictly increasing on (0,+∞). �

The lower bound on ∥û− f∥∞ exhibited in the next Theorem 2 depends on φ(t, α2) and on
the input image f as well. In our formula, the reliance on f is expressed via the magnitude νf
defined below:

I :=
{
i ∈ I

int
n

∣∣ sign
(
f [i]− f [j]

)
= σ, ∀ j ∈ Ni where σ ∈ {−1,+1}

}
,

νf = max
i∈I

min
j∈Ni

(
γi,j

∣∣ f [i]− f [j]
∣∣) .

(14)

The values of νf for some real-world images can be seen in Fig. 7.

Theorem 2 We consider that H0 , H1ψ , H2ψ and H1ϕ , H2ϕ are verified. Let β η < Y , where
η is given in (10). Assume that νf > 2b(β, α1). Then the minimizer û of u 7→ J(u, f) fulfills

∥û− f∥∞ > (ψ′)−1 (c β η) := ℓ(β, α1, α2, νf ) , (15)

where
c = c

(
β, α1, α2, νf

)
:= φ′

(
νf − 2b(β, α1), α2

)
6 1 .

The function α2 7→ ℓ(β, α1, α2, νf ) is decreasing on (0,+∞) and

ℓ(β, α1, α2, νf ) ↗ b(β, α1) as α2 ↘ 0 . (16)

If in addition the image of α2 7→ φ′(t, α2) contains (0, 1), then for any ε ∈ (0, 1) there exists
α2 > 0 such that

∥û− f∥∞ > (ψ′)−1 ((1− ε)β η) .

Proof. From the assumption on νf , there is i ∈ I
int
n such that

γi,j
∣∣ f [i]− f [j]

∣∣ > νf ∀ j ∈ Ni.

Assume that
γi,j(f [i]− f [j]) > νf > 2b(β, α1), ∀j ∈ Ni. (17)

The opposite case, namely γi,j(f [j] − f [i]) > νf > 2b(β, α1), ∀ j ∈ Ni can be handled in the
same way. By Theorem 1, the minimizer û of J(·, f) meets

−b(β, α1) 6 û[i]− f [i],

−b(β, α1) 6 f [j]− û[j], ∀j ∈ Ni .

Thus

−2b(β, α1) 6 û[i]− û[j]−
(
f [i]− f [j]

)
, ∀j ∈ Ni ,

−2b(β, α1) +
(
f [i]− f [j]

)
6 û[i]− û[j], ∀j ∈ Ni . (18)

Combining (17) and (18) along with the fact that γi,j ≤ 1 yields

0 < −2b(β, α1) + νf 6 −2b(β, α1) + γi,j(f [i]− f [j]) 6 γi,j(û[i]− û[j]) ∀ j ∈ Ni .

Since φ′ is increasing by H1ϕ , the value h[i] in (5) satisfies

h[i] >
∑

j∈N 2

i

γi,j φ
′
(
νf − 2b(β, α1)

)
= η c

(
β, α1, α2, νf

)
.
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Using yet again that (ψ′)−1 is strictly increasing (Remark 1ii)) shows that
∣∣ û[i]− f [i]

∣∣ as given
in (9) satisfies ∣∣ û[i]− f [i]

∣∣ ≥ (ψ′)−1 (c βη) .

Since ∥û− f∥∞ >
∣∣ û[i]− f [i]

∣∣, it follows that

∥û− f∥∞ > (ψ′)−1 (c βη) .

Using H2ϕ , the function α2 7→ c(β, α1, α2, νf ) is continuous and decreasing on (0,+∞) and
lim
α2↘0

c(β, α1, α2, νf ) = 1. Combining the latter with Remark 1ii) entails that α2 7→ ℓ(β, α1, α2, νf )

is decreasing on (0,+∞) and that (16) holds true given the definition of b(β, α1) in (12).
Under the additional assumption that the image of α2 7→ φ′(t, α2) contains (0, 1), H2

ϕ shows
that for shows that for any ε ∈ (0, 1) there is α2 > 0 such that c(β, α1, α2, νf ) = (1 − ε). We
can hence write down that ∥û− f∥∞ > (ψ′)−1 ((1− ε)βη). �

A simple consequence of (18) in the proof of Theorem 2 is that if a difference in the input
image meets f [i]− f [j] > 2b(β, α1), then the restored difference û[i]− û[j] remains positive.

For the Huber function in (3), it easy to see that there is α2 such that c(β, α1, α2, νf ) = 1
and hence ℓ(β, α1, α2, νf ) = b(β, α1).

4 Explicit Parameter Estimates

In this section we want to use the error bounds from the previous section to give explicit
parameter estimates of β, α1 and α2 for the functions ψ,φ mentioned in Section 2. For the
functions ψ in Table 1 and in (2) we have Ỹ = 1. When the weights γi,j are chosen as in (4),

the assumption βη < Ỹ = 1 in Theorem 1 reads

β < 1

4
= 0.25 for N4,

β < 1

6.8284
= 0.1464 for N8.

(19)

In the following we fix β > 0 such that β <
1

η
. For δ > 0, let α̂1 be the solution of

b(β, α1) = (ψ′)−1(βη, α1) = δ (20)

Since α1 → b(β, α1) is by Theorem 1 strictly increasing, the optimal choice for α1 is

α1 = α̂1 .

By the same theorem, the relation ∥û − f∥∞ < δ is valid for all α1 > 0 with α1 < α̂1 .
If δ = 0.5 then û has the important property that it preserves the order of the pixel values
in f ∈ {0, . . . , L − 1}n. According to Theorem 1 and Theorem 2, the upper and bounds for
∥f − û∥∞ and the optimal value for α1 as defined in (20) are given for the functions ψ in Table
1 and in (2) in the following Table 2:

The value c depends on φ and on f via νf . Given the input image f the constant νf can be
easily computed. Whenever

z := νf − 2b(β, α1) > 0,

we obtain the constant c by
c = φ′(z). (21)

By Theorem 2 a sharper lower bound requires a smaller value for α2.
The allowed values for β according to Theorem 1 are given in (19). For b(β, α1) = δ > 0

and β fixed we have established the upper values α̂1. For δ = 0.5 these values are presented in
Table 3.
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ψ(t) b(β, α1) ℓ(β, α1, α2, νf ) α̂1

√
t2 + α1

√
α1(βη)2

1− (βη)2

√
α1(cβη)2

1− (cβη)2
δ2

(
1

β2η2
− 1

)

|t| − α1 log

(
1 +

|t|
α1

)
α1 βη

1− βη

α1 cβη

1− cβη
δ

(
1

βη
− 1

)

α log

(
cosh

(
t

α

))
α1 atanh(βη) α1 atanh(cβη)

δ

atanh(βη)
1

α1 + 1
| t |α1+1 1

α1

(βη)
1

α1

1

α1

(cβη)
1

α1

ln(βη)

ln δ

Table 2: Bounds and parameter α̂1 for various functions ψ in Table 1 and in (2). The parameter
c depends on φ′ by (21).

ψ(t)
√
t2 + α1 |t| − α1 log

(
1 +

|t|
α1

)

neighborhood

N4
N4
N8
N8

β α̂1

0.2 0.1406
0.1 1.3125
0.1 0.2862
0.05 1.8947

β α̂1

0.2 0.1250
0.1 0.7500
0.1 0.2322
0.05 0.9645

Table 3: Allowed values β < 1/η and the maximal α̂1 leading to δ = b(β, α̂1) = 0.5.

5 Probability Estimates for Pixel Neighborhoods

Let us assume that our digital images f are realizations of a discrete random variable X taking
values in {0, . . . , L − 1} with probability density function pX . Fig. 4 shows an image together
with its histogram as approximation of the probability density function of the corresponding
random variable.

Figure 4: Left: Duck image. Right: Histogram of ’duck image’.

First, we ask for the probability that an inner image pixel i ∈ I
int
n fulfills

∣∣ f [i]− f [j]
∣∣ ≥ a and sign(f [i]− f [j]) = σ, ∀j ∈ Ni (22)

where σ ∈ {−1,+1} for some fixed a > 0.

Lemma 3 Let X,Xi, i = 1, . . . , k be independent and identically distributed (iid) discrete ran-

9



dom variables taking values in {0, . . . , L− 1}. Then it holds for a > 0 that

q(X, k, a) := P (X −X1 ≥ a, . . . , X −Xk ≥ a) =

L−1∑

i=0

(P (X ≤ i− a))k P (X = i). (23)

Proof. Since the random variables are iid we obtain

P (X −X1 ≥ a, . . . , X −Xk ≥ a) =

L∑

i=0

(P (i−X1 ≥ a, . . . , i−X1 ≤ a,X = i)

=
L∑

i=0

(P (X ≤ i− a))k P (X = i). �

The setting of Lemma 3 is stated for neighborhoods where the central pixel is not smaller
than all its neighbors with distance at least a. Of course the opposite setting that the central
pixel is not larger than all its neighbors with distance at least a is of the same interest and
appears with the same probability P (X −X1 ≤ −a, . . . , X −Xk ≤ −a) = q(X, k, a).

Example 1 For k = 1, i.e., just one neighbor pixel, the probabilities P (X − X1 ≥ a) and
P (X −X1 ≤ −a) can be easily exemplified: compute the joint probability distribution of X and
X1 and add the probabilities of all points for which the difference is larger or equal to a. In
Fig. 5 (left) all values in the shaded areas have to be summed up to obtain 2q(X, 1, a) . Fig. 5
(right) shows the approximate joint probability distribution of two iid random variables having
the probability distribution of of the “ducks image“ in Fig. 4. For uniformly i.i.d. random

Figure 5: Left: Sketch of a joint probability density function of X and X1. The value 2q(X, 1, a)
is the sum of the probabilities in the shaded areas. Right: Approximate joint probability
distribution of two iid random variables having the probability distribution of of the “ducks
image“ in Fig. 4. The values of the color bar have to be scaled by 10−4.

variables with values in {0, . . . , L − 1}, we obtain for a 4-neighborhood, i.e., k = 4 and a ∈ N

for example

q(X, 4, a) =
1

L

L−1∑

i=a

(
i− a+ 1

L

)4

=
(L− a)(L− a+ 1)(2(L− a) + 1)(3(L− a)2 + 3(L− a)− 1)

30L
.

Theorem 3 Assume that the M ×N image f is the realization of a discrete iid random vector
(Xi)

n
i=1 with iid components Xi as X, where n =MN . Let νf be defined as in (14) with respect

to N4. Then the probability that νf ≥ a > 0 is not smaller than

1− (1− 2q(X, 4, a))m, (24)

where q is defined as in (23) and m = ⌊M/3⌋ × ⌊N/3⌋.

10



For N8 we have to replace q by q̃(X, 4, a) :=
L−1∑
i=0

(P (X ≤ i− a))4
(
P (X ≤ i−

√
2a)

)4
P (X = i).

Proof. We consider only inner pixels i with non-overlapping neighborhoods as depict in Fig. 6.
Then, by Lemma 3, the probability that one of these pixels does not fulfill (22) is given by 1−
2q(X, 4, a). Hence the probability that all these inner pixels do not fulfill (22) is (1−2q(X, 4, a))m

and the probability that at least one of these pixel fulfills (22) is 1− (1− 2q(X, 4, a))m. �

Note that for q(X, 4, a) > 0 the probability in (24) is indeed very near to 1 even for moderate
sizes of m.

Figure 6: Disjoint 3× 3-adjacencies with center pixels ’x’.

6 Numerical Tests

The bounds on ∥û− f∥∞ with respect to the model parameters were tested on a wide amount
of images. Here we present the results on 15 images of different sizes, with gray values in
{0, · · · , 255}, available at http://sipi.usc.edu/database/. In our selection the images have various
quality and content (presence or quasi-absence of edges, textures, nearly flat regions). They
are displayed in Fig. 7. The values of νf for N8 under each image shows that the assumption
νf−2b(β, α1) > 0 in Theorem 2 is generously satisfied in all these cases as far as we are interested
to fix b(β, α1) 6 0.5.

We tested two functionals J(·, f) as described in Section 2: the first corresponds to ψ = Θ1
and φ = Θ1 and the second—to ψ = Θ2 and φ = Θ1 as given in Table 1. In all tests, N8 was
adopted with the weights γi,j given in (4). Two choices for β satisfying (19) were considered
along with different values for α1 and α2. The minimizers û were computed using Polak-Ribière
conjugated gradients [3] with high numerical precision. For each restored image we computed
∥û− f∥∞ and present either the latter norm or how far its value is from the theoretical bound
b(β, α1):

b(β, α1)− ∥û− f∥∞ .

The tables show also the difference between the upper and the lower theoretical bounds on
∥û− f∥∞,

b− ℓ := b(β, α1)− ℓ(β, α1, α2, νf ) ,

computed using the explicit formulae given in Section 4. Furthermore, we evaluate the amount
of pixels that closely approach the ℓ∞ norm:

q = ♯
{
i ∈ In

∣∣ ∥û− f∥∞ − | û[i]− f [i] | < ε
}

and Q% = 100
q

n
,

where ε ' 0 in order to account for numerical errors. In the experiments, we set ε := 10−3.
In all tests, given 0 < β < 1/η, we fixed α1 so that

b(β, α1) =
1

2
.

11



chemical (2562) moon (2562) aerial (5122) bark (5122) couple (5122)

νf = 26 νf = 42.43 νf = 53 νf = 37.48 νf = 41.61

motioncar (5122) stream (5122) tank (5122) man (10242) Pentagon (10242)

νf = 17.7 νf = 68.58 νf = 58.68 νf = 124 νf = 63.64

clock (2562) boat (5122) tree (2562) brick wall (5122) airplane (5122)

νf = 51.52 νf = 46 νf = 54 νf = 132.2 νf = 119.5

Figure 7: The set of images used in the tests provided in this section. The values of νf are
computed according to (14) in the case N8 for the weights in (4).

N8, ψ(t) =
√
t2 + α1 for α1 = 0.2862, φ(t) =

√
t2 + α2 and β = 0.1

α2 = 0.02 α2 = 100

image

chemical
moon
aerial
bark
couple
motioncar
stream
tank
man
Pentagon
clock
boat
tree
brick wall
airplane

(b−∥û−f∥∞)10−6 (b−ℓ)10−6 Q%

4.764 14.90 4.04
2.438 5.459 9.27
2.066 3.465 3.46
2.977 7.041 6.57
2.485 2.568 3.25
19.98 33.68 0.18
0.918 2.051 7.14
1.960 2.815 6.95
0.025 0.619 4.94
1.181 2.388 9.12
2.079 3.671 2.88
1.707 4.626 6.04
1.202 3.325 5.27
0.334 0.544 11.8
0.412 0.667 1.73

∥û−f∥∞10−1 (b−ℓ)10−2 q

4.772 6.143 2
4.875 2.525 1
4.931 1.647 1
4.866 3.188 1
4.872 2.619 4
4.224 11.35 1
4.946 0.995 2
4.907 1.351 1
4.984 0.307 8
4.936 1.153 1
4.931 1.740 1
4.916 2.164 2
4.920 1.584 1
4.982 0.270 43
4.979 0.330 1

Table 4: Results for ψ = Θ1, φ = Θ1, β = 0.1 and a small and large value of α2, respectively.
Over the whole set of these images, for α2 = 0.02 we have mean

(
0.5−∥û−f∥∞

)
= 2.968×10−6

and mean
(
0.5 − ℓ(β, α1, α2, νf )

)
= 6.0678 × 10−6. For α2 = 100 these values read mean

(
0.5 −

∥û− f∥∞
)
= 1.307× 10−2 and mean

(
0.5− ℓ(β, α1, α2, νf )

)
= 2.491× 10−2.
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N8, ψ(t) =
√
t2 + α1 for α1 = 1.895, φ(t) =

√
t2 + α2 and β = 0.05

α2 = 0.02 α2 = 100

image

chemical
moon
aerial
bark
couple
motioncar
stream
tank
man
Pentagon
clock
boat
tree
brick wall
airplane

(b−∥û−f∥∞)10−6 (b−ℓ)10−6 Q%

2.561 9.055 4.54
1.580 3.300 10.2
0.872 2.093 3.92
1.673 4.254 6.82
1.642 3.432 3.25
12.39 20.35 0.28
0.727 1.240 7.19
1.020 1.701 8.31
0.162 0.374 6.00
0.871 1.442 10.2
1.013 2.220 2.88
0.799 2.795 7.14
0.993 2.009 6.06
0.125 0.329 11.9
0.228 0.403 3.48

∥û−f∥∞10−1 (b−ℓ)10−2 q

4.858 3.993 2
4.924 1.572 1
4.958 1.015 2
4.918 2.000 1
4.922 1.632 4
4.486 7.847 1
4.967 0.608 3
4.943 0.829 1
4.990 0.186 11
4.961 0.706 1
4.958 1.073 1
4.949 1.342 2
4.951 0.975 2
4.989 0.164 99
4.987 0.200 1

Table 5: Results for ψ = Θ1, φ = Θ1, β = 0.05 and a small and large value of α2, respectively.
For α2 = 0.02 we have mean

(
0.5−∥û− f∥∞

)
= 1.777× 10−6 and mean

(
0.5− ℓ(β, α1, α2, νf )

)
=

3.666 × 10−6. For α2 = 100, we find mean
(
0.5 − ∥û − f∥∞

)
= 0.827 × 10−2 and mean

(
0.5 −

ℓ(β, α1, α2, νf )
)
= 1.610× 10−2.

N8, ψ(t) = |t| − α1 log

(
1 +

|t|
α1

)
for α1 = 0.9645, φ(t) =

√
t2 + α2 and β = 0.05

α2 = 0.05 α2 = 100

image

chemical
moon
aerial
bark
couple
motioncar
stream
tank
man
Pentagon
clock
boat
tree
brick wall
airplane

(b−∥û−f∥∞)10−6 (b−ℓ)10−6 Q%

0.101 0.304 2.79
5.347 11.06 7.03
2.670 7.019 2.63
5.843 14.26 5.55
5.369 11.51 3.25
41.36 68.23 0.09
1.687 4.155 6.66
3.869 5.703 4.45
0.673 1.255 3.14
2.723 4.837 6.55
2.622 7.437 2.88
3.879 9.373 3.97
4.070 6.737 4.18
0.721 1.102 11.3
0.682 1.352 0.74

∥û−f∥∞10−1 (b−ℓ)10−2 q

4.811 5.236 2
4.898 2.090 1
4.943 1.354 2
4.890 2.653 1
4.895 2.170 4
4.330 0.101 1
4.956 0.813 3
4.924 1.107 1
4.987 0.249 10
4.948 0.943 1
4.944 1.431 1
4.931 1.786 2
4.935 1.301 2
4.985 0.219 61
4.983 0.268 1

Table 6: Results for ψ = Θ2, φ = Θ1, β = 0.05 and a small and large value of α2, respectively.
For α2 = 0.05 we have mean

(
0.5−∥û− f∥∞

)
= 5.441× 10−6 and mean

(
0.5− ℓ(β, α1, α2, νf )

)
=

10.29 × 10−6. For α2 = 100, we find mean
(
0.5 − ∥û − f∥∞

)
= 1.09 × 10−2 and mean

(
0.5 −

ℓ(β, α1, α2, νf )
)
= 2.11× 10−2.
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mean
(
b(β, α1)− ℓ(β, α1, α2, νf )

)
, b(β, α1) = 0.5, N8

α2 = 0.01 α2 = 100

ψ = Θ1, φ = Θ1
ψ = Θ2, φ = Θ1
ψ(t) = 1

α1+1
| t |α1+1, φ = Θ1

β = 0.1 β = 0.05

3.034× 10−6 1.833× 10−6

5.106× 10−6 2.459× 10−6

2.994× 10−6 1.045× 10−6

β = 0.1 β = 0.05

2.491× 10−2 1.610× 10−2

3.985× 10−2 2.112× 10−2

2.542× 10−2 0.941× 10−2

Table 7: The mean value of the difference b(β, α1) − ℓ(β, α1, α2, νf ) was computed over the
selection of images shown in Fig. 7. Here we consider the N8 neighborhood for the weights
in (4).

mean
(
b(β, α1)− ℓ(β, α1, α2, νf )

)
, b(β, α1) = 0.5, N4

α2 = 0.01 α2 = 100

ψ = Θ1, φ = Θ1
ψ = Θ2, φ = Θ1
ψ(t) = 1

α1+1
| t |α1+1, φ = Θ1

β = 0.2 β = 0.1

2.980× 10−6 1.278× 10−6

5.364× 10−6 1.788× 10−6

3.333× 10−6 0.812× 10−6

β = 0.2 β = 0.1

2.253× 10−2 1.104× 10−2

3.780× 10−2 1.504× 10−2

2.718× 10−2 0.722× 10−2

Table 8: The neighborhood here is N4 with the weights given in (4). The mean is calculated
over the set of images in Fig.7.

The numerical outcomes confirm the theoretical results on ∥û−f∥∞ established in Sections 3
and 4. From Tables 4, 5 and 6 the following observations are drown:

• Decreasing α2 > 0 towards 0 enables to make the difference between the upper and the
lower bounds on ∥û− f∥∞ arbitrarily small, so that ∥u− f∥∞ / b(β, α1).

In this case an important percentage of the pixels meet ∥u− f∥∞.

• An important increase of α2 > 0 entails a minor decrease of the lower bound ℓ(β, α1, α2, νf )
but then the number of pixels that are close to ∥u− f∥∞ is reduced to a few ones.

Such a situation may be preferable when one wishes that there is not a large amount of
pixels close to the upper bound.

Tables 7 and 8 show yet again that the gap between the upper bound b(β, α1) and the lower
bound ℓ(β, α1, α2, νf ) vanishes when α2 is close to zero and that it increases when α2 increases.
For α2 fixed, we see that b(β, α1)− ℓ(β, α1, α2, νf ) tends to decrease along with β.

Fig. 8 shows the histograms of the differences {f [i]− û[i], i ∈ In} relevant to “moon”, where
the upper bound was set to b(β, α1) = 0.5, for an increasing set of values of α2. These histograms
were plotted for 100 bins equally distributed on [−0.5,+0.5]. For very small values of α2, there
are many pixels meeting |f [i]− û[i]| ≈ ∥f − û∥∞. When α2 increases, such pixels become more
and more rare and the differences |f [i] − û[i]| become centered near zero. However they never
reach zero: see the value of µ defined in the caption of the figure. Here again, numerical test
were done with a high precision.

7 Conclusions and Open Questions

L1-TV functionals have been often minimized using a smoothed version of the form we consider
in this paper with ad hoc chosen smoothing parameters (“very small”). The results established
in our work enable to clearly evaluate the resulting approximation.

The functions (ψ,φ) studied here have a lot of similarities. However, they produce different
image restorations. The question of what couple of functions (ψ, φ) would give a better result
in the framework of a given application, remains open.
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α2 = 0.02, q = 6700 α2 = 5, q = 48 α2 = 50, q = 3 α2 = 100, q = 1
µ = 6.6× 10−9 µ = 5.556× 10−8 µ = 1.523× 10−6 µ = 2.249× 10−6

Figure 8: Histograms of {f [i] − û[i], i ∈ In} for “moon” restored using ψ = Θ1, φ = Θ1, N8,
β = 0.05 and for different values of α2. The parameter α1 = 1.8947 was set so that b(β, α1) = 0.5.
The image has n = 65536 pixels. The value µ is defined by µ := min

i∈In
|f [i]− û[i]|.

Extension to the rotational-invariant (in a discrete sense) smoothed TV, i.e.
Φ(u) =

∑
i,j φ(∥∇i,ju∥), where ∇i,ju ∈ R

2 stands for a discrete approximation of the gradient
of u at pixel (i, j), deserves attention.

Extensions to cases when f are the coefficients of the expansion of the input image using a
frame transform is important.

Applications to quantization noise reduction should be envisaged.
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