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Abstract—Dynamic load balancing is an important step con-
ditioning the performance of parallel adaptive codes whose
load evolution is difficult to predict. Most of the studies which
answer this problem perform well, but are limited to an initially
fixed number of processors which is not modified at runtime.
These approaches can be very inefficient, especially in terms of
resource consumption. In this paper, we present a new graph
repartitioning algorithm which accepts to dynamically change
the number of processors, assuming the load is already balanced.
Our algorithm minimizes both data communication and data
migration overheads, while maintaining the computational load
balanced. This algorithm is based on a theoretical result, that
constructs optimal communication patterns with both a minimum
migration volume and a minimum number of communications.
An experimental study which compares our work against state-
of-the-art approaches is presented.

I. INTRODUCTION

In the field of scientific computing, the load-balancing is

a crucial issue, which determines the performance of parallel

programs. As a general rule, one applies a static balancing

algorithm, which equilibrates the computational load between

processors before running the parallel program. For some

scientific applications, such as adaptive codes (e.g., adaptive

mesh refinement), the evolution of the load is unpredictable.

Therefore, it is required to periodically compute a new bal-

ancing at runtime, using a dynamic load-balancing algorithm.

As this step may be performed frequently, it must use a

fast and incremental algorithm with a quality trade-off. As

computation progresses, the global workload may increase

drastically, exceeding memory limit for instance. In such a

case, we argue it should be relevant to adjust the number of

processors while maintaining the load balanced. However, this

is still an open question that we investigate in this paper.

A very common approach to solve the load-balancing prob-

lem (static or dynamic) is based on graph (or hypergraph)

model [1]. Each vertex of the graph represents a basic com-

putational task and can have a weight proportional to the task

duration. Each edge represents a dependency in the calculation

between two tasks and can have a weight proportional to

the size of the communication needed if the two tasks are

on different processors. To equilibrate the load between M
processors, one performs a graph partitioning in M parts, each

part being assigned to a given processor. More precisely, the

objective consists of dividing the graph into M parts (or vertex

subsets), such that the parts are disjoint and have equal size,

and there are few edges cut between the parts. Here are the

classical partitioning criteria:

• minimize the computation time (Tcomp), which consists

of dividing the graph in parts of equal weight, up to an

unbalance factor;

• minimize the communication time (Tcomm), which con-

sists of minimizing the cut size of the graph induced by

the new partition.

The weight of a part is simply the sum of the weights of

all the vertices that are assigned to this part; and the cut size

(or edge-cut) is the sum of the weights of edges whose ends

belong to two different parts.

If the load changes at runtime, the current partition becomes

unbalanced and it is required to perform a graph reparti-

tioning. In addition to the classical partitioning criteria, the

problem of repartitioning optimizes the following criteria [2]:

• minimize the migration time (Tmig), which consists of

minimizing the vertex weight moving from the former

partition to the new one;

• minimize the repartitioning time (Trepart).

It should be noticed that the repartitioning and migration

steps are not performed at each iteration in the application, but

periodically (e.g., every α iterations). As a consequence, the

total time period of the code is written: Ttotal = α.(Tcomp +
Tcomm) + Tmig + Trepart. Assuming Trepart is negligible

compared to the other terms, and if we consider that Tcomp is

implicitly minimized by balancing the parts, it follows that to

minimize Ttotal, one must minimize α.Tcomm+Tmig . Finally,

it clearly shows there is a trade-off between the optimization

of the communication time (Tcomm) and optimization of the

migration time (Tmig). This compromise is controlled by the

parameter α, which depends on the target application.

As we will see in the following section, there are many

studies around the dynamic load-balancing and graph repar-

titioning. However, all these studies are limited—as far as

we know—to the case where the number of processors is

initially fixed and will not be modified at runtime. This can be

very inefficient, especially in terms of resource consumption

as demonstrated by Iqbal et al. [3], [4]. To overcome this

issue, we propose in section III a new graph repartitioning

algorithm, which accepts a variable number of processors,

assuming the load is already balanced. We call this prob-

lem the M × N graph repartitioning problem, with M the



number of former parts and N the number of newer parts.

Our algorithm minimizes both data communication (i.e., cut

size) and data migration overheads, while maintaining the

computational load balance in parallel. This algorithm is based

on a theoretical result, that constructs optimal communication

matrices with both a minimum migration volume and a min-

imum number of communications (see Sec. III-B). Moreover,

it uses recent graph partitioning technique with fixed vertices

to take into account migration constraints. Finally, we validate

this algorithm in section IV with some experimental results,

that compare our approach with state-of-the-art partitioning

softwares.

II. RELATED WORK

There are many work in the field of dynamic load-

balancing [5], [6]. We briefly review the most popular methods

based on graph (or hypergraph) repartitioning techniques.

The simplest approach is certainly the Scratch-Remap

scheme [7], which calculates a new partitioning from scratch,

that is to say, without taking into account the former partition.

This technique obviously minimizes the cut, but does not

control the migration at all. To reduce this latter cost, an

additional step of remapping attempts to renumber the new

parts in order to maximize data remaining in place.

Another approach are the diffusive methods. In their sim-

plest form, they are based on the heat equation to dynamically

equilibrate the load [8]. It is an iterative algorithm, where two

neighboring processors exchange at each step an amount of

data proportional to their load difference. After several steps,

the convergence of the diffusion scheme reaches a new load

balancing, that defines a new partitioning.

A more recent approach consists in repartitioning graph (or

hypergraph) by minimizing both the cut size and the data

movement due to migration (RM-Metis [9] and Zoltan [2]).

For each part, a fixed vertex of zero weight is added. This

particular vertex is connected by new edges—called migration

edges—to all regular vertices that corresponds to this part.

Then, one performs a partitioning of this enriched graph, with

the constraint that fixed vertices are required to be assigned to

their respective part in the final solution. Other vertices are free

to move. Thus, if a regular vertex changes its part, this involves

to cut a migration edge and to pay for an additional migration

cost associated with this edge. As a partitioner attempts to

minimize the cut size, it will also minimize the data movement

due to migration. Scotch has recently added a similar graph

repartitioning method based on fixed vertices, using a local

diffusive refinement [10].

One can find in the literature many other work on dy-

namic load-balancing, including geometric methods like Re-

cursive Coordinate Bisection (RCB) [5] or Space-Filling

Curve (SFC) [11], spectral methods [12], or still more exotic

approaches such as skewed graph partitioning [13].

All these studies are very interesting, but are limited to

the case where the number of processors is initially fixed

and is not modified at runtime. In our knowledge, there

is no research that investigates the problem of graph (or

hypergraph) partitioning with a variable number of processors.

However, some recent studies have shown the interest of

such an approach, by dynamically adjusting the number of

processors in an adaptive code (AMR) to optimize both the

parallel runtime and resource consumption [3], [4].

III. MXN REPARTITIONING ALGORITHM

We present in this section our M ×N graph repartitioning

algorithm which computes a newer partition in N from a

former balanced partition in M . It is based on a theoretical

result on optimal communication matrices, that minimizes

both the data volume and the number of communications

during the migration phase. These matrices are conveniently

represented by a repartitioning hypergraph, that captures the

optimal communication scheme we will impose. Then, the

initial graph is enriched with fixed vertices, that models our

additional migration constraints in a similar way to Zoltan [2]

or RM-Metis [9]. Thus, the partitioning of this graph will

minimize both the regular cut size and the data movement

due to migration, while respecting the optimal communication

scheme.

A. Communication Matrix and Repartitioning Hypergraph

Let consider a graph G = (V,E), where V is the set of

vertices, and E is the set of edges. Let w be the weight

function that maps to a vertex subset of G its weight. We

notice W = w(V ) the weight of the whole graph. Let

P = (V1, V2, . . . , VM ) be the initial partition of V into M
parts and P ′ = (V ′

1 , V
′
2 , . . . , V

′
N ) the final partition into N

parts.

Let C = (Ci,j) be the M × N communication matrix

associated with the repartitioning of G from P to P ′. The

element Ci,j is the amount of data sent by the processor i to

the processor j. According to the graph model, Ci,j is equal to

w(Vi∩V ′
j ). In this paper, we focus on perfect communication

matrix, which results from two perfectly balanced partitions,

P and P ′. Such matrices satisfy the following constraints: for

each row i, w(Vi) =
∑

1≤j≤N Ci,j = W/M (row constraint)

and for each column j, w(V ′
j ) =

∑
1≤i≤M Ci,j = W/N

(column constraint). As a consequence, W must be a multiple

of both M and N .

We define the number of communications, Z(C), as the

number of non-zero terms in C. It represents the number

of messages exchanged between former and newer parts,

including “in-place” communications from a processor to

itself. In the case of perfect communication matrix, we will

demonstrate in the following section that this number is

minimum for M+N−GCD(M,N) and obviously maximum

for M.N . Then, we define the migration volume, Mig(C), as

the amount of data being sent to a different processor, i.e.,

Mig(C) =
∑

i 6=j Ci,j .

The matrix C can be interpreted as an hypergraph H , called

repartitioning hypergraph. This hypergraph is composed of

M vertices representing the initial parts and N hyperedges

representing the new parts obtained after the repartitioning

step. A vertex i of H belongs to an hyperedge j if data are



exchanged between the former part i and the new part j during

the migration. The repartitioning hypergraph allows to model

the communication scheme without detailing the volume of

data exchanged as the communication matrix does. We will

see how this hypergraph representation makes easier to solve

the correspondence problem we have in section III-C.

B. Optimal Communication Matrices

Our goal in this section is to seek communication matrices

with good properties to perform efficiently the migration step.

To simplify our discussion, we will assume in all this section

that the communication matrix C of dimension M × N is

perfect with W = M.N . As the initial and final partition are

perfectly balanced, a source processor sends a data volume

of N and a target processor receives a data volume of M
(including “in-place” communications).

Definition 1: In this paper, a perfect communication matrix

C is said to be optimal if it minimizes both the migration

volume Mig(C) and the number of communications Z(C).
Theorem 1: Let C be a perfect communication matrix of

dimension M ×N . The minimum number of communications

is Zopt = M +N −GCD(M,N).
Proof: Let G = ((A,B), E) be the bipartite graph that

represents the communication of matrix C from M = |A|
processors to N = |B| processors. Let K be the number

of connected components of G, noted Gi = ((Ai, Bi), Ei)
with 1 ≤ i ≤ K. For each component Gi, Mi = |Ai|
processors send a data volume Mi.N to Ni = |Bi| processors

that receive a data volume Ni.M . Therefore, Gi exchange

a data volume Vi = Mi.N = Ni.M , with Mi and Ni

non null. As Vi is multiple of both M and N , one can

say Vi ≥ LCM(M,N). Consequently, the total volume of

communications M.N =
∑

i∈[1,K] Vi is superior or equal to

K.LCM(M,N). As GCD(M,N).LCM(M,N) = M.N ,

one can deduce K ≤ GCD(M,N). As Gi is a connected

graph, its number of edges |Ei| is superior or equal to

Mi+Ni−1. And the total number of edges |E| =
∑

i∈[1,k] |Ei|
is superior or equal to

∑
i∈[1,K] Mi+

∑
i∈[1,K] Ni−K = M+

N−K. As a consequence, the total number of communications

|E| is superior or equal to M + N − GCD(M,N), for

K ≤ GCD(M,N).
Let us consider the case M < N , where the number of

processors increases. We can decompose the communication

matrix C in two blocks (A,B): a left square block A of dimen-

sion M ×M and a right block B of dimension M ×N −M .

Theorem 2: The communication matrix C = (A,B) is op-

timal if the submatrix A minimizes the migration volume and

if the submatrix B minimizes the number of communication.

Proof: To minimize the migration volume for C, one

must take care to maximize the amount of data remaining

in place, i.e., the sum of the terms on the diagonal of A.

As a consequence, C optimizes the migration volume if A is

diagonal, such as A = M.IM with IM the identity matrix of

order M . Thus, the minimal migration volume is M.(N−M).
In this case, the number of communications of C is Z(C) =
Z(A) + Z(B) with Z(A) = M . As B is assumed to be

optimal, Z(B) = M+(N−M)−GCD(M,N−M) according

to theorem 1. As GCD(M,N − M) = GCD(M,N), then

Z(C) = M +N −GCD(M,N) and C is optimal.

In the case where the number of processors decreases

(M > N ), we obtain a similar result by transposing the

previous matrix. These two proofs remain correct for any

perfect communication matrix, i.e., when W is not simply

equal to M.N , but is multiple of M and N .

B

A×B

1 2 3 4 5 6 7

1 2 3 4 5 6 7 8 9 10

A

Fig. 1: Partitioning of a “chain graph” (represented as a one-

dimensional array of length 70) in 7 and 10 and the resulting

intersection pattern A × B used to construct the stairway

communication matrix.

Let us now consider the examples given on figure 2 in the

case 7 × 10. The stairway matrix (Fig. 2a) illustrates how to

construct a perfect communication matrix with a minimum

number of communications. This communication scheme is

the one obtained by contiguously partitioning a “chain graph”

(i.e., a simple one-dimensional array) in M parts and then in

N parts. It is easy to demonstrate that the intersection pattern

of these two partitions gives M+N−GCD(M,N) communi-

cations, which is the optimal (Fig. 1). For the stairway matrix

of dimension 7× 10, we find Z(C) = 16 that is optimal, but

the migration volume is not minimal at all (Mig(C) = 58).

The figure 2b gives an example of an optimal matrix, based

on a stairway submatrix according to theorem 2. In this case,

both the number of communication and migration volume are

minimal (Z(C) = 16 and Mig(C) = 21). The figure 2c gives

another example of optimal communication matrix, but not

based on the stairway matrix.

In the general case where W is any integer, it is no longer

possible to maintain a perfect balance because W may not

be multiple of M and N . Moreover, actual partitioning tools

produce slightly unbalanced partitions, that prevents anyway

building perfect communication matrices. Nevertheless in this

case, we can obtain similar results, defined up to an unbalance

factor, that still maintain an “optimal communication scheme”

(represented by the repartitioning hypergraph).

C. Correspondence Problem between the Repartitioning Hy-

pergraph and Quotient Graph

In order to achieve a good repartitioning, we have to choose

where to place the new parts relatively to the former ones.

As the “optimal” communication scheme we want to perform

during the migration phase is modeled by a repartitioning

hypergraph (Sec. III-A), we have to find a correspondence

between vertices of the repartitioning hypergraph with those of

the quotient graph associated with the initial partition (Def. 2).
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(a) Stairway matrix.
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(c) Another optimal matrix.

Fig. 2: Three communication matrices in the case 7× 10 and their representation as repartitioning hypergraph. Zero elements

in matrices are not shown. Rows numbered from 1 to 7 correspond to vertices and columns numbered from a to j correspond

to hyperedges. The elements in red are those who remain in place during communications, others will migrate.

Indeed, vertices belonging to the same hyperedge should be

matched with close vertices in the quotient graph as these parts

will send data to the same new part.

Definition 2: Let P = (V1, V2, . . . , VM ) be the initial

partition of a graph G into M parts. We note Q = G/P
the quotient graph with respect to the partition P . A vertex i
of Q represents the part Vi (with weight w(Vi)) and there is

an edge (i, j) in Q if the parts Vi and Vj are connected. The

weight of edge (i, j) in Q is the edge-cut between parts Vi

and Vj .

The closeness of former parts is modeled by a score. This

score is computed from the edges of the quotient graph.

To express this score, the repartitioning hypergraph and the

quotient graph are represented by matrices. The hypergraph

matrix H is a M×N matrix and its element Hv,e is non-zero

if the hyperedge e contains the vertex v. The quotient graph

is represented by its adjacency matrix Q whose element Qi,j

is the weight of the edge (i, j). A matching is represented by

a M ×M permutation matrix X whose element Xi,j is 1 if

the vertex i of H is matched with the vertex j of Q, and 0

otherwise.

In the equation 1, Xi,i′ , Xj,j′ , Hi,k and Hj,k are binary

values, their product is not zero when the vertices i′ and

j′ of Q are respectively matched with the vertices i and j
of H which are in the same hyperedge k. The score is the

sum of the edge weights Qi′,j′ whose endpoints are matched

with vertices belonging to the same hyperedge. Consequently,

matching hyperedges of H with strongly connected subgraph

of Q will give higher scores.
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1
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Fig. 3: Sample of a “good” matching in the case 7×10 between

a quotient graph (on left) and an repartitioning hypergraph (on

right).

score(X) =
∑

i,j,i′,j′,k

Xi,i′Xj,j′Hi,kHj,kQi′,j′ . (1)

The score equation can be rewritten as follows:

score(X) =
∑

i,i′

Xi,i′

∑

j,j′

Xj,j′(
∑

k

Hi,kHj,k)Qi′,j′ . (2)

Let x be the column vector of size M2 such that xk = Xi,i′

with k = iM + i′ and ⊗ be the Kronecker product1, the score

can be rewritten as:

1Let A be a matrix of size P ×Q and B be a matrix of size R× S. The
Kronecker product A⊗B is a block matrix with P ×Q blocks of size R×S
whose block (i, j) is Ai,j ·B.



score(x) = xTAx with A = HHT ⊗Q of size M2 ×M2.
(3)

According to the previous formulation, it appears that our

problem is a binary quadratic optimization problem, with

linear constraints:

{
∀i,

∑
i′ xiM+i′ = 1 (row constraint for X),

∀i′,
∑

i xiM+i′ = 1 (column constraint for X).
(4)

The figure 3 gives an example of a good matching in the

case 7× 10, with the following permutation matrix:

X =




0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
1 0 0 0 0 0 0




The first line of X means the hypergraph vertex 1 is matched

with the quotient graph vertex 3. Assuming the weights of the

quotient graph edges are all 1, the score is 9, that is the sum

of the weights of the following edges: 2-3, 2-5, 3-5, 4-5, 4-7,

5-7, 1-6, 1-7, 6-7.

This optimisation problem is NP-hard [14]. This is a well-

studied problem especially in the context of computer vision

with a wide variety of applications: segmentation, clustering,

graph matching. We can find in literature many heuristics to

locate a good approximation to the global optimum: proba-

bilistic metaheuristic like simulated annealing, spectral relax-

ation methods [15], [16], combinatorial methods like branch

& bound, etc. In this paper, we use a basic simulated annealing

with good results.

D. MxN Repartitioning Algorithm based on Fixed Vertices

Our algorithm uses a partitioning technique based on fixed

vertices in a similar way to Zoltan [2] or RM-Metis [9]. As

already explained in section II, the partitioning of the enriched

graph with additional fixed vertices and “migration” edges

enables to model the repartitioning problem with a trade-

off between edge-cut and migration. Our algorithm extends

this model when the number of processors changes, while

respecting the chosen communication scheme. It is composed

of the following steps:

1) Given an initial partition P = (Vi)1≤i≤M of the graph

G in M parts (Fig. 4a), the quotient graph Q is built

(Fig. 4b).

2) An optimal communication matrices is chosen, giving us

an optimal repartitioning hypergraph H (Fig. 4c). There

are several possible choices as discussed in section III-B.

3) The repartitioning hypergraph H is matched to the

quotient graph Q associated with the initial partition P ,

using a simulated annealing algorithm to optimize the

score function described in section III-C (Fig. 4d). It

give us a permutation matrix X .

4) Fixed vertices are added to graph G. There is one fixed

vertex for each new part (or hyperedge in H). They have

no weight since they represent processors, not tasks.

5) Then, we add migration edges, connected to these fixed

vertices. Let Kj be the set of former processor ranks

that will communicate with new processor of rank j, i.e.,

Kj = {i | ∃k, Xk,i = 1 ∧Hk,j = 1}. Each fixed vertex

j is connected with all the vertices of G belonging to

former parts Vi with i ∈ Kj (Fig. 4e). These new edges

are weighted with a given migration cost.

6) This enriched graph G̃ = (Ṽ , Ẽ) is finally partitioned in

N parts, giving us the final partition P ′ of G (Fig. 4f).

While minimizing the edge-cut, the partitioner will try to cut

as few migration edges as possible, if the migration cost is high

enough. Indeed, each regular vertex v of G is connected to

one or more fixed vertices, modeling different new processors

where v may be assigned. As exactly one of these migration

edges should not be cut, the communication scheme imposed

by the repartitioning hypergraph should be respected.

The time complexity of this algorithm is mainly dominated

by the partitioning (step 6). Indeed, the matching of the

repartitioning hypergraph with the quotient graph (step 3) is

a much smaller problem. The building of the enriched graph

takes linear time in |Ẽ|+|Ṽ | (step 4-5) with |Ṽ | = |V |+N and

|Ẽ| = |E|+
|V |×Zopt

M
= |E|+O(|V |) assuming N = O(M).

Thus, the partitioning of the enriched graph is a little more

complex than the one of the original graph.

IV. EXPERIMENTAL RESULTS

Our M ×N graph repartitioning method is compared with

a Scratch-Remap method, ParMetis 4.0.2, Scotch 6 beta and

Zoltan 3.62. We give in section II further details about the

repartitioning algorithms used by these software. These soft-

ware are designed for repartitioning with a constant number of

processors, but can still be used with a different new number

of parts3. Both the Scratch-Remap method and the M × N
method are achieved with Scotch in our experiments.

For all experiments, we have set the unbalance factor to

1%, the migration cost to 1 and have used default values for

all other options. This latter parameter means we look for a

trade-off between cut and migration.

A. Simple case

The graph used is based on a regular 3D grid (of dimensions

32 × 32 × 32) with 32768 vertices and 95232 edges. It is

initially partitioned in M = 8 parts and will be repartitioned

in different numbers of new parts N from 2 to 24. All

experiments are repeated 10 times and the charts in figure 5

show the average results for edge-cut, migration volume and

number of communications.

2In order to compare graph partitioners with Zoltan hypergraph partitioner,
one simply converts input graph into hypergraph by considering each graph
edge as an hyperedge of size 2. In this way, it is correct to compare the classic
graph edge-cut with hyperedge-cut (using λ− 1 cut metric).

3In practice, we just say that the graph was initially partitioned in N parts
instead of M . In case M < N , it implies that N − M former parts were
consider as empty.



(a) Initial partition in 5 parts. (b) Quotient graph of the initial partition.

(c) An optimal repartitioning hypergraph for the case 5× 7. (d) Matching between the quotient graph and the repartitioning
hypergraph.

(e) Graph with fixed vertices added according to the matching. (f) Final partition in 7 parts.

Fig. 4: Repartitioning from 5 to 7 parts.
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(c) Number of communications.

Fig. 5: Experimental results for the graph repartitioning of a

32× 32× 32 grid from M = 8 processors to N ∈ [2, 24].

We can see on figure 5a that the migration for the M ×N
approach is optimal, as expected from the chosen communica-

tion matrix. For N >> M , the use of complex repartitioning

methods becomes less relevant and the Scratch-Remap method

should be preferred for its simplicity. The figure 5b shows

that the low migration obtained by M × N comes at the

expense of higher cut, but not higher than other repartitioning

software. The cut for M × N method is not much higher

than the Scratch-Remap method which gives the best cut that

the partitioner can provide with no other constraints. The

number of communications (including “in-place” communica-

tions) needed for the migration is given in the figure 5c. This

number is optimal with the M × N method, while he can

reach very high values for other tools, that indicates that the

communication pattern for migration is just more complicated.

The communication time of the migration step has been

experimentally measured with OpenMPI over an InfiniBand

network on INRIA PlaFRIM platform4. The migration is up

to 10% faster compared with other approaches. This confirms

that our theoretical optimal communication matrices improve

the migration time.

B. More complex cases

In order to evaluate our method in more complex cases, the

same experiment is repeated on real-life graphs from different

domains with different topologies. Those graphs are presented

in the figure 6. We have seen in the previous experiment that

our approach is more relevant when the former and the newer

number of parts are close. So, we study two cases: the case

8× 11 (Fig. 7) and the case 8× 12 (Fig. 8). Remark that the

case 8× 11 is more irregular than the case 8× 12 in terms of

communication scheme.

graph description |V | |E| d
grid3d regular 3D grid 32,768 95,232 5.81

bcircuit circuit simulation 68,902 153,328 4.45

bcsstck32 structural problem 44,609 985,046 44.16

cage11 DNA electrophoresis 39,082 260,320 13.32

cfd2 computational fluid dynamics 123,440 1,482,229 24.02

copter2 computational fluid dynamics 55,476 352,238 12.70

crankseg 2 structural problem 63,838 7,042,510 220.64

finan512 economic problem 74,752 261,120 6.99

offshore electromagnetics 259,789 1,991,442 15.33

pkustk10 structural problem 80,676 2,114,154 52.41

qa8fk accoustic problem 66,127 797,226 24.11

Si34H36 quantum chemistry 97,569 2,529,405 51.85

thermal1 thermal problem 82,654 245,902 5.95

Fig. 6: Description of the test graphs, publicly available from

the university of Florida sparse matrix collection [17] except

for grid3d, that is the graph used in section IV-A. The value

d represents the average degree of the graph, it is computed

from
2×|E|
|V | .

The figures 7a and 8a show the migration volume rela-

tively to the Scratch-Remap method. For almost all graphs,

the M × N method greatly improves the migration volume

compared to others. As concerns the edge-cut (relatively to the

Scratch-Remap method), we see on figures 7b and 8b that the

performance of the different partitioning tools strongly varies

depending on the graph. The M×N method gives an edge-cut

4http://plafrim.bordeaux.inria.fr
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Fig. 7: Experimental results for several graphs described in

figure 6 when repartitioning from 8 to 11 parts. Both the edge-

cut and the migration volume are presented relatively to the

Scratch-Remap method.
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Fig. 8: Experimental results for several graphs described in

figure 6 when repartitioning from 8 to 12 parts. Both the edge-

cut and the migration volume are presented relatively to the

Scratch-Remap method.



quite comparable to most of the other tools, but slightly worse

in several cases. The figures 7c and 8c show the number of

communications needed for the migration. We obtain a low

number of communication for the M × N method, that is

almost optimal (the optimal numbers are respectively 18 and

16 for the cases 8 × 11 and 8 × 12). This confirms the good

results obtained in the previous experiment. We see that the

communication scheme imposed by the M × N method is

generally well respected, except for the graphs Si34H36 and

crankseg 2. As a consequence, the migration volume for these

two graphs is not as low as it could be. It is certainly due to

some topological issues, that stresses partitioners (e.g., high

average degrees of 221 for crankseg 2).

V. CONCLUSION AND FUTURE WORK

We have presented in this paper a graph repartitioning

algorithm, which accepts a variable number of processors,

assuming the computational load is already balanced. Our

algorithm minimizes both data communication and data migra-

tion overheads, while maintaining the load balance in parallel.

The experiments we have presented validate our approach

for a large variety of real-life graphs, comparing it against

state-of-the-art partitioners. Our M×N repartitioning provides

both a minimal migration volume and a minimal number of

communications, while keeping the edge-cut quite low.

We are considering several perspectives to our work. First,

we focus on graph repartitioning in the more general case

where both the load and the number of processors vary. We

expect this work to be really suitable for next generation of

adaptive codes. Finally, to be useful in real-life applications,

our algorithm needs to work in parallel, that mainly requires

to use a direct k-way parallel partitioning software that handle

fixed vertices, like Scotch. This should allow us to partition

much larger graph in larger part number.
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