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Due to its low computational cost, Lasso is an attractive regularization method for high-
dimensional statistical settings. In this paper, we consider multivariate counting processes de-
pending on an unknown function parameter to be estimated by linear combinations of a fixed
dictionary. To select coefficients, we propose an adaptive `1-penalization methodology, where
data-driven weights of the penalty are derived from new Bernstein type inequalities for martin-
gales. Oracle inequalities are established under assumptions on the Gram matrix of the dictio-
nary. Non-asymptotic probabilistic results for multivariate Hawkes processes are proven, which
allows us to check these assumptions by considering general dictionaries based on histograms,
Fourier or wavelet bases. Motivated by problems of neuronal activity inference, we finally carry
out a simulation study for multivariate Hawkes processes and compare our methodology with
the adaptive Lasso procedure proposed by Zou in [64]. We observe an excellent behavior of our
procedure. We rely on theoretical aspects for the essential question of tuning our methodology.
Unlike adaptive Lasso of [64], our tuning procedure is proven to be robust with respect to all
the parameters of the problem, revealing its potential for concrete purposes, in particular in
neuroscience.

Keywords: Multivariate counting process, Hawkes processes, adaptive estimation, Lasso proce-
dure, Bernstein-type inequalities.

1. Introduction

The Lasso, proposed in [58], is a well established method that achieves sparsity of an
estimated parameter vector via `1-penalization. In this paper, we focus on using Lasso
to select and estimate coefficients in the basis expansion of intensity processes for multi-
variate point processes.

Recent examples of applications of multivariate point processes include the modeling of
multivariate neuron spike data [43, 47], stochastic kinetic modeling [7] and the modeling
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of the distribution of ChIP-seq data along the genome [20]. In the previous examples,
the intensity of a future occurrence of a point depends on the history of all or some of
the coordinates of the point processes, and it is of particular interest to estimate this
dependence. This can be achieved using a parametric family of models, as in several of
the papers above. Our aim is to provide a nonparametric method based on the Lasso.

The statistical properties of Lasso are particularly well understood in the context of
regression with i.i.d. errors or for density estimation where a range of oracle inequalities
have been established. These inequalities, now widespread in the literature, provide the-
oretical error bounds that hold on events with a controllable (large) probability. See for
instance [5, 6, 15, 16, 17, 18, 60]. We refer the reader to [13] for an excellent account on
many state-of-the-art results. One main challenge in this context is to obtain as weak
conditions as possible on the design – or Gram – matrix. The other important challenge
is to be able to provide an `1-penalization procedure that provides excellent performance
from both theoretical and practical points of view. Standard Lasso proposed in [58]
and based on deterministic constant weights constitutes a major contribution from the
methodological point of view, but underestimation due to its shrinkage nature may lead
to poor practical performance in some contexts. Alternative two step procedures have
been suggested to overcome this drawback (see [42, 61, 64]). Zou in [64] also discusses
problems for standard Lasso to cope with variable selection and consistency simultane-
ously. He overcomes these problems by introducing non-constant data-driven `1-weights
based on preliminary consistent estimates.

1.1. Our contributions

In this paper we consider an `1-penalized least squares criterion for the estimation of
coefficients in the expansion of a function parameter. As in [5, 35, 61, 64], we consider
non-constant data-driven weights. However the setup is here that of multivariate point
processes and the function parameter that lives in a Hilbert space determines the point
process intensities. Even in this unusual context, the least squares criterion also involves
a random Gram matrix as well, and in this respect, we present a fairly standard oracle
inequality with a strong condition on this Gram matrix (see Theorem 1 in Section 2).

One major contribution of this article is to provide probabilistic results that enable
us to calibrate `1-weights in the most general setup (see Theorem 2 in Section 2). This
is naturally linked to sharp Bernstein type inequalities for martingales. In the litera-
ture, those kinds of inequalities generally provide upper bounds for the martingale that
are deterministic and unobservable [57, 59]. To choose data-driven weights we need ob-
servable bounds. More recently, there have been some attempts to use self-normalized
processes in order to provide more flexible and random upper bounds [4, 25, 26, 27].
Nevertheless, those bounds are usually not (completely) observable when dealing with
counting processes. We prove a result that goes further in this direction by providing
a completely sharp random observable upper bound for the martingale in our counting
process framework (see Theorem 3 in Section 3).

The second main contribution is to provide a quite theoretical and abstract framework
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to deal with processes whose intensity is (or is well approximated by) a linear transforma-
tion of deterministic parameters to infer. This general framework also allows for different
asymptotics in terms of the number of observed processes or in terms of the duration of
the recording of observations, according to the setup. We focus in this paper on three
main examples: the Poisson model, the Aalen multiplicative intensity model and the
multivariate Hawkes process, but many other situations can be expressed in the present
framework, which has the advantage of full flexibility. The first two examples have been
extensively studied in the literature as we detail hereafter, but Hawkes processes are
typical of situations where very little is known from a nonparametric point of view, and
where fully implementable adaptive methods do not exist until the present work, to the
best of our knowledge. They also constitute processes that are often used in practice –
in particular in neuroscience – as explained below.

It is also notable that we, in each of these three previous examples, can verify explic-
itly if the strong condition on the Gram matrix mentioned previously is fulfilled with
probability close to 1 (see Section 4 for the Poisson and Aalen cases and Section 5 for
the Hawkes case). For the multivariate Hawkes process this involves novel probabilistic
inequalities. Even though the Hawkes processes have been studied extensively in the liter-
ature, see [9, 24], very little is known about exponential inequalities and non-asymptotic
tail control. Besides the univariate case [51], no exponential inequality controlling the
number of points per interval is known to us. We derive such results and other sharp
controls on the convergence in the ergodic theorem to obtain control on the Gram matrix.

Finally, we carry out a simulation study in Section 6 for the most intricate process,
namely the multivariate Hawkes process, with a main aim: to convince practitioners, for
instance in neuroscience, that this method is indeed fully implementable and gives good
results in practice. Data-driven weights for practical purposes are slight modifications of
theoretical ones. These modifications essentially aim at reducing the number of tuning
parameters to one. Due to non-negligible shrinkage that is unavoidable, in particular for
large coefficients, we propose a two step procedure where estimation of coefficients is han-
dled by using ordinary least squares estimation on the support preliminary determined
by our Lasso methodology. Tuning issues are extensively investigated in our simulation
study, and Table 1 in Section 6.3 shows that our methodology can easily and robustly be
tuned by using limit values imposed by assumptions of Theorem 2. We naturally com-
pare our procedure with adaptive Lasso of [64] for which weights are proportional to the
inverse of ordinary least squares estimates. The latter is very competitive for estimation
aspects since shrinkage becomes negligible if the preliminary OLS estimates are large.
But adaptive Lasso does not incorporate random fluctuations of coefficient estimators.
So it is most of the time outperformed by our procedure. In particular, tuning adaptive
Lasso in the Hawkes setting is a difficult task, which cannot be tackled by using standard
cross-validation. Our simulation study shows that the performance of adaptive Lasso is
very sensitive to the choice of the tuning parameter. Robustness with respect to tuning is
another advantage of our method over adaptive Lasso. For simulations, the framework of
neuronal networks is used. Our short study proves that our methodology can be used for
solving concrete problems in neuroscience such as the inference of functional connectivity
graphs.
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1.2. Multivariate counting process

The framework introduced here and used throughout the paper aims at unifying sev-
eral situations, making the reading easier. Main examples are then shortly described,
illustrating the use of this setup.

We consider an M -dimensional counting process (N
(m)
t )m=1,...,M , which can also be

seen as a random point measure on R with marks in {1, . . . ,M}, and corresponding

predictable intensity processes (λ
(m)
t )m=1,...,M under a probability measure P (see [8] or

[24] for precise definitions).

Classical models assume that the intensity λ
(m)
t can be written as a linear predictable

transformation of a deterministic function parameter f0 belonging to a Hilbert space H
(the structure of H, and then of f0, will differ according to the context, as illustrated
below). We denote this linear transformation by

ψ(f) = (ψ(1)(f), ..., ψ(M)(f)). (1.1)

Therefore, for classical models, for any t,

λ
(m)
t = ψ

(m)
t (f0). (1.2)

The main goal in classical settings is to estimate f0 based on observing (N
(m)
t )m=1,...,M

for t ∈ [0, T ]. Actually, we do not require in Theorems 1 and 2 that (1.2) holds. Our

aim is mainly to furnish an estimate of the best linear approximation ψ
(m)
t (f0) of the

underlying intensity λ
(m)
t .

Let us illustrate the general setup with three main examples: First, the case with i.i.d.
observations of an inhomogeneous Poisson process on [0, 1] and unknown intensity, sec-
ond, the well known Aalen multiplicative intensity model and third, the central example
of the multivariate Hawkes process. For the first two models, asymptotics is with respect
to M (T is fixed). For the third one, M is fixed and asymptotics is with respect to T .

1.2.1. The Poisson model

Let us start with a very simple example which will be somehow a toy problem here
compared to the other examples. In this example we take T = 1 and assume that we
observe M i.i.d. Poisson processes on [0, 1] with common intensity f0 : [0, 1] 7−→ R+.
Asymptotic properties are obtained when M tends to infinity. In this case, the intensity
λ(m) of the m’th process N (m) is f0, which does not depend on m: Therefore for any
m ∈ {1, . . . ,M} and any t, we set

ψ
(m)
t (f0) := f0(t),

and H = L2([0, 1]) is equipped with the classical norm defined by

||f || =
(∫ 1

0

f2(t)dt

)1/2

.
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Lasso and probabilistic inequalities for multivariate point processes 5

This framework has already been extensively studied from an adaptive point of view: see
for instance [48, 63] for model selection methods, [50] for wavelet thresholding estimation
or [53] for kernel estimates. In this context, our present general result matches with
existing minimax adaptation results where asymptotics is with respect to M .

1.2.2. The Aalen multiplicative intensity model

This is one of the most popular counting processes because of its adaptivity to various
situations (from Markov models to censored lifetime models) and its various applications
to biomedical data (see [2]). Given X a Hilbert space, we consider f0 : [0, T ]×X 7−→ R+,
and we set for any t ∈ R,

λ
(m)
t = ψ

(m)
t (f0) := f0(t,X(m))Y

(m)
t ,

where Y (m) is an observable predictable process and X(m) represents covariates. In this
case, H = L2([0, T ] × X ). Our goal is to estimate f0 and not to select covariates. So,
to fix ideas one sets X = [0, 1] and T = 1. Hence H can be identified with L2([0, 1]2).
For right-censored data, f0 usually represents the hazard rate. The presence of covariates
in this pure nonparametric model is the classical generalization of the semi-parametric
model proposed by Cox (see [39] for instance). Note that the Poisson model is a special
case of the Aalen model.

The classical framework consists in assuming that (X(m), Y (m), N (m))m=1,...,M is an
i.i.d. M -sample and as for the Poisson model, it is natural to investigate asymptotic
properties whenM → +∞. If there are no covariates, several adaptive approaches already
exist: See [11, 12, 49] for various penalized least-squares contrasts and [21] for kernel
methods in special cases of censoring. In the presence of covariates, one can mention
[1, 2] for a parametric approach, [23, 39] for a model selection approach and [29] for a
Lasso approach. Let us also cite [14] where covariate selection via penalized MLE has
been studied. Once again, our present general result matches with existing oracle results.
In [21], exponential control of random fluctuations leading to adaptive results are derived
without using the martingale theory. In more general frameworks (as in [23] for instance),
martingales are required and this even when i.i.d. processes are involved.

1.2.3. Hawkes processes

Hawkes processes are the point processes equivalent to autoregressive models. In seismol-
ogy, Hawkes processes can model earthquakes and their aftershocks [62]. More recently
they have been used to model favored or avoided distances between occurrences of motifs
[32] or Transcription Regulatory Elements [20] on the DNA. We can also mention the
use of Hawkes processes as models of social interactions [44] or financial phenomena [3].

In the univariate setting, with M = 1, the intensity of a nonlinear Hawkes process
(Nt)t>0 is given by

λt = φ

(∫ t−

−∞
h(t− u)dNu

)
,
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6 N. R. Hansen, P. Reynaud-Bouret and V. Rivoirard

where φ : R 7→ R+ and h : R+ 7→ R (see [9]). A particular case is Hawkes’s self exciting
point process, for which h is nonnegative and φ(x) = ν + x where ν > 0 (see [9, 24, 34]).
For instance, for seismological purposes, ν represents the spontaneous occurrences of real
original earthquakes. The function h models self-interaction: after a shock at time u, we
observe an aftershock at time t with large probability if h(t− u) is large.

These notions can be easily extended to the multivariate setting and in this case the
intensity of N (m) takes the form:

λ
(m)
t = φ(m)

(
M∑
`=1

∫ t−

−∞
h

(m)
` (t− u)dN (`)(u)

)
.

Theorem 7 of [9] gives conditions on the functions φ(m) (namely Lipschitz properties)

and on the functions h
(m)
` to obtain existence and uniqueness of a stationary version of

the associated process. Throughout this paper, we assume that for any m ∈ {1, . . . ,M},

φ(m)(x) = (ν(m) + x)+,

where ν(m) > 0 and (·)+ denotes the positive part. Note that in [20, 22], the case
φ(m)(x) = exp(ν(m)+x) was studied. However, Lipschitz properties required in [9] are not
satisfied in this case. By introducing, as previously, the linear predictable transformation
ψ(f) = (ψ(1)(f), ..., ψ(M)(f)) with for any m and any t

ψ
(m)
t (f0) := ν(m) +

M∑
`=1

∫ t−

−∞
h

(m)
` (t− u)dN (`)(u), (1.3)

with f0 = (ν(m), (h
(m)
` )`=1,...,M )m=1,...,M , we have λ

(m)
t = (ψ

(m)
t (f0))+. Note that the

upper integration limits in (1.3) are t−, that is, the integrations are all over the open
interval (−∞, t). This assures predictability of the intensity disregarding the values of

h
(m)
` (0). Alternatively, it can be assumed throughout that h

(m)
` (0) = 0, in which case the

integrals in (1.3) can be over (−∞, t] without compromising predictability. The parameter

ν(m) is called the spontaneous rate, whereas the function h
(m)
` is called the interaction

function of N (`) on N (m). The goal is to estimate f0 by using Lasso estimates. In the

sequel, we will assume that the support of h
(m)
` is bounded. By rescaling we can then

assume that the support is in [0, 1], and we will do so throughout. Note that in this case

we will need to observe the process on [−1, T ] in order to compute ψ
(m)
t (f0) for t ∈ [0, T ].

The Hilbert space H associated with this setup is

H = (R× L2([0, 1])M )M =
{
f =

(
(µ(m), (g

(m)
` )`=1,...,M )m=1,...,M

)
:

g
(m)
` with support in [0, 1] and ||f ||2 =

∑
m

(µ(m))2 +
∑
m

∑
`

∫ 1

0

g
(m)
` (t)2dt <∞

}
.
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Some theoretical results are established in this general setting but to go further, we shall

consider in Section 5 the case where the functions h
(m)
` are nonnegative and then λ

(m)
t

is a linear function of f0, as in Sections 1.2.1 and 1.2.2:

λ
(m)
t = ψ

(m)
t (f0).

The multivariate point process associated with this setup is called the multivariate
Hawkes self exciting point process (see [34]). In this example, M is fixed and asymp-
totic properties are obtained when T tends to infinity.

To the best of our knowledge, nonparametric estimation for Hawkes models has
only been proposed in [52] in the univariate setting where the method is based on `0-
penalization of the least-squares contrast. However, due to `0-penalization, the criterion
is not convex and the computational cost, in particular for the memory storage of all
the potential estimators, is huge. Therefore, this method has never been adapted to the
multivariate setting. Moreover, the penalty term in this method is not data-driven and
ad-hoc tuning procedures have been used for simulations. This motivates the present
work and the use of a convex Lasso criterion combined with data-driven weights, to
provide a fully implementable and theoretically valid data-driven method, even in the
multivariate case.

Applications in neuroscience. Hawkes processes can naturally be applied to model
neuronal activity. Extracellular action potentials can be recorded by electrodes and the
recorded data for the neuronm can be seen as a point process, each point corresponding to
the peak of one action potential of this neuron (see [10] for instance for precise definitions).
When M neurons are simultaneously recorded, one can assume that we are faced with
a realization of N = (N (m))m=1,...,M modeled by a multivariate Hawkes process. We
then assume that the intensity associated with the activity of the neuron m is given

by λ
(m)
t = (ψ

(m)
t (f0))+, where ψ

(m)
t (f0) is given in (1.3). At any occurrence u < t of

N (`), ψ
(m)
t (f0) increases (excitation) or decreases (inhibition) according to the sign of

h
(m)
` (t − u). Modeling inhibition is essential from the neurobiological point of view. So,

we cannot assume that all interaction functions are nonnegative, and we cannot omit the
positive part. More details are given in Section 6.

In neuroscience, Hawkes processes combined with maximum likelihood estimation have
been used in the seminal paper [22], but the application of the method requires a too huge
number of observations for realistic practical purposes. Models based on Hawkes processes
have nevertheless been recently discussed in neuroscience, since they constitute one of
the few simple models able to produce dependence graphs between neurons, that may
be interpreted in neuroscience as functional connectivity graphs [45, 46]. However, many
nonparametric statistical questions arise that are not solved yet in order to furnish a fully
applicable tool for real data analysis [38]. We think that the Lasso-based methodology
presented in this paper may furnish the first robust tool in this direction.
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1.3. Notation and overview of the paper

Some notation from the general theory of stochastic integration is useful to simplify
the otherwise quite heavy notation. If H = (H(1), ...,H(M)) is a multivariate process
with locally bounded coordinates, say, and X = (X(1), ..., X(M)) is a multivariate semi-
martingale, we define the real valued process H •X by

H •Xt :=

M∑
m=1

∫ t

0

H(m)
s dX(m)

s .

Given F : R 7−→ R we use F(H) to denote the coordinatewise application of F, that is
F(H) = (F(H(1)), ...,F(H(M))). In particular,

F(H) •Xt =

M∑
m=1

∫ t

0

F(H(m)
s )dX(m)

s .

We also define the following scalar product on the space of multivariate processes. For
any multivariate processes H = (H(1), ...,H(M)) and K = (K(1), ...,K(M)), we set

< H,K >proc:=

M∑
m=1

∫ T

0

H(m)
s K(m)

s ds,

the corresponding norm being denoted ||H||proc. Since ψ introduced in (1.1) is linear,
the Hilbert space H inherits a bilinear form from the previous scalar product, that we
denote, for all f, g in H,

< f, g >T :=< ψ(f), ψ(g) >proc=

M∑
m=1

∫ T

0

ψ(m)
s (f)ψ(m)

s (g)ds,

and the corresponding quadratic form is denoted ||f ||2T .
The compensator Λ = (Λ(m))m=1,...,M of N = (N (m))m=1,...,M is finally defined for all

t by

Λ
(m)
t =

∫ t

0

λ(m)
s ds.

Section 2 gives our main oracle inequality and the choice of the `1-weights in the
general framework of counting processes. Section 3 provides the fundamental Bernstein-
type inequality. Section 4 details the meaning of the oracle inequality in the Poisson and
Aalen setups. The probabilistic results needed for the Hawkes processes as well as the
interpretation of the oracle inequality in this framework is done in Section 5. Simulations
on multivariate Hawkes processes are performed in Section 6. The last Section is dedicated
to the proofs of our results.
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Lasso and probabilistic inequalities for multivariate point processes 9

2. Lasso estimate and oracle inequality

We wish to estimate the true underlying intensity so our main goal consists in esti-
mating the parameter f0. For this purpose we assume we are given Φ a dictionary of
functions (whose cardinality is denoted |Φ|) and we define fa as a linear combination of
the functions of Φ, that is,

fa :=
∑
ϕ∈Φ

aϕϕ,

where a = (aϕ)ϕ∈Φ belongs to RΦ. Then, since ψ is linear, we get

ψ(fa) =
∑
ϕ∈Φ

aϕψ(ϕ).

We use the following least-squares contrast C defined on H by

C(f) := −2 ψ(f) •NT + ||f ||2T , ∀ f ∈ H. (2.1)

This contrast, or some variations of C, have already been used in particular setups (see
for instance [52] or [29]). The main heuristic justification lies in following arguments.
Since ψ(f) is a predictable process, the compensator at time T of C(f) is given by

C̃(f) := −2ψ(f) • ΛT + ||f ||2T ,

which can also be written as C̃(f) = −2 < ψ(f), λ >proc +||ψ(f)||2proc. Note that C̃
is minimum when ||ψ(f) − λ||proc is minimum. If λ = ψ(f0) and if ||.||T is a norm on

the Hilbert space H then the unique minimizer of C̃ is f0. Therefore, to get the best
linear approximation of λ of the form ψ(f), it is natural to look at minimizers of C(f).
Restricting to linear combinations of functions of Φ, since ψ is linear, we obtain

C(fa) = −2a′b+ a′Ga

where a′ denotes the transpose of the vector a and for ϕ1, ϕ2 ∈ Φ,

bϕ1 = ψ(ϕ1) •NT , Gϕ1,ϕ2 =< ϕ1, ϕ2 >T . (2.2)

Note that both the vector b of dimension |Φ| and the Gram matrix G of dimensions
|Φ| × |Φ| are random but nevertheless observable.

To estimate a we minimize the contrast, C(fa), subject to an `1-penalization on the
a-vector. That is, we introduce the following `1-penalized estimator

â ∈ argmina∈RΦ{−2a′b+ a′Ga+ 2d′|a|} (2.3)

where |a| = (|aϕ|)ϕ∈Φ and d ∈ RΦ
+. With a good choice of d the solution of (2.3) will

achieve both sparsity and good statistical properties. Finally, we let f̂ = fâ denote the
Lasso estimate associated with â.
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10 N. R. Hansen, P. Reynaud-Bouret and V. Rivoirard

Our first result establishes theoretical properties of f̂ by using the classical oracle
approach. More precisely, we establish a bound on the risk of f̂ if some conditions are
true. This is a non-probabilistic result that only relies on the definition of â by (2.3). In
the next section we will deal with the probabilistic aspect, which is to prove that the
conditions are fulfilled with large probability.

Theorem 1. Let c > 0. If
G � cI (2.4)

and if for all ϕ ∈ Φ
|bϕ − b̄ϕ| ≤ dϕ, (2.5)

where
b̄ϕ = ψ(ϕ) • ΛT ,

then there exists an absolute constant C, independent of c, such that

||ψ(f̂)− λ||2proc ≤ C inf
a∈RΦ

||λ− ψ(fa)||2proc + c−1
∑

ϕ∈S(a)

d2
ϕ

 , (2.6)

where S(a) is the support of a. If λ = ψ(f0), the oracle inequality (2.6) can also be
rewritten as

||f̂ − f0||2T ≤ C inf
a∈RΦ

||f0 − fa||2T + c−1
∑

ϕ∈S(a)

d2
ϕ

 , (2.7)

The proof of Theorem 1 is given in Section 7.1. Note that Assumption (2.4) ensures
that G is invertible and then coordinates of â are finite almost surely. Assumption (2.4)
also ensures that ||f ||T is a real norm on f at least when f is a linear combination of the
functions of Φ.

Two terms are involved on the right hand sides of (2.6) and (2.7). The first one is
an approximation term and the second one can be viewed as a variance term providing
a control of the random fluctuations of the bϕ’s around the b̄ϕ’s. Note that bϕ − b̄ϕ =
ψ(ϕ)•(N−Λ)T is a martingale (see also the comments after Theorem 2 for more details).
The approximation term can be small but the price to pay may be a large support of
a, leading to large values for the second term. Conversely, a sparse a leads to a small
second term. But in this case the approximation term is potentially larger. Note that if
the function f0 can be approximated by a sparse linear combination of the functions of
Φ, then we obtain a sharp control of ||f̂ − f0||2T . In particular, if f0 can be decomposed
on the dictionary, so we can write f0 = fa0

for some a0 ∈ RΦ, then (2.7) gives

||f̂ − f0||2T ≤ Cc−1
∑

ϕ∈S(a0)

d2
ϕ.

In this case, the right hand side can be viewed as the sum of the estimation errors made
by estimating the components of a0.
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Such oracle inequalities are now classical in the huge literature of Lasso procedures.
See for instance [5, 6, 15, 16, 17, 18, 37, 60], who established oracle inequalities in the
same spirit as in Theorem 1. We bring out the paper [19], which gives technical and
heuristic arguments for justifying optimality of such oracle inequalities (see Section 1.3
of [19]). Most of these papers deal with independent data.

In the sequel, we prove that Assumption (2.4) is satisfied with large probability by
using the same approach as [55, 56] and to a lesser extent as Section 2.1 of [19] or [54].
Section 5 is in particular mainly devoted to show that (2.4) holds with large probability
for the multivariate Hawkes processes.

For Theorem 1 to be of interest, the condition on the martingale, condition (2.5), needs
to hold with large probability as well. From this control, we deduce convenient data-
driven `1-weights that are the key parameters of our estimate. Note that our estimation
procedure does not depend on the value of c in (2.4). So knowing the latter is not necessary
for implementing our procedure. Therefore, one of the main contributions of the paper is
to provide new sharp concentration inequalities that are satisfied by multivariate point
processes. This is the main goal of Theorem 3 in Section 3 where we establish Bernstein
type inequalities for martingales. We apply it to the control of (2.5). This allows us to
derive the following result, which specifies the choice of the dϕ’s needed to obtain the
oracle inequality with large probability.

Theorem 2. Let N = (N (m))m=1,...,M be a multivariate counting process with pre-

dictable intensities λ
(m)
t and almost surely finite corresponding compensator Λ

(m)
t . Define

ΩV,B =

{
for any ϕ ∈ Φ, sup

t∈[0,T ],m

|ψ(m)
t (ϕ)| ≤ Bϕ and (ψ(ϕ))2 •NT ≤ Vϕ

}
,

for positive deterministic constants Bϕ and Vϕ and

Ωc = {G � cI} .

Let x and ε be strictly positive constants and define for all ϕ ∈ Φ,

dϕ =

√
2(1 + ε)V̂ µϕ x+

Bϕx

3
, (2.8)

with

V̂ µϕ =
µ

µ− φ(µ)
(ψ(ϕ))2 •NT +

B2
ϕx

µ− φ(µ)

for a real number µ such that µ > φ(µ), where φ(u) = exp(u) − u − 1. Let us consider

the Lasso estimator f̂ of f0 defined in Section 2. Then, with probability larger than

1− 4
∑
ϕ∈Φ

 log
(

1 +
µVϕ
B2
ϕx

)
log(1 + ε)

+ 1

 e−x − P(ΩcV,B)− P(Ωcc),
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12 N. R. Hansen, P. Reynaud-Bouret and V. Rivoirard

inequality (2.7) is satisfied, i.e.

||ψ(f̂)− λ||2proc ≤ C inf
a∈RΦ

||λ− ψ(fa)||2proc + c−1
∑

ϕ∈S(a)

d2
ϕ

 .

If moreover λ = ψ(f0), then

||f̂ − f0||2T ≤ C inf
a∈RΦ

‖f0 − fa‖2T + c−1
∑

ϕ∈S(a)

d2
ϕ

 ,

where C is a constant independent of c, Φ, T and M.

The first oracle inequality gives a control of the difference between the true intensity
and ψ(f̂). The equality λ = ψ(f0) is not required and we can apply this result, for
instance, with λ = (ψ(f0))+.

Of course, the smaller the dϕ’s the better the oracle inequality. Therefore, when x in-
creases, the probability bound and the dϕ’s increase and we have to realize a compromise
to obtain a meaningful oracle inequality on an event with large probability. The choice of
x is deeply discussed below, in Sections 4 and 5 for theoretical purposes and in Section
6 for practical purposes.

Let us first discuss more deeply the definition of dϕ (derived from subsequent The-
orem 3) which seems intricate. Up to a constant depending on the choice of µ and ε,
dϕ is of same order as max

(√
x(ψ(ϕ))2 •NT , Bϕx

)
. To give more insight on the values

of dϕ, let us consider the very special case where for any m ∈ {1, . . . ,M} for any s,

ψ
(m)
s (ϕ) = cm1{s∈Am}, where cm is a positive constant and Am a compact set included

into [0, T ]. In this case, by naturally choosing Bϕ = max1≤m≤M cm, we have:

√
x(ψ(ϕ))2 •NT ≥ Bϕx ⇐⇒

M∑
m=1

c2mN
(m)
Am
≥ x max

1≤m≤M
c2m,

where N
(m)
Am

represents the number of points of N (m) falling in Am. For more general

vector functions ψ(ϕ), the term
√
x(ψ(ϕ))2 •NT will dominate Bϕx if the number of

points of the process lying where ψ(ϕ) is large, is significant. In this case, the leading

term in dϕ is expected to be the quadratic term
√

2(1 + ε) µ
µ−φ(µ)x(ψ(ϕ))2 •NT and the

linear terms in x can be viewed as residual terms. Furthermore, note that when µ tends
to 0,

µ

µ− φ(µ)
= 1 +

µ

2
+ o(µ),

x

µ− φ(µ)
∼ x

µ
→ +∞

since x > 0. So, if µ and ε tend to 0, the quadratic term tends to
√

2x(ψ(ϕ))2 •NT ,
but the price to pay is the explosion of the linear term in x. In any case, it is possible
to make the quadratic term as close to

√
2x(ψ(ϕ))2 •NT as desired. Basically, this term

cannot be improved (see comments after Theorem 3 for probabilistic arguments).

imsart-bj ver. 2013/03/06 file: LassoHawkesFinal.tex date: October 3, 2013



Lasso and probabilistic inequalities for multivariate point processes 13

Let us now discuss the choice of x. In more classical contexts such as density estimation
based on an n-sample, the choice x = γ log(n) plugged in the parameters analog to the
dϕ’s is convenient, since it both ensures a small probability bound and a meaningful
order of magnitude for the oracle bound (see [5] for instance). See also Sections 4 and
5 for similar evaluations in our setup. But it has also been further established that the
choice γ = 1 is the best. Indeed if the components of d are chosen smaller than the
analog of

√
2x(ψ(ϕ))2 •NT in the density framework, then the resulting estimator is

definitely bad from the theoretical point of view, but simulations also show that, to some
extent, if the components of d are larger than the analog of

√
2x(ψ(ϕ))2 •NT , then the

estimator deteriorates too. A similar result is out of reach in our setting, but similar
conclusions may remain valid here since density estimation often provides some clues
about what happens for more intricate heteroscedastic models. In particular, the main
heuristic justifying the optimality of this tuning result in the density setting is that the
quadratic term (and in particular the constant

√
2) corresponds to the rate of the central

limit theorem and in this sense, it provides the ”best approximation” for the fluctuations.
For further discussion, see the simulation study in Section 6.

Finally, it remains to control P(ΩV,B) and P(Ωc). These are the goals of Section 4 for
Poisson and Aalen models and Section 5 for multivariate Hawkes processes.

3. Bernstein type inequalities for multivariate point
processes

We establish a Bernstein type concentration inequality based on boundedness assump-
tions. This result, which has an interest per se from the probabilistic point of view, is the
key result to derive the convenient values for the vector d in Theorem 2 and so is capital
from the statistical perspective.

Theorem 3. Let N = (N (m))m=1,...,M be a multivariate counting process with pre-

dictable intensities λ
(m)
t and corresponding compensator Λ

(m)
t with respect to some given

filtration. Let B > 0. Let H = (H(m))m=1,...,M be a multivariate predictable process such
that for all ξ ∈ (0, 3), for all t,

exp(ξH/B) • Λt <∞ a.s. and exp(ξH2/B2) • Λt <∞ a.s. (3.1)

Let us consider the martingale defined for all t ≥ 0 by

Mt = H • (N − Λ)t.

Let v > w and x be positive constants and let τ be a bounded stopping time. Let us define

V̂ µ =
µ

µ− φ(µ)
H2 •Nτ +

B2x

µ− φ(µ)
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14 N. R. Hansen, P. Reynaud-Bouret and V. Rivoirard

for a real number µ ∈ (0, 3) such that µ > φ(µ), where φ(u) = exp(u)− u− 1. Then, for
any ε > 0,

P
(
Mτ ≥

√
2(1 + ε)V̂ µx+

Bx

3
and w ≤ V̂ µ ≤ v and sup

m,t≤τ
|H(m)

t | ≤ B
)

≤ 2

(
log(v/w)

log(1 + ε)
+ 1

)
e−x. (3.2)

This result is based on the exponential martingale for counting processes, which has
been used for a long time in the context of the counting process theory. See for instance
[8], [57] or [59]. This basically gives a concentration inequality taking the following form
(the result is stated here in its univariate form for comparison purposes): for any x > 0,

P

(
Mτ ≥

√
2ρx+

Bx

3
and

∫ τ

0

H2
sλ(s)ds ≤ ρ and sup

s∈[0,τ ]

|Hs| ≤ B

)
≤ e−x. (3.3)

In (3.3), ρ is a deterministic upper bound of v =
∫ τ

0
H2
sλ(s)ds, the bracket of the mar-

tingale, and consequently the martingale equivalent of the variance term. Moreover B is
a deterministic upper bound of sups∈[0,τ ] |Hs|. The leading term for moderate values of

x and τ large enough is consequently
√

2ρx. The central Limit Theorem for martingales
states that, under some assumptions, a sequence of martingales (Mn)n with respective
brackets (vn)n tending to a deterministic value v̄, once correctly normalized, tends to a
Gaussian process with bracket v̄. Therefore, a term of the form

√
2v̄x in the upper bound

is not improvable, in particular the constant
√

2. However the replacement of the limit v̄
by a deterministic upper bound ρ constitutes a loss. In this sense, Theorem 3 improves
the bound and consists of plugging in the unbiased estimate v̂ =

∫ τ
0
H2
sdNs instead of a

non sharp deterministic upper bound of v. Note that we are not able to obtain exactly
the term

√
2 but any value strictly larger than

√
2, as close as we want to

√
2 up to some

additive terms depending on B that are negligible for moderate values of x.
The proof is based on a peeling argument that was first introduced in [40] for Gaussian

processes and is given in Section 7.3.
Note that there exist also inequalities that seem nicer than (3.3) which constitutes the

basic brick for our purpose. For instance, in [27], it is established that for any deterministic
positive real number θ, for any x > 0,

P
(
Mτ ≥

√
2θx and

∫ τ

0

H2
sdΛs +

∫ τ

0

H2
sdNs ≤ θ

)
≤ e−x. (3.4)

At first sight, this seems better than Theorem 3 because no linear term depending on B
appears, but if we wish to use the estimate 2

∫ τ
0
H2
sdNs instead of θ in the inequality, we

have to bound |Hs| by some B in any case. Moreover, by doing so, the quadratic term
will be of order

√
4v̂x which is worse than the term

√
2v̂x derived in Theorem 3, even if

this constant
√

2 can only be reached asymptotically in our case.
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There exists a better result if the martingale Mt is for instance conditionally symmetric
(see [25, 4, 27]): for any x > 0,

P
(
Mτ ≥

√
2κx and

∫ τ

0

H2
sdNs ≤ κ

)
≤ e−x, (3.5)

which seems close to the ideal inequality. But there are actually two major problems
with this inequality. First, one needs to assume that the martingale is conditionally
symmetric, which cannot be the case in our situation for general counting processes and
general dictionaries. Second, it depends on the deterministic upper bound κ instead of
v̂. To replace κ by v̂ and then to apply peeling arguments as in the proof of Theorem 3,
we need to assume the existence of a positive constant w such that v̂ ≥ w. But if the
process is empty, then v̂ = 0, so we cannot generally find such a positive lower bound,

whereas in our theorem, we can always take w = B2x
µ−φ(µ) as a lower bound for V̂ µ.

Finally, note that in Proposition 6 (see Section 7.3), we also derive a similar bound
where V̂ µ is replaced by

∫ τ
0
H2
sdΛs. Basically, it means that the same type of results hold

for the quadratic characteristic instead of the quadratic variation. Though this result is
of little use here, since the quadratic characteristic is not observable, we think that it
may be of interest for readers investigating self-normalized results as in [26].

4. Applications to the Poisson and Aalen models

We now apply Theorem 2 to the Poisson and Aalen models. The case of the multivariate
Hawkes process, which is much more intricate, will be the subject of the next section.

4.1. The Poisson model

Let us recall that in this case, we observe M i.i.d. Poisson processes with intensity f0

supported by [0, 1] (with M ≥ 2) and that the norm is given by ||f ||2 =
∫ 1

0
f2(x)dx. We

assume that Φ is an orthonormal system for ||.||. In this case,

||.||21 = M ||.||2 and G = MI,

where I is the identity matrix. One applies Theorem 2 with c = M (so P(Ωcc) = 0) and

Bϕ = ||ϕ||∞, Vϕ = ||ϕ||2∞(1 + δ)Mm1,

for δ > 0 and m1 =
∫ 1

0
f0(t)dt. Note that here T = 1 and therefore N

(m)
T = N

(m)
1 is the

total number of observed points for the mth process. Using

ψ(ϕ)2 •N1 ≤ ||ϕ||2∞
M∑
m=1

N
(m)
1
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16 N. R. Hansen, P. Reynaud-Bouret and V. Rivoirard

and since the distribution of
∑M
m=1N

(m)
1 is the Poisson distribution with parameter

Mm1, Cramer-Chernov arguments give:

P(ΩcV,B) ≤ P

(
M∑
m=1

N
(m)
1 > (1 + δ)Mm1

)
≤ exp (−{(1 + δ) ln(1 + δ)− δ}Mm1) .

For α > 0, by choosing x = α log(M), we finally obtain the following corollary derived
from Theorem 2.

Corollary 1. With probability larger than 1 − C1
|Φ| log(M)

Mα − e−C2M , where C1 is a
constant depending on µ, ε, α, δ and m1 and C2 is a constant depending on δ and m1,
we have:

||f̂−f0||2 ≤ C inf
a∈RΦ

‖f0 − fa‖2 +
1

M2

∑
ϕ∈S(a)

(
log(M)

M∑
m=1

∫ 1

0

ϕ2(x)dN (m)
x + log2(M)||ϕ||2∞

) ,

where C is a constant depending on µ, ε, α, δ and m1.

To shed some lights on this result, consider an asymptotic perspective by assuming
that M is large. Assume also, for sake of simplicity, that f0 is bounded from below on
[0, 1]. If the dictionary Φ (whose size may depend on M) satisfies

max
ϕ∈Φ
||ϕ||∞ = o

(√
M

logM

)
,

then, since, almost surely,

1

M

M∑
m=1

∫ 1

0

ϕ2(x)dN (m)
x

M→∞−→
∫ 1

0

ϕ2(x)f0(x)dx,

almost surely,

1

M2

∑
ϕ∈S(a)

(
log(M)

M∑
m=1

∫ 1

0

ϕ2(x)dN (m)
x + log2(M)||ϕ||2∞

)

=
logM

M

∑
ϕ∈S(a)

∫ 1

0

ϕ2(x)f0(x)dx× (1 + o(1)).

The right hand term corresponds, up to the logarithmic term, to the sum of variance

terms when estimating
∫ 1

0
ϕ(x)f0(x)dx with 1

M

∑M
m=1

∫ 1

0
ϕ(x)dN

(m)
x for ϕ ∈ S(a). This

means that the estimator adaptively achieves the best trade-off between a bias term and
a variance term. The logarithmic term is the price to pay for adaptation. Furthermore,
when M → +∞, the inequality of Corollary 1 holds with probability that goes to 1 at a
polynomial rate. We refer the reader to [50] for a deep discussion on optimality of such
results.
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4.2. The Aalen model

Results similar to those presented in this paragraph can be found in [29] under re-
stricted eigenvalues conditions instead of (2.4). Recall that we observe an M -sample

(X(m), Y (m), N (m))m=1,...,M , with Y (m) = (Y
(m)
t )t∈[0,1] and N (m) = (N

(m)
t )t∈[0,1] (with

M ≥ 2). We assume that X(m) ∈ [0, 1] and that the intensity of N
(m)
t is f0(t,X(m))Y

(m)
t .

We set for any f ,

||f ||2e := E
(∫ 1

0

f2(t,X(1))
(
Y

(1)
t

)2
dt

)
.

We assume that Φ is an orthonormal system for || · ||2, the classical norm on L2([0, 1]2),
and we assume that there exists a positive constant r such that

∀ f ∈ L2([0, 1]2), ||f ||e ≥ r||f ||2, (4.1)

so that || · ||e is a norm. If we assume, for instance, that the density of the X(m)’s is lower
bounded by a positive constant c0 and there exists c1 > 0 such that for any t,

E[(Y
(1)
t )2|X(1)] ≥ c1

then (4.1) holds with r2 = c0c1. The empirical version of ||f ||e, denoted ||f ||emp, is defined
by

||f ||2emp :=
1

M
||f ||2T =

1

M

M∑
m=1

∫ 1

0

f2(t,X(m))
(
Y

(m)
t

)2
dt.

Unlike the Poisson model, since the intensity depends on covariates X(m)’s and variables
Y (m)’s, the control of P(Ωcc) is much more cumbersome for the Aalen case, even if it is
less intricate than for Hawkes processes (see Section 5). We have the following result
proved in Section 7.5.1.

Proposition 1. We assume that (4.1) is satisfied, the density of the covariates X(m)

is bounded by D and

sup
t∈[0,1]

max
m∈{1,...,M}

Y
(m)
t ≤ 1 almost surely. (4.2)

We consider an orthonormal dictionary Φ of functions of L2([0, 1]2) that may depend
on M , and we let rΦ denote the spectral radius of the matrix H whose components are
Hϕ,ϕ′ =

∫∫
|ϕ(t, x)||ϕ′(t, x)|dtdx. Then, if

max
ϕ∈Φ
||ϕ||2∞ × rΦ|Φ| ×

logM

M
→ 0, (4.3)

when M → +∞ then, for any β > 0, there exists C1 > 0 depending on β, D and f0 such
that with c = C1M , we have

P(Ωcc) = O(|Φ|2M−β).
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18 N. R. Hansen, P. Reynaud-Bouret and V. Rivoirard

Assumption (4.2) is usually satisfied in most of the practical examples where Aalen
models are involved. See [2] for explicit examples and see for instance [30, 49] for other
articles where this assumption is made. In the sequel, we also assume that there exists a
positive constant R such that

max
m∈{1,...,M}

N
(m)
1 ≤ R a.s. (4.4)

This assumption, considered by [49], is obviously satisfied in survival analysis where there
is at most one death per individual. It could have been relaxed in our setting, by consid-
ering exponential moments assumptions, to include Markov cases for instance. However
this much simpler assumption allows us to avoid tedious and unnecessary technical as-
pects since we only wish to illustrate our results in a simple framework. Under (4.2) and
(4.4), almost surely,

ψ(ϕ)2•NT =

M∑
m=1

∫ 1

0

[Y
(m)
t ]2ϕ2(t,X(m))dN

(m)
t ≤

M∑
m=1

∫ 1

0

ϕ2(t,X(m))dN
(m)
t ≤MR||ϕ||2∞.

So, we apply Theorem 2 with Bϕ = ||ϕ||∞, Vϕ = MR||ϕ||2∞ (so P(ΩV,B) = 1) and
x = α log(M) for α > 0. We finally obtain the following corollary.

Corollary 2. Assume that (4.2) and (4.4) are satisfied. With probability larger than

1− C1
|Φ| log(M)

Mα − P(Ωcc), where C1 is a constant depending on µ, ε, α and R, we have:

||f̂ − f0||2emp ≤ C inf
a∈RΦ

{
‖f0 − fa‖2emp +

1

M2

∑
ϕ∈S(a)

(
log(M)

M∑
m=1

∫ 1

0

ϕ2(t,X(m))dN
(m)
t + log2(M)||ϕ||2∞

)
where C is a constant depending on µ, ε, α and R.

To shed lights on this result, assume that the density of the X(m)’s is upper bounded
by a constant R̃. In an asymptotic perspective with M →∞, we have almost surely,

1

M

M∑
m=1

∫ 1

0

ϕ2(t,X(m))dN
(m)
t → E

(∫ 1

0

ϕ2(t,X(1))f0(t,X(1))Y (1)dt

)
.

But

E
(∫ 1

0

ϕ2(t,X(1))f0(t,X(1))Y (1)dt

)
≤ ||f0||∞E

(∫ 1

0

ϕ2(t,X(1))dt

)
≤ R̃||f0||∞.

So, if the dictionary Φ satisfies

max
ϕ∈Φ
||ϕ||∞ = O

(√
M

logM

)
,
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which is true under (4.3) if rΦ|Φ| ≥ 1, then, almost surely, the variance term is asymptot-

ically smaller than log(M) |S(a)|||f0||∞
M up to constants. So, we can draw the same conclu-

sions as for the Poisson model. We have not discussed here the choice of Φ and Condition
(4.3). This will be extensively done in Section 5.2 where we deal with a similar condition
but in a more involved setting.

5. Applications to the case of multivariate Hawkes
process

For a multivariate Hawkes model, the parameter f0 = (ν(m), (h
(m)
` )`=1,...,M )m=1,...,M

belongs to

H = HM =

{
f = (f (m))m=1,...,M | f (m) ∈ H and ||f ||2 =

M∑
m=1

||f (m)||2
}

where

H =
{

f = (µ, (g`)`=1,...,M ) | µ ∈ R , g` with support in [0, 1]

and ||f ||2 = µ2 +

M∑
`=1

∫ 1

0

g2
` (x)dx <∞

}
.

If one defines the linear predictable transformation κ of H by

κt(f) = µ+

M∑
`=1

∫ t−

t−1

g`(t− u)dN (`)
u , (5.1)

then the transformation ψ on H is given by

ψ
(m)
t (f) = κt(f

(m)).

The first oracle inequality of Theorem 2 provides theoretical guaranties of our Lasso
methodology in full generality and in particular, even if inhibition takes place (see Sec-
tion 1.2.3). Since ΩV,B and Ωc are observable events, we know whether the oracle in-
equality holds. However we are not able to determine P(ΩV,B) and P(Ωc) in the general
case. Therefore, in Sections 5.1 and 5.2, we assume that all interaction functions are
nonnegative and that there exists f0 in H so that for any m and any t,

λ
(m)
t = ψ

(m)
t (f0).

We also assume that the process is observed on [−1, T ] with T > 1.
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5.1. Some useful probabilistic results for multivariate Hawkes
processes

In this paragraph, we present some particular exponential results and tail controls for
Hawkes processes. As far as we know, these results are new: They constitute the gener-
alization of [51] to the multivariate case. In this paper, they are used to control P(Ωcc)
and P(ΩcV,B) but they may be of independent interest.

Since the functions h
(m)
` ’s are nonnegative, a cluster representation exists. We can

indeed construct the Hawkes process by the Poisson cluster representation (see [24]) as
follows:

• Distribute ancestral points with marks ` = 1, . . . ,M according to homogeneous
Poisson processes with intensities ν(`) on R.

• For each ancestral point, form a cluster of descendant points. More precisely, start-
ing with an ancestral point at time 0 of a certain type, we successively build new

generations as Poisson processes with intensity h
(m)
` (.− T ), where T is the parent

of type ` (the corresponding children being of type m). We will be in the situation
where this process becomes extinguished and we denote by H the last children of
all generations, which also represents the length of the cluster. Note that the num-
ber of descendants is a multitype branching process (and there exists a branching
cluster representation (see [9, 24, 34])) with offspring distributions being Poisson
variables with means

γ`,m =

∫ 1

0

h
(m)
` (t)dt.

The essential part we need is that the expected number of offsprings of type m from a
point of type ` is γ`,m. With Γ = (γ`,m)`,m=1,...,M , the theory of multitype branching
processes gives that the clusters are finite almost surely if the spectral radius of Γ is
strictly smaller than 1. In this case, there is a stationary version of the Hawkes process
by the Poisson cluster representation.

Moreover, if Γ has spectral radius strictly smaller than 1, one can provide a bound on
the number of points in a cluster. We denote by P` the law of the cluster whose ancestral
point is of type `, E` is the corresponding expectation.

The following lemma is very general and holds even if the function h
(m)
` have infinite

support as long as the spectral radius Γ is strictly less than 1.

Lemma 1. If W denotes the total number of points of any type in the cluster whose
ancestral point is of type ` then if the spectral radius of Γ is strictly smaller than 1 there
exists ϑ` > 0, only depending on ` and on Γ, such that

E`(eϑ`W ) <∞.

This easily leads to the following result, which provides the existence of the Laplace
transform of the total number of points in an arbitrary bounded interval, when the

functions h
(m)
` have bounded support.
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Proposition 2. Let N be a stationary multivariate Hawkes process, with compactly
supported nonnegative interactions functions and such that the spectral radius of Γ is
strictly smaller than 1. For any A > 0, let N[−A,0) be the total number of points of N
in [−A, 0), all marks included. Then there exists a constant θ > 0, depending on the
distribution of the process and on A, such that

E := E(eθN[−A,0)) <∞,

which implies that for all positive u

P(N[−A,0) ≥ u) ≤ Ee−θu.

Moreover one can strengthen the ergodic theorem in a non-asymptotic way, under the
same assumptions.

Proposition 3. Under the assumptions of Proposition 2, let A > 0 and let Z(N) be a
function depending on the points of N lying in [−A, 0). Assume that there exist b and η
nonnegative constants such that

|Z(N)| ≤ b(1 +Nη
[−A,0)),

where N[−A,0) represents the total number of points of N in [−A, 0), all marks included.
We denote S the shift operator, meaning that Z ◦St(N) depends now in the same way
as Z(N) on some points that are now the points of N lying in [t−A, t).

We assume E[|Z(N)|] <∞ and for short, we denote E(Z) = E[Z(N)]. Then, for any
α > 0, there exists a constant T (α, η, f0, A) > 1 such that for T > T (α, η, f0, A), there
exist C1, C2, C3 and C4 positive constants depending on α, η,A and f0 such that

P

(∫ T

0

[Z ◦St(N)− E(Z)]dt ≥ C1σ

√
T log3(T ) + C2b(log(T ))2+η

)
≤ C4

Tα
,

with σ2 = E([Z(N)− E(Z)]21N[−A,0)≤Ñ ) and Ñ = C3 log(T ).

Finally, to deal with the control of P(Ωc), we shall need the next result. First, we
define a quadratic form Q on H by

Q(f ,g) = EP (κ1(f)κ1(g)) = EP

(
1

T

∫ T

0

κt(f)κt(g)dt

)
, f ,g ∈ H. (5.2)

We have:

Proposition 4. Under the assumptions of Proposition 2, if the function parameter f0

satisfies

min
m∈{1,...,M}

ν(m) > 0 and max
l,m∈{1,...,M}

sup
t∈[0,1]

h
(m)
` (t) <∞ (5.3)

then there is a constant ζ > 0 such that for any f ∈ H,

Q(f , f) ≥ ζ||f ||2.
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We are now ready to establish oracle inequalities for multivariate Hawkes processes.

5.2. Lasso for Hawkes processes

In the sequel, we still consider the main assumptions of the previous subsection: We deal
with a stationary Hawkes process whose intensity is given by (1.3) such that the spectral
radius of Γ is strictly smaller than 1 and (5.3) is satisfied. We recall that the components
of Γ are the γ`,m’s with

γ`,m =

∫ 1

0

h
(m)
` (t)dt.

One of the main results of this section is to link properties of the dictionary (mainly
orthonormality but also more involved assumptions) to properties of G (the control of
Ωc). To do so, let us define for all f ∈ H,

||f ||∞ = max

{
max

m=1,...,M
|µ(m)|, max

m,`=1,...,M
||g(m)
` ||∞

}
.

Then, let us set ||Φ||∞ := max{||ϕ||∞, ϕ ∈ Φ}. The next result is based on the probabilistic
results of Section 5.1.

Proposition 5. Assume that the Hawkes process is stationary, that (5.3) is satisfied
and that the spectral radius of Γ is strictly smaller than 1. Let rΦ be the spectral radius
of the matrix H defined by

H =

(∑
m

[
|µ(m)
ϕ ||µ(m)

ρ |+
M∑
`=1

∫ 1

0

|(gϕ)
(m)
` ||(gρ)(m)

` |(u)du

])
ϕ,ρ∈Φ

.

Assume that Φ is orthonormal and that

AΦ(T ) := rΦ||Φ||2∞|Φ|[log(||Φ||∞) + log(|Φ|)] log5(T )

T
→ 0 (5.4)

when T →∞. Then, for any β > 0, there exists C1 > 0 depending on β and f0 such that
with c = C1T , we have

P(Ωcc) = O(|Φ|2T−β).

Up to logarithmic terms, (5.4) is similar to (4.3) with M replaced with T . The dic-
tionary Φ can be built via a dictionary (Υk)k=1,...,K of functions of L2([0, 1]) (that may

depend on T ) in the following way. A function ϕ = (µ
(m)
ϕ , ((gϕ)

(m)
` )`)m belongs to Φ if

and only if only one of its M +M2 components is non zero and in this case,

• if µ
(m)
ϕ 6= 0, then µ

(m)
ϕ = 1,

• if (gϕ)
(m)
` 6= 0, then there exists k ∈ {1, . . . ,K} such that (gϕ)

(m)
` = Υk.
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Note that |Φ| = M + KM2. Furthermore, assume from now on that (Υk)k=1,...,K is
orthonormal in L2([0, 1]). Then Φ is also orthonormal in H endowed with ||.||.

Before going further, let us discuss Assumption (5.4). First note that the matrix H is
block diagonal. The first block is the identity matrix of size M . The other M2 blocks are
identical to the matrix:

HK =

(∫
|Υk1(u)||Υk2(u)|du

)
1≤k1,k2≤K

.

So, if we denote r̃K the spectral radius of HK , we have:

rΦ = max(1, r̃K).

We analyze the behavior of r̃K with respect to K. Note that for any k1 and any k2,

(HK)k1,k2
≥ 0.

Therefore,

r̃K ≤ sup
||x||`1=1

||HKx||`1 ≤ max
k1

∑
k2

(HK)k1,k2
.

We now distinguish three types of orthonormal dictionaries (remember that M is viewed
as a constant here):

• Let us consider regular histograms. The basis is composed of the functions Υk =
δ−1/2

1((k−1)δ,kδ] with Kδ = 1. Therefore ||Φ||∞ = δ−1/2 =
√
K. But HK is the

identity matrix and r̃K = 1. Hence (5.4) is satisfied as soon as

K2 log(K) log5(T )

T
→ 0

when T →∞, which is satisfied if K = o
( √

T
log3(T )

)
.

• Assume that ||Φ||∞ is bounded by an absolute constant (Fourier dictionaries satisfy
this assumption). Since r̃K ≤ K, (5.4) is satisfied as soon as

K2 log(K) log5(T )

T
→ 0

when T →∞, which is satisfied if K = o
( √

T
log3(T )

)
.

• Assume that (Υk)k=1,...,K is a compactly supported wavelet dictionary where res-
olution levels belong to the set {0, 1, . . . , J}. In this case, K is of the same order as
2J , ||Φ||∞ is of the same order as 2J/2 and it can be established that r̃K ≤ C2J/2

where C is a constant only depending on the choice of the wavelet system (see [33]
for further details). Then, (5.4) is satisfied as soon as

K5/2 log(K) log5(T )

T
→ 0

when T →∞, which is satisfied if K = o
(

T 2/5

log12/5(T )

)
.
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To apply Theorem 2, it remains to control ΩV,B . Note that

ψ
(m)
t (ϕ) =

{
1 if µ

(m)
ϕ = 1∫ t−

t−1
Υk(t− u)dN

(`)
u if (gϕ)

(m)
` = Υk.

Let us define

ΩN =
{

for all t ∈ [0, T ], for all m ∈ {1, . . . ,M} we have N
(m)
[t−1,t] ≤ N

}
.

We therefore set

Bϕ = 1 if µ(m)
ϕ = 1 and Bϕ = ||Υk||∞N if (gϕ)

(m)
` = Υk. (5.5)

Note that on ΩN , for any ϕ ∈ Φ,

sup
t∈[0,T ],m

|ψ(m)
t (ϕ)| ≤ Bϕ.

Now, for each ϕ ∈ Φ, let us determine Vϕ that constitutes an upper bound of

Mϕ =

M∑
m=1

∫ T

0

[ψ
(m)
t (ϕ)]2dN

(m)
t .

Note that only one term in this sum is non-zero. We set

Vϕ = dT eN if µ(m)
ϕ = 1 and Vϕ = ||Υk||2∞dT eN 3 if (gϕ)

(m)
` = Υk, (5.6)

where dT e denotes the smallest integer larger than T . With this choice, one has that
ΩN ⊂ ΩV,B , which leads to the following result.

Corollary 3. Assume that the Hawkes process is stationary, that (5.3) is satisfied and
that the spectral radius of Γ is strictly smaller than 1. With the choices (5.5) and (5.6),

P(ΩV,B) ≥ P(ΩN ) ≥ 1− C1T exp(−C2N ),

where C1 and C2 are positive constants depending on f0.
If N � log(T ), then for all β > 0,

P(ΩcV,B) ≤ P(ΩcN ) = o(T−β).

We are now ready to apply Theorem 2.

Corollary 4. Assume that the Hawkes process is stationary, that (5.3) is satisfied and
that the spectral radius of Γ is strictly smaller than 1. Assume that the dictionary Φ
is built as previously from an orthonormal family (Υk)k=1,...,K . With the notations of
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Theorem 2, let Bϕ be defined by (5.5) and dϕ be defined accordingly with x = α log(T ).
Then, with probability larger than

1− 4(M +M2K)

 log
(

1 + µdTeN
α log(T )

)
log(1 + ε)

+ 1

T−α − P(ΩcN )− P(Ωcc),

1

T
||f̂ − f0||2T ≤ C inf

a∈RΦ

 1

T
‖f0 − fa‖2T +

∑
ϕ∈S(a)

(
log(T )(ψ(ϕ))2 •NT

T 2
+
B2
ϕ log2(T )

T 2

) ,

where C is a constant depending on f0, µ, ε, and α.
From an asymptotic point of view, if the dictionary also satisfies (5.4), and if N =

log2(T ) in (5.5), then for T large enough with probability larger than 1−C1K log(T )T−α

1

T
||f̂ − f0||2T ≤ C2 inf

a∈RΦ

 1

T
‖f0 − fa‖2T +

log3(T )

T

∑
ϕ∈S(a)

[
1

T
||ϕ||2T +

log7/2(T )√
T

||Φ||2∞

] ,

where C1 and C2 are constants depending on M , f0, µ, ε, and α.

We express the oracle inequality by using 1
T ||.||T simply because, when T goes to +∞,

by ergodicity of the process (see for instance [24], and Proposition 3 for a non asymptotic
statement),

1

T
||f ||2T =

M∑
m=1

1

T

∫ T

0

(κt(f
(m)))2dt −→

M∑
m=1

Q(f (m), f (m))

under assumptions of Proposition 5. Note that the right hand side is a true norm on H
by Proposition 4. Note also that

log7/2(T )√
T

||Φ||2∞
T→∞→ 0,

as soon as (5.4) is satisfied for the Fourier basis and compactly supported wavelets. It is

also the case for histograms as soon as K = o
( √

T
log7/2(T )

)
. Therefore, this term can be

viewed as a residual one. In those cases, the last inequality can be rewritten as

1

T
||f̂ − f0||2T ≤ C inf

a∈RΦ

 1

T
‖f0 − fa‖2T +

log3(T )

T

∑
ϕ∈S(a)

1

T
||ϕ||2T

 ,

for a different constant C, the probability of this event tending to 1 as soon as α ≥ 1/2 in
the Fourier and histogram cases and α ≥ 2/5 for the compactly supported wavelet basis.
Once again, as mentioned for the Poisson or Aalen models, the right hand side corre-
sponds to a classical ”bias-variance” trade off and we obtain a classical oracle inequality
up to the logarithmic terms. Note that asymptotics is now with respect to T and not
with respect to M as for Poisson or Aalen models. So, the same result, namely Theorem
2, allows to consider both asymptotics.
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6. Simulations for the multivariate Hawkes process

This section is devoted to illustrations of our procedure on simulated data of multivari-
ate Hawkes processes and comparisons with the well-known adaptive Lasso procedure
proposed by [64]. We consider the general case and we do no longer assume that the

functions h
(m)
` are nonnegative as in Section 5. However, if the parameter ν(m) is large

with respect to the h
(m)
` ’s, then ψ(m)(f0) is nonnegative with large probability and there-

fore λ(m) = ψ(m)(f0) with large probability. Hence, Theorem 2 implies that f̂ is close to
f0.

6.1. Description of the Data

As mentioned in the introduction, Hawkes processes can be used in neuroscience to model
the action potentials of individual neurons. So, we perform simulations whose parameters
are close, to some extent, to real neuronal data. For a given neuron m ∈ {1, . . . ,M}, we
recall that its activity is modeled by a point process N (m) whose intensity is

λ
(m)
t =

(
ν(m) +

M∑
`=1

∫ t−

−∞
h

(m)
` (t− u)dN (`)(u)

)
+

.

The interaction function h
(m)
` represents the influence of the past activity of the neuron

` on the neuron m. The spontaneous rate ν(m) may somehow represent the external exci-
tation linked to all the other neurons that are not recorded. It is consequently of crucial
importance not only to correctly infer the interaction functions, but also to reconstruct
the spontaneous rates accurately. Usually, activity up to 10 neurons can be recorded in
a ”stationary” phase during a few seconds (sometimes up to one minute). Typically, the
points frequency is of the order of 10-80 Hz and the interaction range between points is
of the order of a few milliseconds (up to 20 or 40 ms). We first lead three experiments in
the pure excitation case where all the interaction functions are nonnegative by simulating
multivariate Hawkes processes (two with M = 2, one with M = 8) based on these typical
values. More precisely, we take for any m ∈ {1, . . . ,M}, ν(m) = 20 and the interaction

functions h
(m)
` are defined as follows (supports of all the functions are assumed to lie in

the interval [0, 0.04]):

• Experiment 1: M = 2 and piecewise constant functions.

h
(1)
1 = 30× 1(0,0.02], h

(1)
2 = 30× 1(0,0.01], h

(2)
1 = 30× 1(0.01,0.02], h

(2)
2 = 0.

In this case, each neuron depends on the other one. The spectral radius of the
matrix Γ is 0.725.

• Experiment 2: M = 2 and ”smooth” functions. In this experiment, h
(1)
1 and

h
(2)
1 are not piecewise constant.

h
(1)
1 (x) = 100 e−200x × 1(0,0.04](x), h

(1)
2 (x) = 30× 1(0,0.02](x),
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Figure 1. Raster plots of two data sets with T = 2 corresponding to Experiment 2 on the left and
Experiment 3 on the right. The x-axis correspond to the time of the experiment. Each line with ordinate
m corresponds to the points of the process N(m). From bottom to top, we observe 124 and 103 points
for Experiment 2 and 101, 60, 117, 38, 73, 75, 86 and 86 points for Experiment 3.

h
(2)
1 (x) =

1

0.008
√

2π
e−

(x−0.02)2

2∗0.0042 × 1(0,0.04](x), h
(2)
2 (x) = 0.

In this case, each neuron depends on the other one as well. The spectral radius of
the matrix Γ is 0.711.

• Experiment 3: M = 8 and piecewise constant functions.

h
(1)
2 = h

(1)
3 = h

(2)
2 = h

(3)
1 = h

(3)
2 = h

(5)
8 = h

(6)
5 = h

(7)
6 = h

(8)
7 = 25× 1(0,0.02]

and all the other 55 interaction functions are equal to 0. Note in particular that this
leads to 3 independent groups of dependent neurons {1, 2, 3}, {4} and {5, 6, 7, 8}.
The spectral radius of the matrix Γ is 0.5.

We also lead one experiment in the pure inhibition case where all the interaction functions
are nonpositive:

• Experiment 4: M = 2. In this experiment, the interaction functions are the oppo-
site of the functions introduced in Experiment 2. We take for any m ∈ {1, . . . ,M},
ν(m) = 60 so that ψt(f0) is positive with high probability.

For each simulation, we let the process ”warm up” during 1 second to reach the
stationary state1. Then the data are collected by taking recordings during the next T
seconds. For instance, we record about 100 points per neuron when T = 2 and 1000
points when T = 20. Figure 1 shows two instances of data sets with T = 2.

1Note that since the size of the support of the interaction functions is less or equal to 0.04, the ”warm
up” period is 25 times the interaction range.
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6.2. Description of the methods

To avoid approximation errors when computing the matrix G, we focus on a dictio-
nary (Υk)k=1,...,K whose functions are piecewise constant. More precisely, we take Υk =
δ−1/2

1((k−1)δ,kδ] with δ = 0.04/K and K, the size of the dictionary, is chosen later.
Our practical procedure strongly relies on the theoretical one based on the dϕ’s defined

in (2.8), with x, µ and ε to be specified. First, using Corollary 4, we naturally take
x = α log(T ). Then, three hyperparameters would need to be tuned, namely α, µ and ε,
if we directly used the Lasso estimate of Theorem 2. So, for simplifications, we implement
our procedure by replacing the Lasso parameters dϕwith

d̃ϕ(γ) =
√

2γ log(T )(ψ(ϕ))2 •NT +
γ log(T )

3
sup

t∈[0,T ],m

|ψ(m)
t (ϕ)|,

where γ is a constant to be tuned. Besides taking x = α log(T ), our modification consists

in neglecting the linear part
B2
ϕx

µ−φ(µ) in V̂ µ and replacing Bϕ with supt∈[0,T ],m |ψ
(m)
t (ϕ)|.

Then, note that, up to these modifications, the choice γ = 1 corresponds to the limit
case where α→ 1, ε→ 0 and µ→ 0 in the definition of the dϕ’s (see the comments after
Theorem 2). Note also that, under the slight abuse consisting in identifying Bϕ with

supt∈[0,T ],m |ψ
(m)
t (ϕ)|, for every parameter µ, ε and α of Theorem 2 with x = α ln(T ),

one can find two parameters γ and γ′ such that

d̃ϕ(γ) ≤ dϕ ≤ d̃ϕ(γ′).

Therefore, this practical choice is consistent with the theory and tuning hyperparameters
reduces to only tuning γ. Our simulation study will provide sound answers to the question
of tuning γ.

We compute the Lasso estimate by using the shooting method of [28] and the R-package
Lassoshooting. In particular, we need to invert the matrix G. In all simulations, this
matrix was invertible, which is consistent with the fact that Ωc happens with large
probability. Note also that the value of c, namely the smallest eigenvalue of G, can be
very small (about 10−4) whereas the largest eigenvalue is potentially as large as 105, both
values highly depending on the simulation and on T . Fortunately, those values are not
needed to compute our Lasso estimate. Since it is based on Bernstein type inequalities,
our Lasso method is denoted B in the sequel.

Due to their soft thresholding nature, Lasso methods are known to underestimate the
coefficients [42, 64]. To overcome biases in estimation due to shrinkage, we propose a two
steps procedure, as usually suggested in the literature: Once the support of the vector
has been estimated by B, we compute the ordinary least-square estimator among the
vectors a having the same support, which provides the final estimate. This method is
denoted BO in the sequel.

Another popular method is adaptive Lasso proposed by Zou [64]. This method over-
comes the flaws of standard Lasso by taking `1-weights of the form

daϕ(γ) =
γ

2|âoϕ|p
,
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where p > 0, γ > 0 and âoϕ is a preliminary consistent estimate of the true coefficient.
Even if the shapes of the weights are different, the latter are data-driven and this method
constitutes a natural competitive method with ours. The most usual choice, which is
adopted in the sequel, consists in taking p = 1 and the ordinary least squares estimate for
the preliminary estimate (see [35, 61, 64]). Then, penalization is stronger for coefficients
that are preliminary estimated by small values of the ordinary least square estimate. In
the literature, the parameter γ of adaptive Lasso is usually tuned by cross-validation,
but this does not make sense for Hawkes data that are fully dependent. Therefore, a
preliminary study has been performed to provide meaningful values for γ. Results are
given in the next section. This adaptive Lasso method is denoted A in the sequel and
AO when combined with ordinary least squares in the same way as for BO.

Simulations are performed in R. The computational time is small (merely a few seconds
for one estimate even when M = 8, T = 20 and K = 8 on a classical laptop computer),
which constitutes a clear improvement with respect to existing adaptive methods for
Hawkes processes. For instance, the ”Islands” method2 of [52] is limited to the estimation
of one or two dozens of coefficients at most, because of an extreme computational memory
cost whereas here when M = 8 and K = 8, we can easily deal with M + KM2 = 520
coefficients.

6.3. Results

First, we provide in Figure 2 reconstructions by using the OLS estimate on the whole
dictionary, which corresponds to the case where all the weights dϕ are null. As expected,
reconstructions are not sparse and also bad due to a small signal to noise ratio (remember
that T = 2).

Now let us consider methods leading to sparsity. A precise study over 100 simulations
has been carried out corresponding to Experiments 1 and 3 for which we can precisely
check if the support of the vector â is the correct one. For each method, we have selected
3 values for the hyperparameter γ based on results of preliminary simulations. Before
studying mean squared errors, we investigate the following problems that are stated in
order of importance. We wonder whether our procedure can identify:

- the dependency groups. Recall that two neurons belong to the same group if
and only if they are connected directly or through the intermediary of one or several
neurons. This issue is essential from the neurobiological point of view since knowing
interactions between two neurons is of capital importance.

- the non-zero interaction functions h
(m)
` ’s and non-zero spontaneous rates

ν(m)’s. For `,m ∈ {1, . . . ,M}, the neuron ` has a significative direct interaction on

neuron m if and only if h
(m)
` 6= 0;

- the non-zero coefficients of non-zero interaction functions. This issue is
more mathematical. However, it may provide information about the maximal range

2This method developed for M = 1 could easily be theoretically adapted for larger values of M , but
its extreme computational cost prevents us from using it in practice.
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Figure 2. Reconstructions corresponding to Experiment 2 with the OLS estimate with T = 2 and

K = 8. Each line m represents the function h
(m)
` , for ` = 1, 2. The spontaneous rates associated with

each line m are given above the graphs where S∗ denotes the true spontaneous rate and its estimator
is denoted by SO. The true interactions functions are plotted in black whereas the OLS estimates are
plotted in magenta.

for direct interactions between two given neurons or about the favored delay of
interaction.

Note that the dependency groups are the only features that can be detected by classical
analysis tools of neuroscience, such as the Unitary Events method [31]. In particular, to
the best of our knowledge, identification of the non-zero interaction functions inside a
dependency group is a problem that has not been solved yet as far as we know.

Results for our method and for adaptive Lasso can be found in Table 1. This prelim-
inary study also provides answers for tuning issues. The line ”DG” gives the number of
correct identifications of dependency groups. For instance, for M = 8, ”DG” gives the
number of simulations for which the 3 dependency groups {1, 2, 3}, {4} and {5, 6, 7, 8}
are recovered by the methods. When M = 2, both methods correctly find that neurons
1 and 2 are dependent, even if T = 2. When 8 neurons are considered, the estimates
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should find 3 dependency groups. We see that even with T = 2, our method with γ = 1
correctly guesses the dependency groups for 32% of the simulations. It’s close or equal
to 100% when T = 20 with γ = 1 or γ = 2. The adaptive Lasso has to take γ = 1000
for T = 2 and T = 20 to obtain as convincing results. Clearly, smaller choices of γ for
adaptive Lasso leads to bad estimations of the dependency groups. Next, let us focus on
the detection of non-zero spontaneous rates. Whatever the experiment and the parame-
ter γ, our method is optimal whereas adaptive Lasso misses some non-zero spontaneous
rates when T = 2. Under this criterion, for adaptive Lasso, the choice γ = 1000 is clearly
bad when T = 2 (the optimal value of S is S = 2 when M = 2 and S = 8 when M = 8)
on both experiments, whereas γ = 2 or γ = 200 is better. Not surprisingly, the number
of additional non-zero functions and additional non-zero coefficients decreases when T
grows and when γ grows, whatever the method whereas the number of missing functions
or coefficients increases. We can conclude from these facts and from further analysis of
Table 1 that the choice γ = 0.5 for our method and the choice γ = 2 for the adaptive
Lasso are wrong choices of the tuning parameters. In conclusion of this preliminary study,
our method with γ = 1 or γ = 2 seems a good choice and is robust with respect to T .
When T = 20, the optimal choice for adaptive Lasso is γ = 1000. When T = 2, the
choice is not so clear and depends on the criterion we wish to favor.

Now let us look at mean squared errors (MSE). Since the spontaneous rates do not
behave like the other coefficients, we split the MSE in two parts: one for the spontaneous
rates:

SpontMSE =

M∑
m=1

(ν̂(m) − ν(m))2,

and one for interactions:

InterMSE =

M∑
m=1

M∑
`=1

∫
(ĥ

(m)
` (t)− h(m)

` (t))2dt.

We still report the results for B, BO, A and AO in Table 1. Our comments mostly focus
on cases where the results for the previous study are good. First, note that results on such
cases are better by using the second step (OLS). Furthermore, MSE is increasing with
γ for B and A, since underestimation is stronger when γ increases. This phenomenon
does not appear for two step procedures, which leads to a more stable MSE. For adaptive
Lasso, when T = 2, the choice γ = 200 leads to good MSE, but the MSE are smaller for
BO with γ = 1. When T = 20, the choice γ = 1000 for AO leads to results that are
of the same magnitude as the ones obtained by BO with γ = 1 or 2. Still for T = 20,
results for the estimate B are worse than results for A. It is due to the fact that shrinkage
is larger in our method for the coefficients we want to keep than shrinkage of adaptive
Lasso that becomes negligible as soon as the true coefficients are large enough. However
the second step overcomes this problem.

Note also that a more thorough study of the tuning parameter γ has been performed
by [5] where it is mathematically proved that the choice γ < 1 leads to very degener-
ate estimates in the density setting. Their method for choosing Lasso parameters being
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Figure 3. Reconstructions corresponding to Experiment 2 with T = 2 and K = 8. Each line m

represents the function h
(m)
` , for ` = 1, 2. The spontaneous rates estimation associated with each line m

is given above the graphs: S∗ denotes the true spontaneous rate and its estimators computed by using
B, BO and A respectively are denoted by SB, SBO and SA. The true interactions functions (in black)
are reconstructed by using B, BO and A providing reconstructions in green, red and blue respectively.
We use γ = 1 for B and BO and γ = 200 for A.

analogous to ours, it seems coherent to obtain worse MSE for γ = 0.5 than for γ = 1
or γ = 2, at least for BO. The boundary γ = 1 in their simulation study seems to be a
robust choice there, and it seems to be the case here too.

We now provide some reconstructions by using Lasso methods. Figures 3 and 4 give
the reconstructions corresponding to Experiment 2 (M = 2) with K = 8 for T = 2
and T = 20 respectively. The reconstructions are quite satisfying. Of course, the quality
improves when T grows. We also note improvements by using BO instead of B. For
adaptive Lasso, improvements by using the second step are not significative and this
is the reason why we do not represent reconstructions with AO. Graphs of the right
hand side of Figure 3 illustrate the difficulties of adaptive Lasso to recover the exact

support of interactions functions, namely h
(1)
2 and h

(2)
2 for T = 2. Figure 5 provides

another illustration in the case of Experiment 3 (M = 8) with K = 8 for T = 20. For
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Figure 4. Reconstructions corresponding to Experiment 2 with T = 20 and K = 8. Same convention
as in Figure 3. We use γ = 1 for B and BO and γ = 1000 for A.

the sake of clarity, we only represent reconstructions for the first 4 neurons. From the
estimation point of view, this illustration provides a clear hierarchy between the methods:
BO seems to achieve the best results and B the worst. Finally, Figure 6 shows that even
in the inhibition case, we are able to recover the negative interactions.

6.4. Conclusions

With respect to the problem of tuning our methodology based on Bernstein type inequal-
ities, our simulation study is coherent with theoretical aspects since we achieve our best
results by taking γ = 1, which constitutes the limit case of assumptions of Theorem 2.
For practical aspects, we recommend the choice γ = 1 even if γ = 2 is acceptable. More
importantly, this choice is robust with respect to the duration of recordings, which is not
the case for adaptive Lasso. Implemented with γ = 1, our method outperforms adaptive
Lasso and it is able to recover the dependency groups, the non-zero spontaneous rates, the
non-zero functions and even the non-zero coefficients as soon as T is large enough. Most
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Figure 6. Reconstructions corresponding to Experiment 4 with T = 20 and K = 8. Same conventions
as in Figure 3. We use γ = 1 for B and BO and γ = 1000 for A.

of the time, the two step procedure BO seems to achieve the best results for parameter
estimation.

It is important to note that the question of tuning adaptive Lasso remains open. Some
values of γ allow us to obtain very good results but they are not robust with respect to
T , which may constitute a serious problem for practitioners. In the standard regression
setting, this problem may be overcome by using cross-validation on independent data,
which somehow estimates random fluctuations. But in this multivariate Hawkes setup,
independence assumptions on data cannot be made and this explains the problems for
tuning adaptive Lasso. Our method based on Bernstein type concentration inequalities
takes into account those fluctuations. It also takes into account the nature of the coeffi-
cients and the variability of their estimates which differ for spontaneous rates on the one
hand and coefficients of interaction functions on the other hand. The shape of weights
of adaptive Lasso does not incorporate this difference, which explains the contradictions
for tuning the method when T = 2. For instance, in some cases, adaptive Lasso tends to
estimate some spontaneous rates to zero in order to achieve better performance on the
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interaction functions.

7. Proofs

This section is devoted to the proofs of the results of the paper. Throughout, C is a
constant whose value may change from line to line.

7.1. Proof of Theorem 1

The proof of Theorem 1 is standard (see for instance [18]), but for the sake of complete-
ness, we give it. We use ||.||`2 for the Euclidian norm of RΦ. Given a recall that

fa =
∑
ϕ∈Φ

aϕϕ.

Then, we have f̂ = fâ,
a′b = ψ(fa) •NT

and
a′Ga = ||fa||2T = ||ψ(fa)||2proc.

Then,

−2ψ(fâ) •NT + ||fâ||2T + 2d′|â| ≤ −2ψ(fa) •NT + ||fa||2T + 2d′|a|.

So,

||ψ(fâ)− λ||2proc = ||ψ(fâ)||2proc + ||λ||2proc − 2 < ψ(fâ), λ >proc

≤ ||ψ(fa)||2proc + ||λ||2proc + 2ψ(fâ − fa) •NT
+2d′ (|a| − |â|)− 2 < ψ(fâ), λ >proc

= ||ψ(fa)− λ||2proc + 2 < ψ(fa − fâ), λ >proc

+2ψ(fâ − fa) •NT + 2d′ (|a| − |â|)
= ||ψ(fa)− λ||2proc + 2ψ(fa − fâ) • (Λ−N)T + 2d′ (|a| − |â|)

= ||ψ(fa)− λ||2proc + 2
∑
ϕ∈Φ

(aϕ − âϕ)ψ(ϕ) • (Λ−N)T + 2d′ (|a| − |â|)

≤ ||ψ(fa)− λ||2proc + 2
∑
ϕ∈Φ

|aϕ − âϕ| × |b̄ϕ − bϕ|+ 2d′ (|a| − |â|) .

Using (2.5), we obtain:

||ψ(fâ)− λ||2proc ≤ ||ψ(fa)− λ||2proc + 2
∑
ϕ∈Φ

dϕ|aϕ − âϕ|+ 2
∑
ϕ∈Φ

dϕ (|aϕ| − |âϕ|)

≤ ||ψ(fa)− λ||2proc + 2
∑
ϕ∈Φ

dϕ (|aϕ − âϕ|+ |aϕ| − |âϕ|) .
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Now, if ϕ 6∈ S(a), |aϕ − âϕ|+ |aϕ| − |âϕ| = 0, and

||ψ(fâ)− λ||2proc ≤ ||ψ(fa)− λ||2proc + 2
∑

ϕ∈S(a)

dϕ (|aϕ − âϕ|+ |aϕ| − |âϕ|)

≤ ||ψ(fa)− λ||2proc + 4
∑

ϕ∈S(a)

dϕ (|aϕ − âϕ|)

≤ ||ψ(fa)− λ||2proc + 4||â− a||`2

 ∑
ϕ∈S(a)

d2
ϕ

1/2

.

We now use the assumption on the Gram matrix given by (2.4) and the triangular
inequality for ||.||T , which yields

||â− a||2`2 ≤ c−1 (â− a)
′
G (â− a)

= c−1||fâ − fa||2T
≤ 2c−1

(
||ψ(fâ)− λ||2proc + ||ψ(fa)− λ||2proc

)
.

Let us take α ∈ (0, 1). Since for any x ∈ R and any y ∈ R, 2xy ≤ αx2 +α−1y2, we obtain:

||ψ(fâ)− λ||2proc ≤ ||ψ(fa)− λ||2proc

+4
√

2c−1/2
√
||ψ(fâ)− λ||2proc + ||ψ(fa)− λ||2proc

 ∑
ϕ∈S(a)

d2
ϕ

1/2

≤ ||ψ(fa)− λ||2proc

+α
(
||ψ(fâ)− λ||2proc + ||ψ(fa)− λ||2proc

)
+ 8α−1c−1

∑
ϕ∈S(a)

d2
ϕ

≤ (1− α)−1

(1 + α)||ψ(fa)− λ||2proc + 8α−1c−1
∑

ϕ∈S(a)

d2
ϕ

 .

The theorem is proved just by taking an arbitrary absolute value for α ∈ (0, 1).

7.2. Proof of Theorem 2

Let us first define
T = {t ≥ 0 / sup

m
|ψ(m)
t (ϕ)| > Bϕ}. (7.1)

Let us define the stopping time τ ′ = inf T and the predictible process H by

H
(m)
t = ψ

(m)
t (ϕ)1t≤τ ′ .

Let us apply Theorem 3 to this choice of H with τ = T and B = Bϕ. The choice of v
and w will be given later on. To apply this result, we need to check that for all t and all
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ξ ∈ (0, 3),
∑
m

∫ t
0
e
ξ
H

(m)
s
Bϕ λ

(m)
s ds is a.s. finite. But if t > τ ′, then∫ t

0

e
ξ
H

(m)
s
Bϕ λ(m)

s ds =

∫ τ ′

0

e
ξ
H

(m)
s
Bϕ λ(m)

s ds+

∫ t

τ ′
λ(m)
s ds,

where the second part is obviously finite (it is just Λ
(m)
t − Λ

(m)
τ ′ .) Hence it remains to

prove that for all t ≤ τ ′, ∫ t

0

e
ξ
H

(m)
s
Bϕ λ(m)

s ds

is finite. But for all s < t, s < τ ′ and consequently s 6∈ T . Therefore |H(m)
s | ≤ Bϕ. Since

we are integrating with respect to the Lebesgue measure, the fact that it eventually does
not hold in t is not a problem and∫ t

0

e
ξ
H

(m)
s
Bϕ λ(m)

s ds ≤ eξΛ(m)
t ,

which is obviously finite a.s. The same reasoning can be applied to show that a.s.
exp(ξH2/B2) • Λt < ∞. We can also apply Theorem 3 to −H in the same way. We
obtain at the end that for all ε > 0

P
(
|H • (N − Λ)T | ≥

√
2(1 + ε)V̂ µx+

Bϕx

3
and w ≤ V̂ µ ≤ v and sup

m,t≤T
|H(m)

t | ≤ Bϕ
)

≤ 4

(
log(v/w)

log(1 + ε)
+ 1

)
e−x. (7.2)

But on ΩV,B it is clear that ∀t ∈ [0, T ], t 6∈ T . Therefore τ ′ ≥ T . Therefore for all t ≤ T ,

one also has t ≤ τ ′ and H
(m)
t = ψ

(m)
t (ϕ). Consequently, on ΩV,B ,

H • (N − Λ)T = bϕ − b̄ϕ and V̂ µ = V̂ µϕ .

Moreover, on ΩV,B , one has that

B2
ϕx

µ− φ(µ)
≤ V̂ µϕ ≤

µ

µ− φ(µ)
Vϕ +

B2
ϕx

µ− φ(µ)
.

So, we take w and v as respectively the left and right hand side of the previous inequality.
Finally note that on ΩV,B ,

sup
m,t≤T

|H(m)
t | = sup

m,t≤T
|ψ(m)
t (ϕ)| ≤ Bϕ.

Hence, we can rewrite (7.2) as follows

P
(
|bϕ − b̄ϕ| ≥

√
2(1 + ε)V̂ µϕ x+

Bϕx

3
and ΩV,B

)
≤ 4

 log
(

1 +
µVϕ
B2
ϕx

)
log(1 + ε)

+ 1

 e−x.

(7.3)
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Apply this to all ϕ ∈ Φ, we obtain that

P
(
∃ϕ ∈ Φ s.t. |bϕ − b̄ϕ| ≥ dϕ and ΩV,B

)
≤ 4

∑
ϕ∈Φ

 log
(

1 +
µVϕ
B2
ϕx

)
log(1 + ε)

+ 1

 e−x.

Now on the event Ωc ∩ ΩV,B ∩ {∀ϕ ∈ Φ, |bϕ − b̄ϕ| ≤ dϕ}, one can apply Theorem 1. To
obtain Theorem 2, it remains to bound the probability of the complementary event by

P(Ωcc) + P(ΩcV,B) + P
(
∃ϕ ∈ Φ s.t. |bϕ − b̄ϕ| ≥ dϕ and ΩV,B

)
.

7.3. Proof of Theorem 3

First, replacing H with H/B, we can always assume that B = 1. Next, let us fix for the

moment ξ ∈ (0, 3). If one assumes that almost surely for all t > 0,
∑M
m=1

∫ t
0
eξH

(m)
s λ

(m)
s ds <

∞ (i.e. that the process eξH • Λ is well defined) then one can apply Theorem 2 of [8,
p165], stating that the process (Et)t≥0 defined for all t by

Et = exp(ξH • (N − Λ)t − φ(ξH) • Λt)

is a supermartingale. It is also the case for Et∧τ if τ is a bounded stopping time. Hence
for any ξ ∈ (0, 3) and for any x > 0, one has that

P(Et∧τ > ex) ≤ e−xE(Et∧τ ) ≤ e−x,

which means that

P(ξH • (N − Λ)t∧τ − φ(ξH) • Λt∧τ > x) ≤ e−x.

Therefore

P(ξH • (N − Λ)t∧τ − φ(ξH) • Λt∧τ > x and sup
s≤τ,m

|H(m)
s | ≤ 1) ≤ e−x.

But if sups≤τ,m |H
(m)
s | ≤ 1, then for any ξ > 0 and any s,

φ(ξH(m)
s ) ≤ (H(m)

s )2φ(ξ).

So, for every ξ ∈ (0, 3), we obtain:

P
(
Mτ ≥ ξ−1φ(ξ)H2 • Λτ + ξ−1x and sup

s≤τ,m
|H(m)

s | ≤ 1

)
≤ e−x. (7.4)

Now let us focus on the event H2 • Λτ ≤ v where v is a deterministic quantity. We have
that consequently

P
(
Mτ ≥ ξ−1φ(ξ)v + ξ−1x and H2 • Λτ ≤ v and sup

s≤τ,m
|H(m)

s | ≤ 1

)
≤ e−x.
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It remains to choose ξ such that ξ−1φ(ξ)v+ ξ−1x is minimal. But this expression has no
simple form. However, since 0 < ξ < 3, one can bound φ(ξ) by ξ2(1 − ξ/3)−1/2. Hence
we can start with

P
(
Mτ ≥

ξ

2(1− ξ/3)
H2 • Λτ + ξ−1x and sup

s≤τ,m
|H(m)

s | ≤ 1

)
≤ e−x (7.5)

and also

P
(
Mτ ≥

ξ

2(1− ξ/3)
v + ξ−1x and H2 • Λτ ≤ v and sup

s≤τ,m
|H(m)

s | ≤ 1

)
≤ e−x. (7.6)

It remains now to minimize ξ 7−→ ξ
2(1−ξ/3)v + ξ−1x.

Lemma 2. Let a, b and x be positive constants and let us consider on (0, 1/b),

g(ξ) =
aξ

(1− bξ)
+
x

ξ
.

Then minξ∈(0,1/b) g(ξ) = 2
√
ax+ bx and the minimum is achieved in ξ(a, b, x) = xb−

√
ax

xb2−a .

Proof. The limits of g in 0+ and (1/b)− are +∞. The derivative is given by

g′(ξ) =
a

(1− bξ)2
− x

ξ2

which is null in ξ(a, b, x) (remark that the other solution of the polynomial does not lie in
(0, 1/b)). Finally it remains to evaluate the quantity in ξ(a, b, x) to obtain the result.

Now, we apply (7.6) with ξ(v/2, 1/3, x) and we obtain this well known formula which
can be found in [57] for instance:

P
(
Mτ ≥

√
2vx+ x/3 and H2 • Λτ ≤ v and sup

s≤τ,m
|H(m)

s | ≤ 1

)
≤ e−x. (7.7)

Now we would like first to replace v by its random version H2 • Λτ . Let w, v be some
positive constants and let us concentrate on the event

w ≤ H2 • Λτ ≤ v. (7.8)

For all ε > 0 we introduce K a positive integer depending on ε, v and w such that
(1 + ε)Kw ≥ v. Note that K = dlog(v/w)/ log(1 + ε)e is a possible choice. Let us denote
v0 = w, v1 = (1+ε)w, ..., vK = (1+ε)Kw. For any 0 < ξ < 3 and any k in {0, ...,K−1},
one has, by applying (7.5),

P
(
Mτ ≥

ξ

2(1− ξ/3)
H2 • Λτ + ξ−1x and vk ≤ H2 • Λτ ≤ vk+1 and sup

s≤τ,m
|H(m)

s | ≤ 1

)
≤ e−x.
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This implies that

P
(
Mτ ≥

ξ

2(1− ξ/3)
vk+1 + ξ−1x and vk ≤ H2 • Λτ ≤ vk+1 and sup

s≤τ,m
|H(m)

s | ≤ 1

)
≤ e−x.

Using Lemma 2, with ξ = ξ(vk+1/2, 1/3, x), this gives

P
(
Mτ ≥

√
2vk+1x+ x/3 and vk ≤ H2 • Λτ ≤ vk+1 and sup

s≤τ,m
|H(m)

s | ≤ 1

)
≤ e−x.

But if vk ≤ H2 • Λτ , vk+1 ≤ (1 + ε)vk ≤ (1 + ε)H2 • Λτ , so

P
(
Mτ ≥

√
2(1 + ε) (H2 • Λτ )x+ x/3 and vk ≤ H2 • Λτ ≤ vk+1 and sup

s≤τ,m
|H(m)

s | ≤ 1

)
≤ e−x.

Finally summing on k, this gives

P
(
Mτ ≥

√
2(1 + ε)(H2 • Λτ )x+ x/3 and w ≤ H2 • Λτ ≤ v

and sup
s≤τ,m

|H(m)
s | ≤ 1

)
≤ Ke−x. (7.9)

This leads to the following result that has interest per se.

Proposition 6. Let N = (N (m))m=1,...,M be a multivariate counting process with pre-

dictable intensities λ
(m)
t and corresponding compensator Λ

(m)
t with respect to some given

filtration. Let B > 0. Let H = (H(m))m=1,...,M be a multivariate predictable process such
that for all ξ ∈ (0, 3), eξH/B •Λt <∞ a.s. for all t. Let us consider the martingale defined
for all t by

Mt = H • (N − Λ)t.

Let v > w be positive constants and let τ be a bounded stopping time. Then for any
ε, x > 0

P
(
Mτ ≥

√
2(1 + ε)(H2 • Λτ )x+

Bx

3
and w ≤ H2 • Λτ ≤ v

and sup
m,t≤τ

|H(m)
t | ≤ B

)
≤
(

log(v/w)

log(1 + ε)
+ 1

)
e−x. (7.10)

Next, we would like to replace H2 • Λτ , the quadratic characteristic of M , with its
estimator H2 • Nτ , i.e. the quadratic variation of M . For this purpose, let us con-

sider Wt = −H2 • (N − Λ)t which is still a martingale since the −(H
(m)
s )2’s are still

predictable processes. We apply (7.4) with µ instead of ξ, noticing that on the event

{sups≤τ,m |H
(m)
s | ≤ 1}, one has that H4 • Λτ ≤ H2 • Λτ . This gives that

P
(
H2 • Λτ ≥ H2 •Nτ + {φ(µ)/µ}H2 • Λτ + x/µ and sup

s≤τ,m
|H(m)

s | ≤ 1

)
≤ e−x,
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which means that

P
(
H2 • Λτ ≥ V̂ µ and sup

s≤τ,m
|H(m)

s | ≤ 1

)
≤ e−x. (7.11)

So we use again (7.5) combined with (7.11) to obtain that for all ξ ∈ (0, 3)

P
(
Mτ ≥

ξ

2(1− ξ/3)
V̂ µ + ξ−1x and sup

s≤τ,m
|H(m)

s | ≤ 1

)
≤

P
(
Mτ ≥

ξ

2(1− ξ/3)
V̂ µ + ξ−1x and sup

s≤τ,m
|H(m)

s | ≤ 1 and H2 • Λτ ≤ V̂ µ
)

+

+ P
(
H2 • Λτ ≥ V̂ µ and sup

s≤τ,m
|H(m)

s | ≤ 1

)
≤ 2e−x.

This new inequality replaces (7.5) and it remains to replace H2 •Λτ by V̂ µ in the peeling
arguments to obtain as before that

P
(
Mτ ≥

√
2(1 + ε)V̂ µx+ x/3 and w ≤ V̂ µ ≤ v and sup

s≤τ,m
|H(m)

s | ≤ 1

)
≤ 2Ke−x.

(7.12)

7.4. Proofs of the probabilistic results for Hawkes processes

7.4.1. Proof of Lemma 1

Let K(n) denote the vector of the number of descendants in the n’th generation from a
single ancestral point of type `, define K(0) = e` and let W (n) =

∑n
k=0K(k) denote the

total number of points in the first n generations. Define for θ ∈ RM

φ`(θ) = logE`eθ
TK(1).

Thus, φ`(θ) is the log-Laplace transform of the distribution of K(1) given that there
is a single initial ancestral point of type `. We define the vector φ(θ) by φ(θ)′ =
(φ1(θ), ..., φM (θ)). Note that φ only depends on the law of the number of children per
parent, i.e. it only depends on Γ. Then

E`eθ
TW (n) = E`

(
eθ
TW (n−1)E

(
eθ
TK(n) | K(n− 1), . . . , .K(1)

))
= E`

(
eθ
TW (n−1)eφ(θ)TK(n−1)

)
= E`e(θ+φ(θ))TK(n−1)+θTW (n−2)

Defining g(θ) = θ + φ(θ) we arrive by recursion at the formula

E`eθ
TW (n) = E`eg

◦(n−1)(θ)TK(1)+θTW (0)

= eφ(g◦(n−1)(θ))`+θ`

= eg
◦n(θ)` .
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where for any n, g◦(n) = g ◦ · · · ◦ g n times. Or, in other words, we have the following
representation

logE`eθ
TW (n) = g◦n(θ)`

of the log-Laplace transform of W (n).
Below we show that φ is a contraction in a neighborhood containing 0, that is, for

some r > 0 and a constant C < 1 (and a suitable norm), ||φ(s)|| ≤ C||s|| for ||s|| ≤ r. If
θ is chosen such that

||θ||
1− C

≤ r

we have ||θ|| ≤ r, and if we assume that g◦k(θ) ∈ B(0, r) for k = 1, . . . , n− 1 then

||g◦n(θ)|| ≤ ||θ||+ ||φ(g◦(n−1)(θ))||
≤ ||θ||+ C||g◦(n−1)(θ)||
≤ ||θ||

(
1 + C + C2 + . . .+ Cn

)
≤ r

Thus, by induction, g◦n(θ) ∈ B(0, r) for all n ≥ 1. Since n 7→ Wm(n) is increasing and
goes to Wm(∞) for n→∞, with Wm(∞) the total number of points in a cluster of type
m, and since W =

∑
mWm(∞) = 1TW (∞), we have by monotone convergence that for

ϑ ∈ R
logE`eϑW = lim

n→∞
g◦n(ϑ1)`.

By the previous result, the right hand side is bounded if |ϑ| is sufficiently small. This
completes the proof up to proving that φ is a contraction.

To this end we note that φ is continuously differentiable (on RM in fact, but a neigh-
borhood around 0 suffices) with derivative Dφ(0) = Γ at 0. Since the spectral radius of
Γ is strictly less than 1 there is a C < 1 and, by the Householder theorem, a norm || · ||
on RM such that for the induced operator norm of Γ we have

||Γ|| = max
x:||x||≤1

||Γx|| < C

Since the norm is continuous and Dφ(s) is likewise there is an r > 0 such that

||Dφ(s)|| ≤ C < 1

for ||s|| ≤ r. This, in turn, implies that φ is Lipschitz continuous in the ball B(0, r) with
Lipschitz constant C, and since φ(0) = 0 we get

||φ(s)|| ≤ C||s||

for ||s|| ≤ r. This ends the proof of the lemma.
Note that we have not at all used the explicit formula for φ above, which is obtainable

and simple since the offspring distributions are Poisson. The only thing we needed was
the fact that φ is defined in a neighborhood around 0, thus that the offspring distributions
are sufficiently light-tailed.

imsart-bj ver. 2013/03/06 file: LassoHawkesFinal.tex date: October 3, 2013



Lasso and probabilistic inequalities for multivariate point processes 45

7.4.2. Proof of Proposition 2

We use the cluster representation, and we note that any cluster with ancestral point in
[−n − 1,−n] must have at least n + 1 − dAe points in the cluster if any of the points

are to fall in [−A, 0). This follows from the assumption that all the h
(m)
` -functions have

support in [0, 1]. With ÑA,` the number of points in [−A, 0) from a cluster with ancestral
points of type ` we thus have the bound

ÑA,` ≤
∑
n

An∑
k=1

max{Wn,k − n+ dAe, 0}

where An is the number of ancestral points in [−n − 1,−n] of type ` and Wn,k is the
number of points in the respective clusters. Here the An’s and the Wn,k’s are all inde-
pendent, the An’s are Poisson distributed with mean ν` and the Wn,k’s are i.i.d. with
the same distribution as W in Lemma 1. Moreover,

Hn(ϑ`) := E`eϑ` max{W−n+dAe,0} ≤ P`(W ≤ n− dAe) + e−ϑ`(n−dAe)E`eϑ`W ,

which is finite for |ϑ`| sufficiently small according to Lemma 1. Then we can compute an
upper bound on the Laplace transform of ÑA,`:

Eeϑ`ÑA,` ≤
∏
n

E
An∏
k=1

E
(
eϑ` max{Wn,k−n+dAe,0} | An

)
≤

∏
n

EHn(ϑ`)
An

=
∏
n

eν`(Hn(ϑ`)−1)

= eν`
∑
n(Hn(ϑ`)−1)

Since Hn(ϑ`)−1 ≤ e−ϑ`(n−dAe)E`eϑ`W we have
∑
n(Hn(ϑ`)−1) <∞, which shows that

the upper bound is finite. To complete the proof, observe that N[−A,0) =
∑
` ÑA,` where

ÑA,` for ` = 1, . . . ,M are independent. Since all variables are positive, it is sufficient to
take θ = min` ϑ`.

7.4.3. Proof of Proposition 3

In this paragraph, the notation � simply denotes a generic positive absolute constant
that may change from line to line. The notation �θ1,θ2,... denotes a positive constant
depending on θ1, θ2, . . . that may change from line to line.

Let
u = C1σ log3/2(T )

√
T + C2b(log(T ))2+η, (7.13)
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where the choices of C1 and C2 will be given later. For any positive integer k such that
x := T/(2k) > A, we have by stationarity:

P
(∫ T

0

[Z ◦St(N)− E(Z)]dt ≥ u
)

= P

(
k−1∑
q=0

∫ 2qx+x

2qx

[Z ◦St(N)− E(Z)]dt

+

∫ 2qx+2x

2qx+x

[Z ◦St(N)− E(Z)]dt ≥ u
)

≤ 2P

(
k−1∑
q=0

∫ 2qx+x

2qx

[Z ◦St(N)− E(Z)]dt ≥ u

2

)
.

Similarly to [51], we introduce (M̃x
q )q a sequence of independent Hawkes processes, each

being stationary with intensities per mark given by ψ
(m)
t . For each q, we then introduce

Mx
q the truncated process associated with M̃x

q , where truncation means that we only
consider the points lying in [2qx−A, 2qx+ x]. So, if we set

Fq =

∫ 2qx+x

2qx

[Z ◦St(M
x
q )− E(Z)]dt,

P
(∫ T

0

[Z ◦St(N)− E(Z)]dt ≥ u
)
≤ 2P

(
k−1∑
q=0

Fq ≥
u

2

)
+ 2kP

(
Te >

T

2k
−A

)
, (7.14)

where Te represents the time to extinction of the process. More precisely Te is the last
point of the process if in the cluster representation only ancestral points before 0 are
appearing. For more details, see section 3 of [51]. So, denoting al the ancestral points
with marks l and H l

al
the length of the corresponding cluster whose origin is al, we have:

Te = max
l∈{1,...,M}

max
al

{
al +H l

al

}
.

But, for any a > 0,

P(Te ≤ a) = E

[
M∏
l=1

∏
al

E
[
1{al+Hlal≤a}

|al
]]

= E

[
M∏
l=1

∏
al

exp
(
log
(
P(H l

0 ≤ a− al)
))]

= E

[
M∏
l=1

exp

(∫ 0

−∞
log(P(H l

0 ≤ a− x))dÑ (l)
x

)]
,
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where Ñ (l) denotes the process associated with the ancestral points with marks l. So,

P(Te ≤ a) = exp

(
M∑
l=1

∫ 0

−∞

(
exp(log(P(H l

0 ≤ a− x)))− 1
)
ν(l)dx

)

= exp

(
−

M∑
l=1

ν(l)

∫ +∞

a

P(H l
0 > u)du

)
.

Now, by Lemma 1, there exists some ϑl > 0, such that cl = E`(eϑlW ) < +∞, where W
is the number of points in the cluster. But if all the interaction functions have support
in [0, 1], one always have that H l

0 < W . Hence

P(H l
0 > u) ≤ E[exp(ϑlH

l
0)] exp(−ϑlu)

≤ cl exp(−ϑlu).

So,

P(Te ≤ a) ≥ exp

(
−

M∑
l=1

ν(l)

∫ +∞

a

cl exp(−ϑlu)du

)

= exp

(
−

M∑
l=1

ν(l)cl/ϑl exp(−ϑla)

)

≥ 1−
M∑
l=1

ν(l)cl/ϑl exp(−ϑla).

So, there exists a constant Cα,f0,A depending on α,A, and f0 such that if we take k =
bCα,A,f0T/ log(T )c, then

kP
(
Te >

T

2k
−A

)
≤ T−α.

In this case x = T
2k ≈ log(T ) is larger than A for T large enough (depending on A,α, f0).

Now, let us focus on the first term B of (7.14), where

B = P

(
k−1∑
q=0

Fq ≥
u

2

)
.

Let us consider some Ñ where Ñ will be fixed later and let us define the measurable
events

Ωq =

{
sup
t
{Mx

q |[t−A,t)} ≤ Ñ
}
,

where Mx
q |[t−A,t) represents the set of points of Mx

q lying in [t−A, t). Let us also consider
Ω = ∩1≤q≤kΩq. Then

B ≤ P
(∑
q

Fq ≥ u/2 and Ω
)

+ P(Ωc).
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We have P(Ωc) ≤
∑
q P(Ωcq). Each Ωq can also be easily controlled. Indeed it is sufficient

to split [2qx−A, 2qx+ x] in intervals of size A (there are about �α,A,f0
log(T ) of those)

and require that the number of points in each subinterval is smaller than Ñ/2. By
stationarity, we obtain that

P(Ωcq) ≤ �α,A,f0 log(T )P(N[−A,0) > Ñ/2).

Using Proposition 2 with u = dÑ/2e+ 1/2, we obtain:

P(Ωcq) ≤ �α,A,f0
log(T ) exp(−�α,A,f0

Ñ ) and P(Ωc) ≤ �α,A,f0
T exp(−�α,A,f0

Ñ ).
(7.15)

Note that this control holds for any positive choice of Ñ . Hence this gives also the
following Lemma that will be used later.

Lemma 3. For any R > 0,

P
(
there exists t ∈ [0, T ] | Mx

q |[t−A,t) > R) ≤ �α,A,f0
T exp(−�α,A,f0

R).

Hence by taking Ñ = C3 log(T ) for C3 large enough this is smaller than �α,A,f0T
−α′ ,

where α′ = max(α, 2).
It remains to obtain the rate of D := P(

∑
q Fq ≥ u/2 and Ω). For any positive constant

θ that will be chosen later, we have:

D ≤ e−
θu
2 E

(
eθ

∑
q Fq

∏
q

1Ωq

)
≤ e−

θu
2

∏
q

E
(
eθFq1Ωq

)
(7.16)

since the variables (Mx
q )q are independent. But

E
(
eθFq1Ωq

)
= 1 + θE(Fq1Ωq ) +

∑
j≥2

θj

j!
E(F jq 1Ωq )

and E(Fq1Ωq ) = E(Fq)− E(Fq1Ωcq
) = −E(Fq1Ωcq

).
Next note that if for any integer l,

lÑ < sup
t
Mx
q |[t−A,t) ≤ (l + 1)Ñ

then
|Fq| ≤ xb[(l + 1)ηÑ η + 1] + xE(Z).
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Hence, cutting Ωcq in slices of the type {lÑ < suptM
x
q [t−A,t) ≤ (l + 1)Ñ } and using

Lemma 3, we obtain by taking C3 large enough,

|E(Fq1Ωq )| = |E(Fq1Ωcq
)| ≤

+∞∑
l=1

x(b[(l + 1)ηÑ η + 1] + |E(Z)|)×

P(there exists t ∈ [0, T ] | {Mx
q |[t−A,t)} > `Ñ )

≤ �α,A,f0

+∞∑
l=1

x(b[(l + 1)ηÑ η + 1] + |E(Z)|) log(T )e−�α,A,f0 lÑ

≤ �α,A,f0

+∞∑
l=1

x(bÑ η + |E(Z)|) log(T )2lηe−�α,A,f0 lÑ

≤ �α,η,A,f0
log2(T )bÑ η e−�α,A,f0 Ñ

1− 2ηe−�α,A,f0 Ñ

≤ z1 := �α,η,A,f0
bT−α

′
.

Note that in the previous inequalities, we have bounded |E(Z)| by bE[Nη
[−A,0)]. In the

same way, one can bound

E(F jq 1Ωq ) ≤ E(F 2
q 1Ωq )z

j−2
b ,

with zb := xb[Ñ η + 1] + xE(Z) = �α,η,A,f0b log(T )1+η. One can also note that by sta-
tionarity,

E(F 2
q 1Ωq ) ≤ xE

[∫ 2qx+x

2qx

[Z ◦ θs(Mx
q )− E(Z)]21{for all t,Mx

q |[t−A,t)≤Ñ}
ds

]
≤ xE

[∫ 2qx+x

2qx

[Z ◦ θs(Mx
q )− E(Z)]21{Mx

q |[s−A,s)≤Ñ}
ds

]
≤ x2E([Z(N)− E(Z)]21N[−A,0)≤Ñ )

≤ zv := �α,η,A,f0
(log(T ))2σ2.

Now let us go back to (7.16). We have that

D ≤ exp

−θu
2

+ k ln

1 + θz1 +
∑
j≥2

zvz
j−2
b

θj

j!


≤ exp

−θ (u
2
− kz1

)
+ k

∑
j≥2

zvz
j−2
b

θj

j!

 ,
using that ln(1 + u) ≤ u. It is sufficient now to recognize a step of the proof of the
Bernstein inequality (weak version see [41, p25]). Since kz1 = �α,η,sbT 1−α′/(log(T )),
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one can choose α′ > 1, C1 and C2 in the definition (7.13) of u (not depending on b) such
that u/2− kz1 ≥

√
2kzvz + 1

3zbz for some z = C4 log(T ), where C4 is a constant. Hence

D ≤ exp

−θ(√2kzvz +
1

3
zbz) + k

∑
j≥2

zvz
j−2
b

θj

j!

 .
One can choose accordingly θ (as for the proof of the Bernstein inequality) to obtain a
bound in e−z. It remains to choose C4 large enough and only depending on α, η,A and f0

to guarantee that D ≤ e−z ≤ �α,η,A,f0T
−α. This concludes the proof of the proposition.

7.4.4. Proof of Proposition 4

Let Q denote a measure such that under Q the distribution of the full point process
restricted to (−∞, 0] is identical to the distribution under P and such that on (0,∞) the
process consists of independent components each being a homogeneous Poisson process
with rate 1. Furthermore, the Poisson processes should be independent of the process on
(−∞, 0]. From Corollary 5.1.2 in [36] the likelihood process is given by

Lt = exp

(
Mt−

∑
m

∫ t

0

λ(m)
u du+

∑
m

∫ t

0

log λ(m)
u dN (m)

u

)

and we have for t ≥ 0 the relation

EPκt(f)2 = EQκt(f)2Lt, (7.17)

where EP and EQ denote the expectation with respect to P and Q respectively. Let,
furthermore, Ñ1 = N[−1,0) denote the total number of points on [−1, 0). Proposition 4
will be an easy consequence of the following lemma.

Lemma 4. If the point process is stationary under P, if

ed ≤ λ(m)
t ≤ a(N1 + Ñ1) + b

for t ∈ [0, 1] and for constants d ∈ R and a, b > 0, and if EP(1 + ε)Ñ1 < ∞ for some
ε > 0 then for any f ,

Q(f , f) ≥ ζ||f ||2 (7.18)

for some constant ζ > 0.

Proof. We use Hölders inequality on κ1(f)
2
pL

1
p

1 and κ1(f)
2
qL−

1
p

1 to get

EQκ1(f)2 ≤
(
EQκ1(f)2L1

) 1
p

(
EQκ1(f)2L−

q
p

1

) 1
q

= Q(f , f)
1
p

(
EQκ1(f)2L1−q

1

) 1
q

(7.19)

imsart-bj ver. 2013/03/06 file: LassoHawkesFinal.tex date: October 3, 2013



Lasso and probabilistic inequalities for multivariate point processes 51

where 1
p + 1

q = 1. We choose q ≥ 1 (and thus p) below to make q − 1 sufficiently small.
For the left hand side we have by independence of the homogeneous Poisson processes
that if f = (µ, (g`)`=1,...,M ),

EQκ1(f)2 = (EQκ1(f))2 + VQκ1(f)

=

(
µ+

∑
`

∫ 1

0

g`(u)du

)2

+
∑
`

∫ 1

0

g`(u)2du.

Exactly as on page 32 in [52] there exists c′ > 0 such that

EQκ1(f)2 ≥ c′
(
µ2 +

∑
`

∫ 1

0

g2
` (u)du

)
= c′||f ||2. (7.20)

To bound the second factor on the right hand side in (7.19) we observe, by assumption,
that we have the lower bound

L1 ≥ eM(1−b)e(d−aM)N1e−aMÑ1

on the likelihood process. Under Q we have that (κ1(f), N1) and Ñ1 are independent,
and with ρ = e(q−1)(aM−d) and ρ̃ = e(q−1)(aM) we get that

EQκ1(f)2L1−q
1 ≤ e(q−1)M(b−1)EQρ̃

Ñ1EQκ1(f)2ρN1 .

Here we choose q such that ρ̃ is sufficiently close to 1 to make sure that EQρ̃
Ñ1 = EPρ̃

Ñ1 <
∞ (see Proposition 2). Moreover, by Cauchy-Schwarz’ inequality

κ2
1(f) ≤

(
µ2 +

∑
`

∫ 1−

0

g2
` (1− u)dN (`)

u

)
(1 +N1). (7.21)

Under Q the point processes on (0,∞) are homogeneous Poisson processes with rate
1 and N1, the total number of points, is Poisson. This implies that conditionally on

(N
(1)
1 , . . . , N

(M)
1 ) = (n(1), . . . , n(M)) the n(m)-points for the m’th process are uniformly

distributed on [0, 1], hence

EQκ1(f)2L1−q
1 ≤

(
µ2 +

∑
`

∫ 1

0

g2
` (u)du

)
e(q−1)M(b−1)EQρ̃

Ñ1EQ(1 +N1)2ρN1︸ ︷︷ ︸
c′′

= c′′||f ||2.

(7.22)
Combining (7.20) and (7.22) with (7.19) we get that

c′||f ||2 ≤ (c′′)
1
q ||f ||

2
qQ(f , f)

1
p

or by rearranging that
Q(f , f) ≥ ζ||f ||2

with ζ = (c′)p/(c′′)p−1.
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For the Hawkes process it follows that if ν(m) > 0 and if

sup
t∈[0,1]

h
(m)
` (t) <∞

for l,m = 1, . . . ,M then for t ∈ [0, 1] we have ed ≤ λ(m)
t ≤ a(N1 + Ñ1) + b with

d = log ν(m), a = max
l

sup
t∈[0,1]

h
(m)
` (t), b = ν(m).

Proposition 2 proves that there exists ε > 0 such that EP(1 + ε)Ñ1 <∞. This completes
the proof of Proposition 4.

7.5. Proofs of the results of Sections 4.2 and 5.2

7.5.1. Proof of Propositions 5 and 1

We first prove Proposition 5. As in the proof of Proposition 3, we use the notation �.
Note that for any ϕ1 and any ϕ2 belonging to Φ,

Gϕ1,ϕ2
=

M∑
m=1

∫ T

0

κt(ϕ1
(m))κt(ϕ2

(m))dt

and E(Gϕ1,ϕ2
) = T

∑M
m=1Q(ϕ1

(m), ϕ2
(m)) by using (5.2). This implies that

E(a′Ga) = a′E(G)a = T
∑
m

Q(f (m)
a , f (m)

a ).

Hence by Proposition 4, E(a′Ga) ≥ Tζ
∑
m ||f

(m)
a ||2 = Tζ||fa||2 by definition of the norm

on H. Since Φ is an orthonormal system, this implies that E(a′Ga) ≥ Tζ||a||`2 . Hence,
to show that Ωc is a large event for some c > 0, it is sufficient to show that for some
0 < ε < ζ, with high probability, for any a ∈ RΦ,

|a′Ga− a′E(G)a| ≤ Tε||a||2`2 . (7.23)

Indeed, (7.23) implies that, with high probability, for any a ∈ RΦ,

a′Ga ≥ a′E(G)a− Tε||a||`2 ≥ T (ζ − ε)||a||`2 ,

and the choice c = T (ζ − ε) is convenient. So, first one has to control all the coefficients
of G− E(G). For all ϕ, ρ ∈ Φ, we apply Proposition 3 to

Z(N) =
∑
m

ψ
(m)
0 (ϕ)ψ

(m)
0 (ρ).
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Note that Z only depends on points lying in [−1, 0). Therefore, |Z(N)| ≤ 2M ||ϕ||∞||ρ||∞
(
1+

N2
[−1,0)

)
. This leads to

P

(
1

T

∣∣∣∣∣Gϕ,ρ − E(Gϕ,ρ)

∣∣∣∣∣ ≥ xϕ,ρ
)
≤ �β,f0T

−β

with
xϕ,ρ = �β,f0,M [σϕ,ρ log3/2(T )T−1/2 + ||ϕ||∞||ρ||∞ log4(T )T−1]

and

σ2
ϕ,ρ = E

[∑
m

ψ
(m)
0 (ϕ)ψ

(m)
0 (ρ)− E

(∑
m

ψ
(m)
0 (ϕ)ψ

(m)
0 (ρ)

)]2

1N[−1,0)≤Ñ

 .
Hence, with probability larger than 1−�β,f0

|Φ|2T−β one has that

|a′Ga− a′E(G)a| ≤ �β,f0

 ∑
ϕ,ρ∈Φ

|aϕ||aρ|[σϕ,ρ log3/2(T )T 1/2 + ||ϕ||∞||ρ||∞ log4(T )]

 .

Hence, for any positive constant δ chosen later,

|a′Ga− a′E(G)a| ≤ �β,f0

[
T
∑
ϕ,ρ∈Φ

|aϕ||aρ|
[
δ

σ2
ϕ,ρ

||ϕ||∞||ρ||∞

+

[
1

δ log(T )
+ 1

]
||ϕ||∞||ρ||∞

log4(T )

T

]]
. (7.24)

Now let us focus on E :=
∑
ϕ,ρ∈Φ |aϕ||aρ|

σ2
ϕ,ρ

||ϕ||∞||ρ||∞ . First, we have:

E ≤ 2
∑
ϕ,ρ∈Φ

|aϕ||aρ|
E([
∑
m ψ

(m)
0 (ϕ)ψ

(m)
0 (ρ)]21N[−1,0)≤Ñ ) + (E[

∑
m ψ

(m)
0 (ϕ)ψ

(m)
0 (ρ)])2

||ϕ||∞||ρ||∞

with Ñ := �β,f0
log(T ). Next,∑

m

ψ
(m)
0 (ϕ)ψ

(m)
0 (ρ) ≤ 2M ||ϕ||∞||ρ||∞(1 +N2

[−1,0)).

Hence, if N[−1,0) ≤ Ñ = �β,f0
log(T ), for T large enough,∑

m

ψ
(m)
0 (ϕ)ψ

(m)
0 (ρ) ≤ �β,M,f0

||ϕ||∞||ρ||∞ log2(T )

and
E(
∑
m

ψ
(m)
0 (ϕ)ψ

(m)
0 (ρ)) ≤ �β,M,f0

||ϕ||∞||ρ||∞ log2(T ).
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Hence,

E ≤ �β,M,f0
log2(T )

∑
ϕ,ρ∈Φ

|aϕ||aρ|E

(∣∣∣∑
m

ψ
(m)
0 (ϕ)ψ

(m)
0 (ρ)

∣∣∣) .
But note that for any f , |ψ(m)

0 (f)| ≤ ψ(m)
0 (|f |) where |f | = ((|µ(m)|, (|g(m)

` |)`=1,...,M )m=1,...,M .
Therefore,

E ≤ �β,M,f0
log2(T )

∑
ϕ,ρ∈Φ

|aϕ||aρ|E

(∑
m

ψ
(m)
0 (|ϕ|)ψ(m)

0 (|ρ|)
∣∣∣)

≤ �β,M,f0
log2(T )

∑
m

E


∑
ϕ∈Φ

|aϕ|ψ(m)
0 (|ϕ|)

2


≤ �β,M,f0
log2(T )

∑
m

E


ψ(m)

0

(∑
ϕ∈Φ

|aϕ||ϕ|
)2

 .

But if ϕ = (µ
(m)
ϕ , ((gϕ)

(m)
` )`)m, thenψ(m)

0

(∑
ϕ∈Φ

|aϕ||ϕ|
)2

=

[∑
ϕ

|aϕ|µ(m)
ϕ +

M∑
`=1

∫ 0−

−1

∑
ϕ

|aϕ||(gϕ)
(m)
` |(−u)dN (`)

u

]2

.

If one creates artificially a process N (0) with only one point and if we decide that (gϕ)
(m)
0

is the constant function equal to µ
(m)
ϕ , this can also be rewritten asψ(m)

0

(∑
ϕ∈Φ

|aϕ||ϕ|
)2

=

[
M∑
`=0

∫ 0−

−1

∑
ϕ

|aϕ||(gϕ)
(m)
` |(−u)dN (`)

u

]2

.

Now we apply the Cauchy-Schwarz inequality for the measure
∑
` dN (`), which givesψ(m)

0

(∑
ϕ∈Φ

|aϕ||ϕ|
)2

≤ (N[−1,0) + 1)

M∑
`=0

∫ 0−

−1

[∑
ϕ

|aϕ||(gϕ)
(m)
` |(−u)

]2

dN (`)
u .

Consequently,

E ≤ �β,M,f0 log2(T )

M∑
m=1

M∑
`=0

E

(
(N[−1,0) + 1)

∫ 0−

−1

[∑
ϕ

|aϕ||(gϕ)
(m)
` |(−u)

]2

dN (`)
u

)

≤ �β,M,f0 log2(T )

M∑
m=1

M∑
`=0

∑
ϕ,ρ∈Φ

|aϕ||aρ| ×

E
(∫ 0−

−1

(N[−1,0) + 1)|(gϕ)
(m)
` |(−u)|(gρ)(m)

` |(−u)dN (`)
u

)
.
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Now let us use the fact that for every x, y ≥ 0, η, θ > 0 that will be chosen later,

xy − ηeθx ≤ y

θ
[log(y)− log(ηθ)− 1] ,

with the convention that y log(y) = 0 if y = 0. Let us apply this to x = N[−1,0) + 1 and

y = |(gϕ)
(m)
` |(−u)|(gρ)(m)

` |(−u). We obtain that

E ≤ �β,M,f0η log2(T )

M∑
m=1

∑
ϕ,ρ∈Φ

|aϕ||aρ|E
(

(N[−1,0) + 1)eθ(N[−1,0)+1)
)

+

�β,M,f0θ
−1 log2(T )

M∑
m=1

M∑
`=0

∑
ϕ,ρ∈Φ

|aϕ||aρ|×

E

(∫ 0−

−1

|(gϕ)
(m)
` ||(gρ)(m)

` |(−u)
[
log(|(gϕ)

(m)
` ||(gρ)(m)

` |(−u))− log(ηθ)− 1
]

dN `
u

)
.

Since for ` > 0, dN
(`)
u is stationnary, one can replace E(dN

(`)
u ) by �f0

du. Moreover since
by Proposition 2, N[−1,0) has some exponential moments there exists θ = �f0

such that

E
(
(N[−1,0) + 1)eθ(N[−1,0)+1)

)
= �f0 . With |Φ| the size of the dictionary, this leads to

E ≤ �β,M,f0
η|Φ| log2(T )||a||2`2+

�β,M,f0
log2(T )

M∑
m=1

 ∑
ϕ,ρ∈Φ

|aϕ||aρ||µ(m)
ϕ ||µ(m)

ρ |
[
log(|µ(m)

ϕ ||µ(m)
ρ |)− log(ηθ)− 1

]
+

M∑
`=1

∑
ϕ,ρ∈Φ

|aϕ||aρ|
∫ 1

0

|(gϕ)
(m)
` ||(gρ)(m)

` |(u)
[
log(|(gϕ)

(m)
` ||(gρ)(m)

` |(u))− log(ηθ)− 1
]

du

 .
Consequently, using ||Φ||∞ and rΦ,

E ≤ �β,M,f0
η|Φ| log2(T )||a||2`2 + �β,M,f0

log2(T )rΦ[2 log(||Φ||∞)− log(ηθ)− 1]||a||2`2 .

We choose η = |Φ|−1 and obtain that

E ≤ �β,M,f0
log2(T )rΦ[log(||Φ||∞) + log(|Φ|)]||a||2`2 .

Now, let us choose δ = ω/(log2(T )rΦ[log(||Φ||∞) + log(|Φ|)]) where ω depends only on
β,M and f0 and will be chosen later and let us go back to (7.24):

1

T
|a′Ga− a′E(G)a| ≤ �β,M,f0

ω||a||2`2 + �β,f0,ωrΦ[log(||Φ||∞)

+ log(|Φ|)]
∑
ϕ,ρ∈Φ

|aϕ||aρ|||ϕ||∞||ρ||∞
log5(T )

T

≤ �β,M,f0
ω||a||2`2 + �β,f0,ω||a||2`2AΦ(T ).
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Under assumptions of Proposition 5, for T0 large enough and T ≥ T0,

1

T
|a′Ga− a′E(G)a| ≤ �β,M,f0

ω||a||2`2 .

It is now sufficient to take ω small enough and then T0 large enough to obtain (7.23)
with ε < ζ and Proposition 5 is proved.

Arguments for the proof of Proposition 1 are similar. So we just give a brief sketch of
the proof. Now,

Gϕ1,ϕ2
=

M∑
m=1

∫ 1

0

(
Y

(m)
t

)2
ϕ1(t,X(m))ϕ2(t,X(m))dt.

Let β > 0. With probability larger than 1− 2M−β ,

1

M
|Gϕ1,ϕ2 − E[Gϕ1,ϕ2 ]| ≤

√
2βvϕ1,ϕ2

logM

M
+
βbϕ1,ϕ2

logM

3M
,

with
bϕ1,ϕ2

= ‖ϕ1‖∞‖ϕ2‖∞,

vϕ1,ϕ2 = E
(∫ 1

0

(
Y

(m)
t

)2
ϕ1(t,X(m))ϕ2(t,X(m))dt

)2

≤ D‖ϕ1‖∞‖ϕ2‖∞〈|ϕ1|, |ϕ2|〉,

where 〈·, ·〉 denotes the standard L2-scalar product. We have just used the classical Bern-
stein inequality combined with (4.2). So, with probability larger than 1− 2|Φ|2M−β , for
any vector a and any δ > 0,

|a′Ga− E[a′Ga]| ≤ �D,β
∑
ϕ1,ϕ2

|aϕ1
||aϕ2

|[δM〈|ϕ1|, |ϕ2|〉+ δ−1 logM‖ϕ1‖∞‖ϕ2‖∞]

≤ �D,β(δMrΦ + δ−1‖Φ‖2∞|Φ| logM)‖a‖2`2 .

We choose δ =
√
‖Φ‖2∞|Φ| logM

MrΦ
, so that with probability larger than 1− 2|Φ|2M−β ,

1

M
|a′Ga− E[a′Ga]| ≤ �D,β

√
‖Φ‖2∞rΦ|Φ| logM

M
‖a‖2`2 .

We use (4.1) and (4.3) to conclude as for Proposition 5 and we obtain Proposition 1.

7.5.2. Proof of Corollary 3

First let us cut [−1, T ] in bT c+2 intervals I’s of the type [a, b) such that the first bT c+1
intervals are of length 1 and the last one is of length strictly smaller than 1 (eventually it
is just a singleton). Then, any interval of the type [t− 1, t] for t in [0, T ] is included into
the union of two such intervals. Therefore the event where all the NI ’s are smaller than
u = N/2 is included into ΩN . It remains to control the probability of the complementary
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of this event. By stationarity, all the first NI ’s have the same distribution and satisfy
Proposition 2. The last one can also be viewed as the truncation of a stationary point
process to an interval of length smaller than 1. Therefore the exponential inequality of
Proposition 2 also applies to the last interval. It remains to apply bT c + 2 times this
exponential inequality and to use a union bound.

7.5.3. Proof of Corollary 4

As in the proof of Proposition 3, we use the notation �. The non-asymptotic part of the
result is just a pure application of Theorem 2, with the choices of Bϕ and Vϕ given by
(5.5) and (5.6). The next step consists in controlling the martingale ψ(ϕ)2 • (N −Λ)T on
ΩV,B . To do so, let us apply (7.7) to H such that for any m,

H
(m)
t = ψ

(m)
t (ϕ)2

1t≤τ ′ ,

with B = B2
ϕ and τ = T and where τ ′ is defined in (7.1) (see the proof of Theorem 2).

The assumption to be fulfilled is checked as in the proof of Theorem 2. But as previously,
on ΩV,B , H • (N − Λ)T = ψ(ϕ)2 • (N − Λ)T and also H2 • ΛT = ψ(ϕ)4 • ΛT . Moreover
on ΩN ⊂ ΩV,B

H2 • ΛT = ψ(ϕ)4 • ΛT ≤ v := TM(max
m

ν(m) +N max
m,`

h
(m)
` )B4

ϕ.

Recall that x = α log(T ). So on ΩV,B , with probability larger than 1− (M+KM2)e−x =
1− (M +KM2)T−α, one has that for all ϕ ∈ Φ,

ψ(ϕ)2 •NT ≤ ψ(ϕ)2 • ΛT +
√

2vx+
B2
ϕx

3
.

So that for all ϕ ∈ Φ,

ψ(ϕ)2 •NT ≤ �M,f0

[
N||ϕ||2T + ||Φ||2∞N 2

√
TN log(T )

]
.

Also, since N = log2(T ), one can apply Corollary 3, with β = α. We finally choose c as
in Proposition 5. This leads to the result.
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