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Lasso and probabilistic inequalities for multivariate point processes

Niels Richard Hansen∗, Patricia Reynaud-Bouret† and Vincent Rivoirard‡

August 3, 2012

Abstract: Due to its low computational cost, Lasso is an attractive regularization method for high-

dimensional statistical settings. In this paper, we consider multivariate counting processes depending on an

unknown function to be estimated by linear combinations of a fixed dictionary. To select coefficients, we pro-

pose an adaptive `1-penalization methodology, where data-driven weights of the penalty are derived from new

Bernstein type inequalities for martingales. Oracle inequalities are established under assumptions on the Gram

matrix of the dictionary. Non-asymptotic probabilistic results for multivariate Hawkes processes are proven,

which allows us to check these assumptions by considering general dictionaries based on histograms, Fourier or

wavelet bases. Motivated by problems of neuronal activities inference, we finally lead a simulation study for

multivariate Hawkes processes and compare our methodology with the adaptive Lasso procedure proposed by

Zou in [57]. We observe an excellent behavior of our procedure with respect to the problem of supports recovery.

We rely on theoretical aspects for the essential question of tuning our methodology. Unlike adaptive Lasso of

[57], our tuning procedure is proven to be robust with respect to all the parameters of the problem, revealing

its potential for concrete purposes, in particular in neuroscience.

Mathematics Subject Classification: 62G05, 62M09, 60G55, 60E15.

Keywords: Multivariate counting process, Hawkes processes, adaptive estimation, Lasso procedure, Bernstein-

type inequalities.

1 Introduction

The Lasso, proposed by [51], is a well established method that achieves sparsity of an estimated parameter

vector via `1-penalization. In this paper, we focus on using Lasso to select and estimate coefficients in the basis

expansion of intensity processes for multivariate point processes.

Recent examples of applications of multivariate point processes include the modeling of multivariate neuron

spike data, [41], [38], stochastic kinetic modeling, [6], and the modeling of the distribution of ChIP-seq data

along the genome [19]. In the previous examples the intensity of a future occurrence of a point depends on the

history of all or some of the coordinates of the point processes, and it is of particular interest to estimate this

dependence. This can be achieved using a parametric family of models, as in several of the papers above. Our

aim is to provide a non-parametric method based on the Lasso.

The statistical properties of Lasso are particularly well understood in the context of regression with i.i.d.

errors or for density estimation where a range of oracle inequalities have been established. These inequalities,
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now widespread in the literature, provide theoretical error bounds that hold on events with a controllable

(large) probability. See for instance [4, 5, 12, 13, 14, 15, 53]. We refer the reader to [11] for an excellent

account on many state-of-the-art results. One main challenge in this context is to obtain as weak conditions

as possible on the design – or Gram – matrix. The other important challenge is to be able to provide an `1-

penalization procedure that provides excellent performances from both theoretical and practical points of view.

If standard Lasso proposed by [51] based on deterministic constant weights constitute a major contribution

from the methodological point of view, underestimation due to its shrinkage nature may lead to poor practical

performances in some contexts. Different two steps procedures have been suggested to overcome this drawback

(see [37, 55, 57]). Zou in [57] also discusses problems for standard Lasso to cope with variable selection and

consistency simultaneously. He overcomes these problems by introducing non-constant data-driven `1-weights

based on preliminary consistent estimates.

In this paper we consider an `1-penalized least squares criterion for the estimation of coefficients in the

expansion of a function parameter. As in [4, 31, 55, 57], we consider non-constant data-driven weights. However

the setup is here that of multivariate point processes and the function parameter that lives in a Hilbert space

determines the point process intensities. Even in this unusual context, the least squares criterion also involves

a random Gram matrix as well, and in this respect, we present a fairly standard oracle inequality with a strong

condition on this Gram matrix. Major contributions of this article is to provide probabilistic results that enable

us to calibrate `1-weights on the one hand and to deal with the assumption on the Gram matrix on the other

hand.

1.1 Our probabilistic contribution

In an i.i.d. framework (see for instance [4]) classical concentration inequalities can be used to have access to the

`1-weights. In the counting processes framework, the data-driven calibrated form of these `1-weights is naturally

linked to sharp Bernstein type inequalities for martingales. In the literature, those kinds of inequalities generally

provide an upper bound for the martingale that is deterministic and unobservable [50, 52]. More recently, there

have been some attempts to use self-normalized processes in order to provide a more flexible and random upper

bound [3, 22, 24, 23]. Nevertheless, those bounds are usually not (completely) observable when dealing with

counting processes. We prove a result that goes further in this direction by providing a completely sharp random

observable upper bound for the martingale in our counting process framework.

In another direction, we do not want to make assumptions that cannot be checked on the Gram matrix

which is, in our case, generated by the process itself. When no i.i.d. structure underlies the process, this control

may become very difficult to handle. We fully treat the multivariate Hawkes process as a main example of this

case. Even if Hawkes processes have been largely studied in the literature (see [8, 21] for instance), very few is

known about exponential inequalities and non asymptotic tail controls. In particular, up to our knowledge, no

exponential inequality controlling the number of points per interval is known, except in [45] for the univariate

case. We extend this type of results and other sharp controls of the convergence in the ergodic theorem to

obtain a sharp control on the Gram matrix.

Before going further, let us specify our framework and detail some specific examples.

1.2 M-dimensional counting process

We consider an M -dimensional counting process (N
(m)
t )m=1,...,M , which can also be seen as a random point mea-

sure on R with marks in {1, . . . ,M}, and a corresponding predictable intensity processes (λ
(m)
t )m=1,...,M under

a probability measure P. We will assume that each intensity λ
(m)
t can be written as a linear predictable trans-

formation of a deterministic function parameter f∗ in a Hilbert space H. We denote this linear transformation

by ψ(f) = (ψ(1)(f), ..., ψ(M)(f)). Therefore, for any t,

λ
(m)
t = ψ

(m)
t (f∗).
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The goal is to estimate f∗ based on observations of (N
(m)
t )m=1,...,M for t ∈ [0, T ]. Given a dictionary of functions

denoted Φ, candidates for estimating f∗ are linear combinations of functions of the dictionary:

fa =
∑
ϕ∈Φ

aϕϕ,

where a = (aϕ)ϕ∈Φ belongs to RΦ. Then, our Lasso procedure consists in selecting the vector â by minimizing

an `1-penalized criterion (see (2.1)), where the penalty term takes the form
∑
ϕ∈Φ dϕ|aϕ|. Using Bernstein type

concentration inequalities for martingales, we propose an original methodology for deriving the data-driven

weights dϕ.

We illustrate the general setup with three main examples. First, the case with i.i.d. observations of an

inhomogeneous Poisson process on [0, 1] and unknown intensity. Second, the well known Aalen mutliplicative

intensity model and third, the central example of the multivariate Hawkes process.

1.2.1 The Poisson model

Let us start with a very simple example which will be somehow a toy problem here with respect to the other

settings. In this example we take T = 1 and assume that we observe M i.i.d. Poisson processes on [0, 1] with

common intensity f∗ : [0, 1] 7−→ R+. Asymptotic properties are obtained when M tends to infinity. In this

case, for any m,

ψ
(m)
t (f∗) = f∗(t),

and H = L2([0, 1]) is equipped with the classical norm defined by

||f || =
(∫ 1

0

f2(t)dt

)1/2

.

In this case, the support of f , namely [0, 1], does not play a fundamental role. See [44] for adaptive wavelet

estimation of non-compactly supported intensity functions.

1.2.2 The Aalen multiplicative intensity model

This is one of the most popular counting process because of its adaptivity to various situations (from Markov

model to censored life times) and its various applications to biomedical data (see [2]). Given X a Hilbert space,

we consider f∗ : [0, T ]×X 7−→ R+ and we set for any t ∈ R,

ψ
(m)
t (f∗) = f∗(t,X(m))Y

(m)
t ,

where Y (m) is an observable predictable process and X(m) is a covariate. In this case, H = L2([0, T ]× X ). To

fix ideas one can set T = 1 and X = [0, 1]. Hence H can also be viewed as L2([0, 1]2). In right-censored data, f∗

usually represents the hazard rate. The presence of covariates in this pure non parametric model is the classical

generalization of the classical semi-parametric model of Cox (see [34] for instance).

The classical framework consists in assuming that the (X(m), Y (m), N (m))m=1,...,M are i.i.d. If there are no

covariates, several adaptive approaches already exist (see [9, 10, 43]). In the presence of covariates, see [1, 2]

for a parametric approach, see [20, 34] for a model selection approach and [26] for a Lasso approach.

1.2.3 The multivariate Hawkes process

Multivariate Hawkes processes are the point process equivalent to autoregressive models. They have extensively

been used in sismology to model earthquakes and their aftershocks [56]. More recently they have been used to

model favored or avoided distances between occurrences of motifs [28] or Transcription Regulatory Elements

on the DNA [19]. Even more recently, they have emerged as a potential model for neuronal networks [18]. For

this process, the intensity of a coordinate, N
(m)
t , depends on the history of this coordinate process as well as
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the other coordinate processes through linear filters. In this example M is fixed and asymptotic properties are

obtained when T → ∞. With ν(m) ∈ R and h
(m)
` : (0,∞) → R for `,m = 1, . . . ,M and with f∗ the collection

of ν(m)’s and h
(m)
` ’s define

ψ
(m)
t (f∗) = ν(m) +

M∑
`=1

∫ t−

−∞
h

(m)
` (t− u)dN (`)(u). (1.1)

We will assume that the support of h
(m)
` is bounded. By rescaling we can then assume that the support is in

(0, 1], and we will do so throughout. Note that in this case we will need to observe the process on [−1, T ] in

order to compute ψ
(m)
t (f∗) for t ∈ [0, T ]. The Hilbert space is

H = (R× L2([0, 1])M )M =
{
f =

(
(µ(m), (g

(m)
` )`=1,...,M )m=1,...,M

)
: g

(m)
` with support in (0, 1]

and ||f ||2 =
∑
m

(µ(m))2 +
∑
m

∑
`

∫ 1

0

g
(m)
` (t)2dt <∞

}
.

Taking the intensity to be λ
(m)
t = ψ

(m)
t (f∗) is only meaningful if the right hand side is non-negative, and this

is the case if the ν(m)’s and h
(m)
` ’s are non-negative. In this case the resulting process is known as the linear

multivariate Hawkes process (see [30]). It is a well studied process from a probabilistic as well as a statistical

point of view. For a parametric approach to the estimation of the interaction functions h
(m)
` see [39, 40]. For

the use of an AIC criterion see [56]. A non-parametric model selection approach in the case M = 1 is treated

in [46] and for M = 2 a combination of AIC and a spline basis expansion is considered in [28].

Note that in [28] and [46], the inhibition case where the functions h
(m)
` are negative has been partially

studied and in this case λ
(m)
t = (ψ

(m)
t (f∗))+. In [19], another parametric variant was studied where the process

satisfies λ
(m)
t = exp(ψ

(m)
t (f∗)).

1.3 Our statistical contribution

From the statistical point of view, our theoretical contribution consists in establishing oracle inequalities. Unlike

many papers about theoretical performances of Lasso procedures, we do not wish to obtain assumptions on the

dictionary that are as weak as possible but assumptions that can be checked. The first result we establish in

Theorem 1 is a basic oracle inequality that clearly states assumptions we need on the Gram matrix G associated

with the dictionary (see (2.2)) and on the weights of our methodology. From the first oracle inequality, we

derive a more sophisticated one for general multivariate counting processes in Theorem 2 that gives the shape

of data-driven weights by using the Bernstein type inequality of Theorem 3. Both oracle inequalities involve

the tradeoff of two terms: an approximation term and a variation term measuring fluctuations of coefficient

estimates. Of course, as usual, sparsity is a key point to realize the tradeoff. This general result is applied

for the three previous examples of point processes where assumptions on the Gram matrix can be resumed to

assumptions on the dictionary. So, unlike most of papers of the literature, these assumptions can be checked.

Finally, we carry out a simulation study for the most intricate process, namely the multivariate Hawkes process.

Using the framework of neuronal networks, we provide reconstructions of so called spontaneous rates and

interactions functions. Data-driven weights for practical purposes are slight modifications of theoretical ones.

These modifications essentially aim at reducing the number of tuning parameters to one. Table 1 in Section 6.3

shows that our methodology can easily and robustly be tuned by using limit values imposed by assumptions

of Theorem 2. In particularly, our tuning parameter is an absolute constant independent of T . The results for

the problem of supports recovery, which is the main goal for high dimensional settings, are quite satisfying.

However, due to non-negligible shrinkage that is unavoidable, in particular for large coefficients, we also propose

a two steps procedure where estimation of coefficients is handled by using ordinary least squares estimation

on the support preliminary determined by our Lasso methodology. We naturally compare our procedures with

adaptive Lasso of [57] for which weights are proportional to the inverse of ordinary least squares estimates. The

latter is very competitive for estimation aspects since shrinkage is all the more negligible as preliminary OLS
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estimates are large. But adaptive Lasso has to cope with many difficulties for support recovery. Indeed, unlike

our method, adaptive Lasso does not incorporate:

- the nature of the coefficients (our method handles differently the ν(m)’s and the coefficients of the interaction

functions)

- random fluctuations of coefficient estimators.

In particularly, tuning adaptive Lasso in the Hawkes setting is a difficult task, which cannot be tackled by using

standard cross-validation. Our simulation study shows that performances of adaptive Lasso are very sensitive

to the choice of the tuning parameter which highly depends on T in a complicated manner. Robustness with

respect to tuning is another advantage of our method over adaptive Lasso.

1.4 Notation and overview of the paper

Some notation from the general theory of stochastic integration is useful to simplify the otherwise quite heavy

notation. If H = (H(1), ...,H(M)) is a multivariate process with locally bounded coordinates, say, and X =

(X(1), ..., X(M)) is a multivariate semi-martingale, we define the real valued process H •X by

H •Xt =

M∑
m=1

∫ t

0

H(m)
s dX(m)

s .

Given φ : R 7−→ R we use φ(H) to denote the coordinatewise application of φ, that is φ(H) = (φ(H(1)), ..., φ(H(M))).

In particular,

φ(H) •Xt =

M∑
m=1

∫ t

0

φ(H(m)
s )dX(m)

s .

With ψ
(m)
t as above we define the integrated process Ψ(f) by

Ψ
(m)
t (f) =

∫ t

0

ψ(m)
s (f)ds.

With this notation

< f, g >T := ψ(f) •Ψ(g)T =

M∑
m=1

∫ T

0

ψ(m)
s (f)ψ(m)

s (g)ds

is a bilinear form onH where the associated quadratic form is denoted ||.||2T . The compensator Λ = (Λ(m))m=1,...,M

of N = (N (m))m=1,...,M is defined for all t by

Λ
(m)
t =

∫ t

0

λ(m)
s ds.

Section 2 gives our main oracle inequality and the choice of the `1-weights in the general framework of

counting processes. Section 3 provides the fundamental Bernstein-type inequality. Section 4 details the meaning

of the oracle inequality in the Poisson and Aalen set-ups. The probabilistic results needed for the Hawkes

processes as well as the interpretation of the oracle inequality in this framework is done in Section 5. Simulations

on multivariate Hawkes processes are performed in Section 6. The last Section is dedicated to the proofs of our

results.

2 Lasso estimate and oracle inequality

In the setting of Section 1.2, our goal is to estimate the parameter f∗ non-parametrically. For this purpose we

assume a dictionary of functions, Φ, to be given, and we define fa as a linear combination of the functions of

Φ, that is,

fa :=
∑
ϕ∈Φ

aϕϕ,
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where a = (aϕ)ϕ∈Φ belongs to RΦ. Then, since ψ is linear, we get

ψ(fa) =
∑
ϕ∈Φ

aϕψ(ϕ).

To estimate a we introduce the quadratic contrast on H by

γ(f) = −2 ψ(f) •NT + ||f ||T . (2.1)

Since ψ is linear we obtain

γ(fa) = −2a′b+ a′Ga

where a′ denotes the transpose of the vector a and for ϕ1, ϕ2 ∈ Φ,

bϕ1
= ψ(ϕ1) •NT , Gϕ1,ϕ2

=< ϕ1, ϕ2 >T . (2.2)

Note that the Gram matrix G of dimensions |Φ| × |Φ| (where |Φ| is the cardinality of Φ) may be random but

nevertheless observable.

To estimate a we minimize the contrast, γ(fa), subject to an `1-penalization on the a-vector. That is, we

introduce the following `1-penalized estimator

â ∈ argmina∈RΦ{−2a′b+ a′Ga+ 2d′|a|} (2.3)

where |a| = (|aϕ|)ϕ∈Φ and d ∈ RΦ
+. With a good choice of d the solution of (2.3) will achieve both sparsity and

have good statistical properties. Finally, we let f̂ = fâ denote the Lasso estimate of the function f∗ associated

with â.

Our first result establishes theoretical properties of f̂ by using the classical oracle approach. More precisely,

we establish a bound on the risk of f̂ if some conditions are true. This is a non-probabilistic result that only

relies on the definition of â by (2.3). In the next section we will deal with this probabilistic aspect, which is to

prove that the conditions are fulfilled with large probability.

Theorem 1. Let c > 0. If

G � cI (2.4)

and if for all ϕ ∈ Φ

|bϕ − b̄ϕ| ≤ dϕ, (2.5)

where

b̄ϕ = ψ(ϕ) • ΛT ,

then there exists an absolute constant C, independent of c, such that

||f̂ − f∗||2T ≤ C inf
a∈RΦ

‖f∗ − fa‖2T + c−1
∑

ϕ∈S(a)

d2
ϕ

 , (2.6)

where S(a) is the support of a.

The proof of Theorem 1 is given in Section 7.1. Note that Assumption (2.4) ensures that G is invertible

and then coordinates of â are finite almost surely. Assumption (2.4) also ensures that ||f ||T is a real norm on f

at least when f is a linear combination of the functions of Φ.

Two terms are involved on the right hand side of (2.6). The first one is an approximation term and the

second one can be viewed as a variance term providing control of the random fluctuations of the bϕ’s around

the b̄ϕ’s. Note that bϕ − b̄ϕ = ψ(ϕ) • (N − Λ)T is a martingale (see also the comments after Theorem 2 for

more details). The approximation term can be small but the price to pay may be a large support of a, leading

to large values for the second term. Conversely, a sparse a leads to a small second term. But in this case the
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approximation term is potentially larger. Note that if the function f∗ can be approximated by a sparse linear

combination of the functions of Φ, then we obtain a sharp control of ||f̂ − f∗||2T . In particular, if f∗ can be

decomposed on the dictionary, so we can write f∗ = fa∗ for some a∗ ∈ RΦ, then (2.6) gives

||f̂ − f∗||2T ≤ Cc−1
∑

ϕ∈S(a∗)

d2
ϕ.

In this case, the right hand side can be viewed as the sum of the estimation errors made by estimating the

components of a∗.

Such oracle inequalities are now classical in the huge literature of Lasso procedures. See for instance

[4, 5, 12, 13, 14, 15, 33, 53], who established oracle inequalities in the same spirit as in Theorem 1. We bring out

the paper [17], which gives technical and heuristic arguments for justifying optimality of such oracle inequalities

(see Section 1.3 of [17]). Most of these papers, that deal with independent data, aim at establishing oracle

inequalities under assumptions as weak as possible on the design matrix. We refer the reader to [54] or [11]

for a good review and a hierarchy of these assumptions. Assumption (2.4), that can also be found in [15], is

not the weakest one since it involves simultaneously all columns of G unlike assumptions based on restricted

isometry constants. Remember that for any positive integer S, the S-restricted isometry constant associated

with a matrix G is the smallest quantity δS satisfying

(1− δS)‖x‖`2 ≤ ‖Gx‖`2 ≤ (1 + δS)‖x‖`2 ,

for any S-sparse vector x (see the seminal paper [16]). As mentioned, the main contributions of this paper is

not to obtain assumptions as weak as possible on the matrix G, but rather to prove that Assumption (2.4) is

satisfied with large probability. We adapt the same approach as [48, 49] and to a lesser extent as Section 2.1

of [17] or [47]. Section 5 is in particular mainly devoted to show that (2.4) holds with large probability for the

multivariate Hawkes processes.

For Theorem 1 to be of interest, the condition on the martingale, condition (2.5), needs to hold with large

probability as well. Therefore, one of the main contribution of the paper is to provide new sharp concentration

inequalities that are satisfied by multivariate point processes. This is the main goal of Theorem 3 in Section 3

where we establish Bernstein type inequalities for martingales. We apply it to the control of (2.5). This allows

us to derive the following result, which specifies the choice of the dϕ’s needed to obtain the oracle inequality

with large probability.

Theorem 2. Let N = (N (m))m=1,...,M be a multivariate counting process with predictable intensities λ
(m)
t and

almost surely finite corresponding compensator Λ
(m)
t . Define

ΩV,B =

{
for any ϕ ∈ Φ, sup

t∈[0,T ],m

|ψ(m)
t (ϕ)| ≤ Bϕ and (ψ(ϕ))2 •NT ≤ Vϕ

}
,

for positive deterministic constants Bϕ and Vϕ and

Ωc = {G � cI} .

Let x and ε be strictly positive constants and define for all ϕ ∈ Φ,

dϕ =

√
2(1 + ε)V̂ µϕ x+

Bϕx

3
, (2.7)

with

V̂ µϕ =
µ

µ− φ(µ)
(ψ(ϕ))2 •NT +

B2
ϕx

µ− φ(µ)

for a real number µ such that µ > φ(µ), where φ(u) = exp(u)− u− 1. Let us consider the Lasso estimator f̂ of

f∗ defined in Section 2. Then, with probability larger than

1− 4
∑
ϕ∈Φ

 log
(

1 +
µVϕ
B2
ϕx

)
log(1 + ε)

+ 1

 e−x − P(ΩcV,B)− P(Ωcc),
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inequality (2.6) is satisfied, i.e.

||f̂ − f∗||2T ≤ C inf
a∈RΦ

‖f∗ − fa‖2T + c−1
∑

ϕ∈S(a)

d2
ϕ

 ,

where C is a constant independent of c, Φ, T and M.

Of course, the smaller the dϕ’s the better the oracle inequality. So for the choice of x, we have to realize a

compromise to obtain a meaningful oracle inequality on an event with large probability. Let us discuss more

deeply the definition of dϕ (derived from subsequent Theorem 3) which seems intricate. Up to a constant

depending on the choice of µ and ε, dϕ is of same order as max
(√

x(ψ(ϕ))2 •NT , Bϕx
)
. To give more insight

on the values of dϕ, let us consider the very special case where for any m ∈ {1, . . . ,M} for any s, ψ
(m)
s (ϕ) =

cm1{s∈Am}, where cm is a positive constant and Am a compact set included into [0, T ]. In this case, by naturally

choosing Bϕ = max1≤m≤M cm, we have:

√
x(ψ(ϕ))2 •NT ≥ Bϕx ⇐⇒

M∑
m=1

c2mN
(m)
Am
≥ x max

1≤m≤M
c2m,

where N
(m)
Am

represents the number of points of N (m) falling in Am. For more general vector functions ψ(ϕ), the

term
√
x(ψ(ϕ))2 •NT will dominate Bϕx if the number of points of the process lying where ψ(ϕ) is large, is signi-

ficative. In this case, the leading term in dϕ is expected to be the quadratic term
√

2(1 + ε) µ
µ−φ(µ)x(ψ(ϕ))2 •NT

and the linear terms in x can be viewed as residual terms. Furthermore, note that when µ tends to 0,

µ

µ− φ(µ)
= 1 +

µ

2
+ o(µ),

x

µ− φ(µ)
∼ x

µ
→ +∞

since x > 0. So, if µ and ε tend to 0, the quadratic term tends to
√

2x(ψ(ϕ))2 •NT but the price to pay

is the explosion of the linear term in x. In any case, it is possible to make the quadratic term as close to√
2x(ψ(ϕ))2 •NT as desired.

Let us emphasize the importance of this last quadratic term. Since this corresponds to the rate given by

the central limit theorem, this means that we have some chance to have sharp values for the components of dϕ.

Remember that the smaller the dϕ’s, the better the oracle inequality. Furthermore, in more classical contexts

such as density estimation (see [4]), it is shown that if the components of dϕ are chosen smaller than the analog

of
√

2x(ψ(ϕ))2 •NT then the resulting estimator is definitely a bad one, but simulations show that, to some

extent, if the components of d are larger than the analog of
√

2x(ψ(ϕ))2 •NT , then the estimator deteriorates

too. A similar result is out of reach in our setting, but similar conclusions may remain valid here since density

estimation often provides some clues about what happens for more intricate heteroscedastic models. See also

the simulation study in Section 6.

Finally, it remains to control P(ΩV,B) and P(Ωc). This is the goals of Section 4 for Poisson and Aalen

models and Section 5 for multivariate Hawkes processes.

3 Bernstein type inequalities for multivariate point processes

We establish a Bernstein type concentration inequality based on boundedness assumptions. This result, which

has an interest per se from the probabilistic point of view, was the key result to derive the convenient values

for the vector d in Theorem 2 and so is capital from the statistical perspective.

Theorem 3. Let N = (N (m))m=1,...,M be a multivariate counting process with predictable intensities λ
(m)
t and

corresponding compensator Λ
(m)
t with respect to some given filtration. Let B > 0. Let H = (H(m))m=1,...,M be

a multivariate predictable process such that for all ξ ∈ (0, 3), for all t,

exp(ξH/B) • Λt <∞ a.s. and exp(ξH2/B2) • Λt <∞ a.s. (3.1)
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Let us consider the martingale defined for all t ≥ 0 by

Mt = H • (N − Λ)t.

Let v > w and x be positive constants and let τ be a bounded stopping time. Let us define

V̂ µ =
µ

µ− φ(µ)
H2 •Nτ +

B2x

µ− φ(µ)

for a real number µ ∈ (0, 3) such that µ > φ(µ), where φ(u) = exp(u)− u− 1. Then, for any ε > 0,

P
(
Mτ ≥

√
2(1 + ε)V̂ µx+

Bx

3
and w ≤ V̂ µ ≤ v and sup

m,t≤τ
|H(m)

t | ≤ B
)
≤ 2

(
log(v/w)

log(1 + ε)
+ 1

)
e−x. (3.2)

This result is based on the exponential martingale for counting processes, which has been used for a while in

the context of the counting process theory. See for instance [7], [50] or [52]. This basically gives a concentration

inequality taking the following form (see (7.7)) (the result is stated here in its univariate form for comparison

purposes): for any x > 0,

P
(
Mτ ≥

√
2ρx+

Bx

3
and

∫ τ

0

H2
sdΛs ≤ ρ

)
≤ e−x. (3.3)

Typically, in (3.3), ρ is not random and B is a deterministic upper bound of sups∈[0,τ ] |Hs|. The leading

term for moderate values of x and τ large enough is
√

2ρx where the constant
√

2 is not improvable since this

coincides with the rate of the central limit theorem for martingales. Theorem 3 consists in plugging the estimate

v̂ = H2 •Nτ instead of a non sharp deterministic upper bound of v = H2 •Λτ . The proof is based on a peeling

argument that was first introduced in [35] for Gaussian processes.

Note that there exist also inequalities that seem nicer than (7.7) which constitutes the basic brick for our

purpose. For instance, [24] establish that for any deterministic positive real number θ, for any x > 0,

P
(
Mτ ≥

√
2θx and

∫ τ

0

H2
sdΛs +

∫ τ

0

H2
sdNs ≤ θ

)
≤ e−x. (3.4)

At first sight, this seems better than Theorem 3 because no linear term depending on B appears, but if we

want to use the estimate 2
∫ τ

0
H2
sdNs instead of θ in the inequality, we will have to bound |Hs| by some B in

any case. Moreover, by doing so, the quadratic term will be of order
√

4v̂x which is worse than the term
√

2v̂x

derived in Theorem 3, even if this constant
√

2 can only be reached asymptotically in our case.

There exists a better result if the martingale Mt is conditionally symmetric (see [24] but also [22] and [3]

for the discrete time case): for any x > 0,

P
(
Mτ ≥

√
2κx and

∫ τ

0

H2
sdNs ≤ κ

)
≤ e−x, (3.5)

which almost seems to be the ideal one. But there are actually two major flaws in this inequality. First, one

would need to assume that the martingale is conditionally symmetric, which cannot be the case in our situation

for general counting processes and general dictionaries. Secondly, we have the deterministic upper bound κ

instead of v̂. To replace it by v̂ and apply peeling arguments as in the proof of Theorem 3, we need to assume

the existence of a positive constant w such that v̂ ≥ w. But if the process happens to be empty, then v̂ = 0,

so we cannot generally find such a lower bound, whereas in our theorem, we can always take w = B2x
µ−φ(µ) as a

lower bound for V̂ µ.

Finally, note that in Proposition 5 (see Section 7.3), we also derived a similar bound where V̂ µ is replaced

by
∫ τ

0
H2
sdΛs. Basically, it means that the same type of results hold for quadratic characteristic instead of

quadratic variation. If this quadratic characteristic result is of little use here since the quadratic characteristic

is not observable, we think that it may be of interest for readers looking for self-normalized results as in [23].
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4 Applications to the Poisson and Aalen models

We apply Theorem 2 to the Poisson and Aalen models. The case of the multivariate Hawkes process, which is

much more intricate, will be the subject of the next section.

4.1 The Poisson model

Let us recall that in this case, we observe M i.i.d. Poisson processes with intensity f∗ supported by [0, 1] and

that the meaningful norm is given by ||f ||2 =
∫ 1

0
f2(x)dx. We assume that Φ is an orthonormal system for ||.||.

In this case,

||.||2T = M ||.||2 and G = MI,

where I is the identity matrix. One applies Theorem 2 with c = M (so P(Ωcc) = 0) and

Bϕ = ||ϕ||∞, Vϕ = ||ϕ||2∞(1 + δ)Mm1,

for δ > 0 and m1 =
∫ 1

0
f∗(t)dt. Note that here T = 1 and therefore N

(m)
T = N

(m)
1 is the total number of

observed points for the mth process. Using

ψ(ϕ)2 •NT ≤ ||ϕ||2∞
M∑
m=1

N
(m)
1

and since the distribution of
∑M
m=1N

(m)
1 is the Poisson distribution with parameter Mm1, Cramer-Chernov

arguments give:

P(ΩcV,B) ≤ P

(
M∑
m=1

N
(m)
1 > (1 + δ)Mm1

)
≤ exp (−{(1 + δ) ln(1 + δ)− δ}Mm1) .

For α > 0, by choosing x = α log(M), we finally obtain the following corollary derived from Theorem 2.

Corollary 1. With probability larger than 1 − C1
|Φ| log(M)

Mα − e−C2M , where C1 is a constant depending on µ,

ε, α, δ and m1 and C2 is a constant depending on δ and m1, we have:

||f̂ − f∗||2 ≤ C inf
a∈RΦ

‖f∗ − fa‖2 +
1

M2

∑
ϕ∈S(a)

(
log(M)

M∑
m=1

∫ 1

0

ϕ2(x)dN (m)
x + log2(M)||ϕ||2∞

) ,

where C is a constant depending on µ, ε, α, δ and m1.

To shed some lights on this result, consider an asymptotic perspective by assuming that M is large. Assume

also, for sake of simplicity, that f∗ is bounded below from 0 on [0, 1]. If the dictionary Φ (whose size may

depend on M) satisfies

max
ϕ∈Φ
||ϕ||∞ = o

(√
M

logM

)
,

then, since, almost surely,

1

M

M∑
m=1

∫ 1

0

ϕ2(x)dN (m)
x

M→∞−→
∫ 1

0

ϕ2(x)f∗(x)dx,

almost surely,

1

M2

∑
ϕ∈S(a)

(
log(M)

M∑
m=1

∫ 1

0

ϕ2(x)dN (m)
x + log2(M)||ϕ||2∞

)
= logM

∑
ϕ∈S(a)

1

M

∫ 1

0

ϕ2(x)f∗(x)dx× (1 + o(1)).

The right hand term corresponds, up to the logarithmic term, to the sum of variance terms when estimating∫ 1

0
ϕ(x)f∗(x)dx with 1

M

∑M
m=1

∫ 1

0
ϕ(x)dN

(m)
x for ϕ ∈ S(a). This means that the estimator adaptively achieves

the best trade-off between a bias term and a variance term. The logarithmic term is the price to pay for

adaptation. We refer the reader to [44] for a deep discussion on optimality of such results.
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4.2 The Aalen model

Similar results presented in this paragraph can be found in [26] under alternative assumptions on the dictionary.

Unlike the previous model, Assumption (2.4) is hard to check here since the intensity depends on covariates

and variables Y (m)’s. [26] use restricted eigenvalues conditions instead of (2.4) but this similarly expresses some

orthogonality properties of columns of G, that are non-mild conditions as well.

Recall that we observe an M -sample (X(m), Y (m), N (m))m=1,...,M , with Y (m) = (Y
(m)
t )t∈[0;1] and N (m) =

(N
(m)
t )t∈[0;1]. We assume that X(m) ∈ [0, 1] and that the intensity of N

(m)
t is f∗(t,X(m))Y

(m)
t and we set

||f ||2 := E

(∫
[0,1]2

f2(t,X(1))
(
Y

(1)
t

)2
dt

)
.

We assume that || · || is a true norm. For instance if there are no covariates, it is equivalent to assuming that

E
((
Y

(1)
t

)2) 6= 0 on [0, 1] i.e. Y
(1)
t cannot be zero almost surely and this for all t in [0, 1]. This is natural since

of course one cannot estimate f∗(t) if Y
(1)
t = 0 almost surely. If Y

(1)
t is deterministic and non zero on [0, 1] then

we are in the case of a Cox process (N (m) is a Poisson process given the covariates X(m)), and it is natural to

say that we will be able to measure f∗ only on the support of the variables X(m). Note that ||f ||emp defined by

||f ||2emp :=
1

M
||f ||2T =

1

M

M∑
m=1

∫ 1

0

f2(t,X(m))
(
Y

(m)
t

)2
dt

corresponds to the empirical version of ||f ||. We assume that Φ is an orthonormal system for ||.||2 (the classical

norm on L2([0, 1]2)) and we assume that there exists a positive constant r such that for all f ∈ L2([0, 1]2),

||f || ≥ r||f ||2.

The control of Ωc is much more cumbersome for the Aalen case, even if it is less intricate than the control

for Hawkes processes (see Section 5). To avoid another set of tedious computations, we just give here a brief

sketch of what one could do. To control Ωc, we only need to concentrate the elements of G around their mean

since they are sum of i.i.d. variables and use the fact that E(G) � Mr2I. Then the probability of Ωcc can

be proved to be smaller than |Φ|2
Mα up to a constant if one chooses c = Mr2(1 − δ) and if one assumes that

|Φ| = o(
√
T log(T )−β) (where of course α, β and δ are convenient positive constants).

For the sequel, we use two classical assumptions (see [43] for instance):

• supt∈[0;1] maxm∈{1,...,M} Y
(m)
t ≤ 1 almost surely.

• For some positive constant R, maxm∈{1,...,M}N
(m)
1 ≤ R almost surely.

Therefore, almost surely,

ψ(ϕ)2 •NT =

M∑
m=1

∫ 1

0

[Y
(m)
t ]2ϕ2(t,X(m))dN

(m)
t ≤

M∑
m=1

∫ 1

0

ϕ2(t,X(m))dN
(m)
t ≤MR||ϕ||2∞.

So, we apply Theorem 2 with Bϕ = ||ϕ||∞, Vϕ = MR||ϕ||2∞ (so P(ΩV,B) = 1) and x = α log(M) for α > 0. We

finally obtain the following corollary.

Corollary 2. With probability larger than 1−C1
|Φ| log(M)

Mα − P(Ωcc), where C1 is a constant depending on µ, ε,

α and R, we have:

||f̂ − f∗||2emp ≤ C inf
a∈RΦ

‖f∗ − fa‖2emp +
1

M2

∑
ϕ∈S(a)

(
log(M)

M∑
m=1

∫ 1

0

ϕ2(t,X(m))dN
(m)
t + log2(M)||ϕ||2∞

)
where C is a constant depending on µ, ε, α and R.
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To shed lights on this result, assume that the density of the X(m)’s is upper bounded by a constant R̃. In

an asymptotic perspective with M →∞, we have almost surely,

1

M

M∑
m=1

∫ 1

0

ϕ2(t,X(m))dN
(m)
t → E

(∫ 1

0

ϕ2(t,X(1))f∗(t,X(1))Y (1)dt

)
.

But

E
(∫ 1

0

ϕ2(t,X(1))f∗(t,X(1))Y (1)dt

)
≤ ||f∗||∞E

(∫ 1

0

ϕ2(t,X(1))dt

)
≤ R̃||f∗||∞.

So, if the dictionary Φ (whose size may depend on M) satisfies

max
ϕ∈Φ
||ϕ||∞ = O

(√
M

logM

)
,

then, almost surely, the variance term is asymptotically smaller than log(M) |S(a)|||f∗||∞
M up to constants. So, we

can draw the same conclusions as for the Poisson model.

5 Applications to the case of multivariate Hawkes process

5.1 Identification of the parameters

For a multivariate Hawkes model, the parameter f∗ belongs to

H = HM =

{
f = (f (m))m=1,...,M | f (m) ∈ H and ||f ||2 =

M∑
m=1

||f (m)||2
}

where

H =

{
f = (µ, (g`)`=1,...,M ) | µ ∈ R , g` with support in (0, 1] and ||f ||2 = µ2 +

M∑
`=1

∫ 1

0

g2
` (x)dx <∞

}
.

If one defines κ the linear predictable transformation of H defined by

κt(f) = µ+

M∑
`=1

∫ t−

t−1

g`(t− u)dN (`)
u , (5.1)

then the transformation ψ on H is just defined by

ψ
(m)
t (f) = κt(f

(m)).

Before stating oracle inequalities for Lasso estimates, we need to prove some probabilistic results. They will be

useful to deal with P(ΩV,B) and P(Ωc).

5.2 Some useful probabilistic results for multivariate Hawkes processes

In this paragraph, we present some particular exponential results and tail controls for Hawkes processes. Up

to our knowledge, these results are new: They constitute the generalization of [45] to the multivariate case. In

this paper, they are used to control P(Ωcc) and P(ΩcV,B) but they may be of self-interest.

Since the functions h
(m)
` ’s are nonnegative, a cluster representation exists. We can indeed construct the

Hawkes process by the Poisson cluster representation (see [21]) as follows:

• Distribute ancestral points with marks ` = 1, . . . ,M according to homogeneous Poisson processes with

intensities ν(`) on R.
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• For each ancestral point, form a cluster of descendant points. More precisely, starting with an ancestral

point at time 0 of a certain type, we successively build new generations as Poisson processes with intensity

h
(m)
` (.− T ), where T is the parent of type ` (the corresponding children being of type m). We are in the

situation where this process extinguishes and we denote by H the last children of all generations, which

also represents the length of the cluster. Note that the number of descendants is a multitype branching

process (and there exists a branching cluster representation (see [8, 21, 30]) with offspring distributions

being Poisson variables with means

γ`,m =

∫ 1

0

h
(m)
` (t)dt.

The essential part we need is that the expected number of offsprings of type m from a point of type ` is γ`,m.

With Γ = (γ`,m)`,m=1,...,M the matrix of expectations the theory of multitype branching processes gives that

the clusters are finite almost surely if and only if the spectral radius of Γ is smaller than or equal to 1. In this

case, there is a stationary version of the Hawkes process by the Poisson cluster representation.

Below we will need the stronger requirement that Γ has spectral radius strictly smaller than 1 to ensure a

bound on the number of points in a cluster. We denote by P` the law of the cluster whose ancestral point is of

type `, E` is the corresponding expectation.

The following lemma is very general and holds even if the function g
(m)
` have infinite support as long as the

spectral radius Γ is strictly less than 1.

Lemma 1. If W denotes the total number of points of any type in the cluster whose ancestral point is of type

` then if the spectral radius of Γ is strictly smaller than 1 there exists ϑ` > 0, only depending on ` and on Γ,

such that

E`(eϑ`W ) <∞.

This easily leads to the following result, which provides the existence of the Laplace transform of the total

number of points in an arbitrary bounded interval, when the function g
(m)
` have bounded support.

Proposition 1. Let N be a stationary multivariate Hawkes process, with bounded support interactions functions

and such that the spectral radius of Γ is strictly smaller than 1. For any A > 0, let us define N[−A,0) the total

number of points of N in [−A, 0), all marks included. Then there exists a constant θ > 0, depending on the

distribution of the process and on A such that

E := E(eθN[−A,0)) <∞,

which implies that for all positive u

P(N[−A,0) ≥ u) ≤ Ee−θu.

Moreover one can precise the ergodic theorem in a non-asymptotic way.

Proposition 2. Let A > 0 and let Z(N) be a function depending on the points lying in [−A, 0) of a stationary

multivariate Hawkes process, N , with parameter f∗ ∈ H. Assume that there exist b and η non-negative constants

such that

|Z(N)| ≤ b(1 +Nη
[−A,0)),

where N[−A,0) represents the total number of points of N in [−A, 0), all marks included. We denote θ the shift

operator, meaning that Z ◦ θt(N) depends now in the same way as Z(N) on some points that are now the points

of N lying in [t−A, t).

We assume E[|Z(N)|] <∞ and for short, we denote E(Z) = E[Z(N)]. Then, for any α > 0, there exists a

constant T (α, η, f∗, A) > 1 such that for T > T (α, η, f∗, A), there exist C1, C2, C3 and C4 positive constants

depending on α, η,A and f∗ such that

P

(∫ T

0

[Z ◦ θt(N)− E(Z)]dt ≥ C1σ

√
T log3(T ) + C2b(log(T ))2+η

)
≤ C4

Tα
,

with Ñ = C3 log(T ) and σ2 = E([Z(N)− E(Z)]21N[−A,0)≤Ñ ).
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Finally, to deal with the control of P(Ωc), we shall need the next result. First, we define a quadratic form

Q on H by

Q(f ,g) = EP (κ1(f)κ1(g)) = EP

(
1

T

∫ T

0

κt(f)κt(g)dt

)
, f ,g ∈ H. (5.2)

We have:

Proposition 3. For a stationary Hawkes process with intensities given by (1.1), which fulfill

min
m∈{1,...,M}

ν(m) > 0 and max
l,m∈{1,...,M}

sup
t∈[0,1]

h
(m)
` (t) <∞ (5.3)

and where the spectral radius of Γ is strictly smaller than 1, there is a constant ζ > 0 such that for any f ∈ H,

Q(f , f) ≥ ζ||f ||2.

We are now ready to establish oracle inequalities for multivariate Hawkes processes.

5.3 Lasso for Hawkes processes

In the sequel, we still consider the main assumptions of the previous subsection: stationarity, (5.3) and the fact

that the spectral radius of Γ is strictly smaller than 1. We recall that the components of Γ are the γ`,m’s with

γ`,m =

∫ 1

0

h
(m)
` (t)dt.

One of the main result of this section is to link properties of the dictionary (mainly orthonormality but also

more involved assumptions) to properties of G (the control of Ωc). To do so let us define for all f ∈ H,

||f ||∞ = max

{
max

m=1,...,M
|µ(m)|, max

m,`=1,...,M
||g(m)
` ||∞

}
.

Then, let us define by ||Φ||∞ := max{||ϕ||∞, ϕ ∈ Φ}, and recall that |Φ| is the cardinality of Φ.

The next result is based on the probabilistic results of Section 5.2.

Proposition 4. Assume that the Hawkes process is stationary, that (5.3) is satisfied and that the spectral radius

of Γ is strictly smaller than 1. Let rΦ be the spectral radius of the matrix Λ defined by

Λ =

(∑
m

[
|µ(m)
ϕ ||µ(m)

ρ |+
M∑
`=1

∫ 1

0

|(gϕ)
(m)
` ||(gρ)(m)

` |(u)du

])
ϕ,ρ∈Φ

.

Assume that Φ is orthonormal and that

AΦ(T ) := rΦ||Φ||2∞|Φ|[log(||Φ||∞) + log(|Φ|)] log5(T )

T
→ 0 (5.4)

when T → ∞. Then, for any α > 0, there exists C1 > 0 depending on α and f∗ such that with c = C1T , we

have

P(Ωcc) = O(T−α).

Now, let us deal with the choice of the dictionary Φ. The easiest case, and the only one we will consider

here for sake of simplicity, is built via a dictionary (Υk)k=1,...,K of functions of L2((0, 1]) (that may depend on

T ) in the following way. A function ϕ = (µ
(m)
ϕ , ((gϕ)

(m)
` )`)m belongs to Φ if and only if only one of its M +M2

components is non zero and in this case,

• if µ
(m)
ϕ 6= 0, then µ

(m)
ϕ = 1,
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• if (gϕ)
(m)
` 6= 0, then there exists k ∈ {1, . . . ,K} such that (gϕ)

(m)
` = Υk.

Note that |Φ| = M +KM2. Furthermore, assume from now on that (Υk)k=1,...,K is orthonormal in L2([0, 1]).

Then Φ is also orthonormal in H endowed with ||.||.
Before going further, let us discuss Assumption (5.4). First note that the matrix Λ is block diagonal. The

first block is the identity matrix of size M . The other M2 blocks are identical to the matrix:

Λ̃K =

(∫
|Υk1

(u)||Υk2
(u)|du

)
1≤k1,k2≤K

.

So, if we denote r̃K the spectral radius of Λ̃K , we have:

rΦ = max(1, r̃K).

We analyze the behavior of r̃K with respect to K. Note that for any k1 and any k2,

(Λ̃K)k1,k2 ≥ 0.

Therefore,

r̃K ≤ sup
||x||`1=1

||Λ̃Kx||`1 ≤ max
k1

∑
k2

(Λ̃K)k1,k2 .

We now distinguish three types of orthonormal dictionaries (remember that M is viewed as a constant):

• Let us consider regular histograms. The basis is composed of the functions Υk = δ−1/2
1((k−1)δ,kδ] with

Kδ = 1. Therefore ||Φ||∞ = δ−1/2 =
√
K. But Λ̃K is the identity matrix and r̃K = 1. Hence (5.4) is

satisfied as soon as
K2 log(K) log5(T )

T
→ 0

when T →∞, which is satisfied if K = o
( √

T
log3(T )

)
.

• Assume that ||Φ||∞ is bounded by an absolute constant (Fourier dictionaries satisfy this assumption).

Since r̃K ≤ K, (5.4) is satisfied as soon as

K2 log(K) log5(T )

T
→ 0

when T →∞, which is satisfied if K = o
( √

T
log3(T )

)
.

• Assume that (Υk)k=1,...,K is a compactly supported wavelet dictionary where resolution levels belong to

the set {0, 1, . . . , J}. In this case, K is of the same order as 2J , ||Φ||∞ is of the same order as 2J/2 and it

can be seen that r̃K ≤ C2J/2 where C is a constant only depending on the choice of the wavelet system

(see [29] for further details). Then, (5.4) is satisfied as soon as

K5/2 log(K) log5(T )

T
→ 0

when T →∞, which is satisfied if K = o
(

T 2/5

log12/5(T )

)
.

To apply Theorem 2, it remains to control ΩV,B . Note that

ψ
(m)
t (ϕ) =

{
1 if µ

(m)
ϕ = 1∫ t−

t−1
Υk(t− u)dN

(`)
u if (gϕ)

(m)
` = Υk.

Let us define

ΩN =
{

for all t ∈ [0, T ], for all m ∈ {1, . . . ,M} we have N
(m)
[t−1,t] ≤ N

}
.
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We therefore set

Bϕ = 1 if µ(m)
ϕ = 1 and Bϕ = ||Υk||∞N if (gϕ)

(m)
` = Υk. (5.5)

Note that on ΩN , for any ϕ ∈ Φ,

sup
t∈[0,T ],m

|ψ(m)
t (ϕ)| ≤ Bϕ.

Now, for each ϕ ∈ Φ, let us determine Vϕ that constitutes an upper bound of

Mϕ =

M∑
m=1

∫ T

0

[ψ
(m)
t (ϕ)]2dN

(m)
t .

Note that only one term in this sum is non-zero.

Vϕ = dT eN if µ(m)
ϕ = 1 and Vϕ = ||Υk||2∞dT eN 3 if (gϕ)

(m)
` = Υk. (5.6)

With this choice of Bϕ and Vϕ, one has that ΩN ⊂ ΩV,B , which leads to the following result.

Corollary 3. Assume that the Hawkes process is stationary, that (5.3) is satisfied and that the spectral radius

of Γ is strictly smaller than 1. With the choices (5.5) and (5.6) of the Bϕ’s and of the Vϕ’s,

P(ΩV,B) ≥ P(ΩN ) ≥ 1− C1T exp(−C2N ),

where C1 and C2 are positive constants depending on f∗.

If N � log(T ), then for all β > 0,

P(ΩcV,B) ≤ P(ΩcN ) = o(T−β).

We are now in position to apply Theorem 2.

Corollary 4. Assume that the Hawkes process is stationary, that (5.3) is satisfied and that the spectral radius

of Γ is strictly smaller than 1. Assume that the dictionary Φ is built as previously from an orthonormal family

(Υk)k=1,...,K . With the notations of Theorem 2, let Bϕ be defined by (5.5) and dϕ be defined accordingly with

x = α log(T ). Then, with probability larger than

1− 4(M +M2K)

 log
(

1 + µdTeN
α log(T )

)
log(1 + ε)

+ 1

T−α − P(ΩcN )− P(Ωcc),

1

T
||f̂ − f∗||2T ≤ C inf

a∈RΦ

 1

T
‖f∗ − fa‖2T +

∑
ϕ∈S(a)

(
log(T )(ψ(ϕ))2 •NT

T 2
+
B2
ϕ log2(T )

T 2

) ,

where C is a constant depending on f∗, µ, ε, and α.

From an asymptotic point of view, if the dictionary also satisfies (5.4), and if N = log2(T ) in (5.5), then

for T large enough with probability larger than 1− C1K log(T )T−α

1

T
||f̂ − f∗||2T ≤ C2 inf

a∈RΦ

 1

T
‖f∗ − fa‖2T +

log3(T )

T

∑
ϕ∈S(a)

[
1

T
||ϕ||2T +

log7/2(T )√
T

||Φ||2∞

] ,

where C1 and C2 are constants depending on M , f∗, µ, ε, and α.

We express the oracle inequality by using 1
T ||.||T simply because, when T goes to +∞, by ergodicity of the

process (see for instance [21], and Proposition 2 for a non asymptotic statement)

1

T
||f ||2T =

M∑
m=1

1

T

∫ T

0

(κt(f
(m)))2dt −→

M∑
m=1

Q(f (m), f (m))
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under assumptions of Proposition 4. Note that the right hand side is a true norm on H by Proposition 3. Note

also that
log7/2(T )√

T
||Φ||2∞

T→∞→ 0,

as soon as (5.4) is satisfied for Fourier and compactly supported wavelets. It is also the case for histograms as

soon as K = o
( √

T
log7/2(T )

)
. Therefore, with respect to the previous remark, this term should be considered as a

residual one. In those cases, the last inequality can be rewritten as

1

T
||f̂ − f∗||2T ≤ C inf

a∈RΦ

 1

T
‖f∗ − fa‖2T +

log3(T )

T

∑
ϕ∈S(a)

1

T
||ϕ||2T

 ,

for a different constant C, the probability of this event tending to 1 as soon as α ≥ 1/2 in the Fourier and

histogram cases and α ≥ 2/5 in the compactly supported wavelet basis. Once again, as mentioned for the

Poisson or Aalen models, the right hand side corresponds to a classical ”bias-variance” trade off and a classical

shape of oracle inequality up to the logarithmic terms. Note that this time, the asymptotic is done in T and

not in M , as for Poisson or Aalen models but the same result, namely Theorem 2, is capable, depending on the

framework, to lead to both potential asymptotics.

6 Simulations for the multivariate Hawkes process

This section is devoted to illustrations of our procedure on simulated data of multivariate Hawkes processes and

comparisons with the well-known adaptive Lasso procedure proposed by [57].

6.1 Description of the Data

As mentioned in the introduction, Hawkes processes can be used in Neuroscience to model the Unitary Event

Activity of individual neurons (see [27]). So, we perform simulations whose parameters are close, to some extent,

to real neuronal data. For a given neuron m ∈ {1, . . . ,M}, its activity is modeled by a point process N (m)

whose intensity is

λ
(m)
t = ν(m) +

M∑
`=1

∫ t−

−∞
h

(m)
` (t− u)dN (`)(u).

The interaction function h
(m)
` represents the influence of the past activity of the neuron ` on the neuron m.

The spontaneous rate ν(m) may somehow represent the external excitation linked to all the other neurons that

are not recorded. It is consequently of crucial importance not only to correctly infer the interaction functions,

but also to reconstruct the spontaneous rates accurately. Usually, activity up to 10 neurons can be recorded in

a ”stationary” phase during a few seconds (sometimes up to one minute). Typically, the points frequency is of

the order of 10-80 Hz and the interaction range between points is of the order of a few milliseconds (up to 20

or 40 ms). We lead three experiments by simulating multivariate Hawkes processes (two with M = 2, one with

M = 8) based on these typical values. More precisely, for all experiments, we take for any m ∈ {1, . . . ,M},
ν(m) = 20 and the interaction functions h

(m)
` are defined as follows (supports of all the functions are assumed

to lie in the interval [0, 0.04]):

• Experiment 1: M = 2 and piecewise constant functions.

h
(1)
1 = 30× 1(0,0.02], h

(1)
2 = 30× 1(0,0.01], h

(2)
1 = 30× 1(0.01,0.02], h

(2)
2 = 0.

In this case, each neuron depends on the other one. The spectral radius of the matrix Γ is 0.725.
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Figure 1: Raster plots of two data sets with T = 2 corresponding to Experiment 2 on the left and

Experiment 3 on the right. The x-axis correspond to the time of the experiment. Each line with

ordinate m corresponds to the points of the process N (m). From bottom to top, we observe 124 and

103 points for Experiment 2 and 101, 60, 117, 38, 73, 75, 86 and 86 points for Experiment 3.

• Experiment 2: M = 2 and ”smooth” functions. In this experiment, h
(1)
1 and h

(2)
1 are not piecewise

constant.

h
(1)
1 (x) = 100 e−200x × 1(0,0.04](x), h

(1)
2 (x) = 30× 1(0,0.02](x),

h
(2)
1 (x) =

1

0.008
√

2π
e−

(x−0.02)2

2∗0.0042 × 1(0,0.04](x), h
(2)
2 (x) = 0.

In this case, each neuron depends on the other one as well. The spectral radius of the matrix Γ is 0.711.

• Experiment 3: M = 8 and piecewise constant functions.

h
(1)
2 = h

(1)
3 = h

(2)
2 = h

(3)
1 = h

(3)
2 = h

(5)
8 = h

(6)
5 = h

(7)
6 = h

(8)
7 = 25× 1(0,0.02]

and all the other 55 interaction functions are equal to 0. Note in particular that this leads to 3 independent

groups of dependent neurons {1, 2, 3}, {4} and {5, 6, 7, 8}. The spectral radius of the matrix Γ is 0.5.

In all the simulations, we let the process ”warm up” during 1 second to reach the stationary state1. Then the

data are collected by taking records during the next T seconds. For instance, this leads to roughly about 100

points per neuron when T = 2 and 1000 points when T = 20. Figure 1 shows two instances of data sets with

T = 2.

6.2 Description of the methods

To avoid approximation errors by computing the matrixG, we focus on a dictionary (Υk)k=1,...,K whose functions

are piecewise constant. More precisely, we take Υk = δ−1/2
1((k−1)δ,kδ] with δ = 0.04/K and K, the size of the

1Note that since the size of the support of the interaction functions is less or equal to 0.04, the ”warm up” period is

25 times the interaction range.
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dictionary, is chosen later.

Our practical procedure strongly relies on the theoretical one with the natural choice x in (2.7) of the

form x = α log(T ). Three hyperparameters (namely α, µ and ε) would need to be tuned if we directly used

the proposed Lasso parameters of Theorem 2 (see also Corollary 4). So, for simplifications, we implement our

procedure by replacing the Lasso parameters dϕ given in (2.7) with

d̃ϕ(γ) =
√

2γ log(T )(ψ(ϕ))2 •NT +
γ log(T )

3
sup

t∈[0,T ],m

|ψ(m)
t (ϕ)|,

where γ is a constant to be tuned. Besides taking x = α log(T ), our modification consists in neglecting the linear

part
B2
ϕx

µ−φ(µ) in V̂ µ and replacing Bϕ with supt∈[0,T ],m |ψ
(m)
t (ϕ)|. Then, note that, up to these modifications,

the choice γ = 1 corresponds to the limit case where α → 1, ε → 0 and µ → 0 in the definition of the

dϕ’s (see the comments after Theorem 2). Note also that, under the slight abuse consisting in identifying Bϕ

with supt∈[0,T ],m |ψ
(m)
t (ϕ)|, for every parameter µ, ε and α of Theorem 2 with x = α ln(T ), one can find two

parameters γ and γ′ such that

d̃ϕ(γ) ≤ dϕ ≤ d̃ϕ(γ′).

Therefore, this practical choice is consistent with the theory and tuning hyperparameters reduces to only

tuning γ.

We compute the Lasso estimate by using the shooting method of [25] and the R-package Lassoshooting.

Note in particular that to do so, we need to invert the matrix G. In all simulations, this matrix has always

been invertible, which is consistent with the fact that Ωc happens with large probability. Note also that the

value of c, namely the smallest eigenvalue of G, can be very small (about 10−4) whereas the largest eigenvalue

is potentially as large as 105, both values highly depending on the simulation and on T . Fortunately, those

values are not needed to compute our Lasso estimate. Since it is based on Bernstein type inequalities, our Lasso

method is denoted B in the sequel.

Due to their soft thresholding nature, Lasso methods are known to underestimate the coefficients [37, 57].

To overcome biases in estimation due to shrinkage, we propose a two steps procedure, as usually suggested in

the literature: Once the support of the vector has been estimated by B, we compute the ordinary least-square

estimator among the vectors a having the same support, which provides the final estimate. This method is

denoted BO in the sequel.

Another popular method is adaptive Lasso proposed by Zou [57]. This method overcomes the flaws of

standard Lasso by taking `1-weights of the form

daϕ(γ) =
γ

2|âoϕ|p
,

where p > 0, γ > 0 and âoϕ is a preliminary consistent estimate of the true coefficient. Even if the shape of the

weights are different, the latter are data-driven and this method constitutes a natural competitive method with

ours. The most usual choice, which is adopted in the sequel, consists in taking p = 1 and the ordinary least

squares estimate for the preliminary estimate (see [31, 55, 57]). Then, penalization is stronger for coefficients

that are preliminary estimated by small values of the ordinary least square estimate. In the literature, the

parameter γ of adaptive Lasso is usually tuned by cross-validation, but this does not make sense for Hawkes

data that are fully dependent. Therefore, a preliminary study has been performed to provide meaningful values

for γ. Results are given in the next section. This adaptive Lasso method is denoted A in the sequel and AO

when combined with ordinary least squares in the same way as for BO.

Simulations are performed in R. The computational time is weak (merely few seconds for one estimate even

when M = 8, T = 20 and K = 8 on a classical laptop computer), which constitutes a clear improvement with

respect to existing adaptive methods for Hawkes processes. For instance, the ”Islands” method2 of [46] was

limited due to extreme computational time for estimating one or two dozens of coefficients at the most whereas

here when M = 8 and K = 8, we have to deal with M +KM2 = 520 coefficients.

2This method developed for M = 1 could easily be theoretically adapted for larger values of M , but its extreme

computational cost prevents us from using it in practice.
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M=2, T=2 Our Lasso Method Adaptive Lasso M=2, T=20 Our Lasso Method Adaptive Lasso

γ 0.5 1 2 2 200 1000 γ 0.5 1 2 2 200 1000

DG 100 100 98 100 100 98 DG 100 100 100 100 100 100

S * * * 2 2 1 S * * * * * *

F+ 0 0 0 1 0 0 F+ 0 0 0 1 0 0

F- 0 0 0 0 0 0 F- 0 0 0 0 0 0

Coeff+ 2 1 0 11 2 0 Coeff+ 1 0 0 11 2 0

Coeff- 0 0 0 0 0 0 Coeff- 0 0 0 0 0 0

SpontMSE
108 140 214 150 193 564

SpontMSE
22 37 69 14 12 27

+ols 104 96 95 151 154 516 +ols 11 10 9 14 12 10

InterMSE
7 9 15 13 8 11

InterMSE
2 3 6 1.4 0.6 0.5

+ols 7 7 7 14 10 10 +ols 0.6 0.5 0.4 1.4 0.9 0.4

M=8, T=2 Our Lasso Method Adaptive Lasso M=8, T=20 Our Lasso Method Adaptive Lasso

γ 0.5 1 2 2 200 1000 γ 0.5 1 2 2 200 1000

DG 0 32 24 0 0 32 DG 63 99 100 0 0 90

S * * * 8 7 5 S * * * * * *

F+ 17 6 1 55 13 0.5 F+ 3 1 0 55 10 0

F- 0 0 2 0 0 2 F- 0 0 0 0 0 0

Coeff+ 22 7 1 199.5 17 1 Coeff+ 4 1 0 197 13 0

Coeff- 0.5 2 7 0 2 7 Coeff- 0 0 0 0 0 0

SpontMSE
295 428 768 1445 1026 1835

SpontMSE
82 166 355 104 43 64

+ols 1327 587 859 1512 1058 1935 +ols 41 26 24 107 74 26

InterMSE
38 51 79 214 49 65

InterMSE
10 19 39 16 2.9 3.17

+ols 63 45 61 228 84 70 +ols 3 2.1 1.9 17 6.3 2

Table 1: Numerical results of both procedures over 100 runs with K = 4. Results for Experiment

1 (top) and Experiment 3 (bottom) are given for T = 2 (left) and T = 20 (right). ”DG” gives the

number of correct identifications of dependency groups over 100 runs. ”S” gives the median number of

non-zero spontaneous rate estimates, ”*” means that all the spontaneous rate estimates are non-zero

over all the simulations. ”F+” gives the median number of additional non-zero interaction functions

w.r.t. the truth. ”F-” gives the median number of missing non-zero interaction functions w.r.t. the

truth. ”Coeff+” and ”Coeff-” are defined in the same way for the coefficients. ”SpontMSE” is the

Mean Square Error for the spontaneous rates with or without the additional ”ordinary least squares

step”. ”InterMSE” is the analog for the interaction functions. In red, we give the optimal values for

the qualitative criteria.

6.3 Results

A study over 100 simulations has been carried out corresponding to Experiments 1 and 3 for which we can

precisely check if the support of the vector â is the correct one. Results for our method and for adaptive Lasso

can be found in Table 1. For each method, we have selected 3 values for the hyperparameter γ based on results

of preliminary simulations. Two types of criterion are discussed: qualitative ones based on supports recovery

and quantitative ones based on Mean Square Errors.

Let us first review the qualitative ones. The first main purpose of the method is to correctly guess the

dependency groups, which is essential from the neurobiological point of view since knowing interactions between

two neurons is of capital importance. So the line ”DG”, which gives the number of correct identifications of

dependency groups, is very relevant. For instance, for M = 8, ”DG” gives the number of simulations for which

the 3 dependency groups {1, 2, 3}, {4} and {5, 6, 7, 8} are recovered by the methods. When M = 2, both

methods correctly find that neurons 1 and 2 are dependent, even if T = 2. When 8 neurons are considered, the

estimates should find 3 dependency groups. We see that even with T = 2, our method with γ = 1 correctly

guesses the dependency groups for 32% of the simulations. It’s close or equal to 100% when T = 20 with γ = 1

or γ = 2. The adaptive Lasso has to take γ = 1000 for T = 2 and T = 20 to obtain as convincing results.
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Figure 2: Reconstructions corresponding to Experiment 2 with T = 2 and K = 8. Each line m

represents the function h
(m)
` , for ` = 1, 2. The spontaneous rates estimation associated with each line

m is given above the graphs: S∗ denotes the true spontaneous rate and its estimators computed by

using B, BO and A respectively are denoted by SB, SBO and SA. The true interactions functions

(in black) are reconstructed by using B, BO and A providing reconstructions in green, red and blue

respectively. We use γ = 1 for B and BO and γ = 200 for A.

Clearly, smaller choices of γ for adaptive Lasso leads to bad estimations of the dependency groups. Next, the

main point is to see whether the methods are able to guess the correct number of non-zero spontaneous rates.

Whatever the experiment and the parameter γ, our method is optimal whereas adaptive Lasso misses some

non-zero spontaneous rates when T = 2. Under this criterion, for adaptive Lasso, the choice γ = 1000 is clearly

bad when T = 2 (the optimal value of S is S = 2 when M = 2 and S = 8 when M = 8) on both experiments,

whereas γ = 2 or γ = 200 is better. Not surprisingly, the number of additional non-zero functions and additional

non-zero coefficients decreases when T grows and when γ grows, whatever the method whereas the number of

missing functions or coefficients increases. We can conclude from these facts and from further analysis of Table 1

that the choice γ = 0.5 for our method and the choice γ = 2 for the adaptive Lasso are wrong choices of the

tuning parameters. In conclusion of the qualitative aspects, our method with γ = 1 or γ = 2 seems a good

choice and is robust with respect to T . When T = 20, the optimal choice for adaptive Lasso is γ = 1000. When

T = 2, the choice is not so clear and depends on the qualitative criterion we wish to favor.

Now let us look at some more quantitative criteria. Since the spontaneous rates do not behave like the other

coefficients, we split the Mean Square Error in two parts: one for the spontaneous rates:

SpontMSE =

M∑
m=1

(ν̂(m) − ν(m))2,
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Figure 3: Reconstructions corresponding to Experiment 2 with T = 20 and K = 8. Each line m

represents the function h
(m)
` , for ` = 1, 2. The spontaneous rates estimation associated with each line

m is given above the graphs: S∗ denotes the true spontaneous rate and its estimators computed by

using B, BO and A respectively are denoted by SB, SBO and SA. The true interactions functions

(in black) are reconstructed by using B, BO and A providing reconstructions in green, red and blue

respectively. We use γ = 1 for B and BO and γ = 1000 for A.

and one for interactions:

InterMSE =

M∑
m=1

M∑
`=1

∫
(ĥ

(m)
` (t)− h(m)

` (t))2dt.

We report the results for B, BO, A and AO. We mostly focus on cases where supports are correctly estimated.

In this case, results are better by using the second step. MSE are increasing with γ for B and A, since

underestimation is stronger when γ increases. This phenomenon does not appear for two steps procedures,

which leads to more stable MSE when the support is correct. One of the main differences between both

methods can be seen by analyzing SpontMSE. Since adaptive Lasso does not detect all non-zero spontaneous

rates, the corresponding MSE cannot be good and this cannot be improved via the OLS transformation. This

comforts us in the fact that the choice γ = 1000 is a wrong choice for T = 2 and adaptive Lasso. The choice

γ = 200 leads to good MSE, but the MSE are smaller for BO with γ = 1. When T = 20, the choice γ = 1000

for AO leads to results that are of the same magnitude as the ones obtained by BO with γ = 1 or 2. Still for

T = 20, results for the estimate B are worse than results for A. It is due to the fact that the shrinkage is larger

in our method for the coefficients we want to keep than shrinkage of adaptive Lasso that becomes negligible as

soon as the true coefficients are large enough. However the second step overcomes this problem.

Note also that a more thorough study of the tuning parameter γ has been performed by [4] who mathemat-

ically prove that the choice γ < 1 leads to very degenerate estimates in the density setting. Their method for

choosing Lasso parameters being analogous to ours, it seems coherent to obtain worse MSE for γ = 0.5 than
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Figure 4: Reconstructions corresponding to Experiment 3 with T = 20 and K = 8 and for the first 4

neurons. Each line m represents the function h
(m)
` , for ` = 1, 2. The spontaneous rates associated with

each line m are given above the graphs where S∗ denotes the true spontaneous rate and its estimators

computed by using B, BO and A respectively and denoted by SB, SBO and SA. The true interactions

functions (in black) are reconstructed by using B, BO and A providing reconstructions in green, red

and blue respectively. We use γ = 1 for B and BO and γ = 1000 for A.

for γ = 1 or γ = 2, at least for BO. The boundary γ = 1 in their simulation study seems to be a robust choice,

and it seems to be the case here too.

We now provide some reconstructions. Figures 2 and 3 give the reconstructions corresponding to Experiment

2 (M = 2) with K = 8 for T = 2 and T = 20 respectively. The reconstructions are quite satisfying. Of course,

the quality improves when T grows. We also note improvements by using BO instead of B. For adaptive Lasso,

improvements by using the second step are not significative and this is the reason why we do not represent

reconstructions with AO. Graphs of the right hand side of Figure 2 illustrate the difficulties of adaptive Lasso

to recover the exact support of interactions functions, namely h
(1)
2 and h

(2)
2 for T = 2. Figure 4 provides

another illustration in the case of Experiment 3 (M = 8) with K = 8 for T = 20. For the sake of clarity, we only

represent reconstructions for the first 4 neurons. Supports of coefficients are well recovered by all the methods.

From the estimation point of view, this illustration provides a clear hierarchy between the methods: BO seems

to achieve the best results and B the worst.

6.4 Conclusions

With respect to the problem of tuning our methodology based on Bernstein type inequalities, our simulation

study is coherent with theoretical aspects since we achieve our best results by taking γ = 1, which constitutes

the limit case of assumptions of Theorem 2. For practical aspects, we recommend the choice γ = 1 even if γ = 2

is acceptable. More important, this choice is robust with respect to the duration of records, which is not the
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case for adaptive Lasso. Implemented with γ = 1, our method outperforms adaptive Lasso for supports recovery

since it is able to recover the dependency groups, the non-zero spontaneous rates, the non-zero functions and

even the non-zero coefficients as soon as T is large enough. Most of the time, the two step procedure BO seems

to achieves the best results for parameter estimations.

It is important to note that the question of tuning adaptive Lasso remains open. Some values of γ allow us

to obtain very good results but they are not robust with respect to T , which may constitute a serious problem

for practitioners. In the standard regression setting, this problem may be overcome by using cross-validation

on independent data, which somehow estimates random fluctuations. But in this multivariate Hawkes set-

up, independence assumptions on data cannot be made and this explains the problems for tuning adaptive

Lasso. Our method based on Bernstein type concentration inequalities take into account those fluctuations.

It also takes into account the nature of the coefficients and the variability of their estimates which differ for

spontaneous rates on the one hand and coefficients of interaction functions on the other hand. The shape of

weights of adaptive Lasso does not incorporate this difference, which explains the contradictions for tuning the

method when T = 2. For instance, in some cases, adaptive Lasso tends to estimate some spontaneous rate by

zero in order to achieve better performances on the interaction functions.

7 Proofs

This section is devoted to the proofs of the results of the paper. Throughout, C is a constant whose value may

change from line to line.

7.1 Proof of Theorem 1

We use ||.||`2 for the Euclidian norm of RΦ. Given a recall that

fa =
∑
ϕ∈Φ

aϕϕ.

Then, we have f̂ = fâ,

a′b = ψ(fa) •NT
and

a′Ga = ||fa||2T .
Then,

−2ψ(fâ) •NT + ||fâ||2T + 2d′|â| ≤ −2ψ(fa) •NT + ||fa||2T + 2d′|a|.

So,

||fâ − f∗||2T = ||fâ||2T + ||f∗||2T − 2 < fâ, f
∗ >T

≤ ||fa||2T + ||f∗||2T + 2ψ(fâ − fa) •NT + 2d′ (|a| − |â|)− 2 < fâ, f
∗ >T

= ||fa − f∗||2T + 2 < fa − fâ, f∗ >T +2ψ(fâ − fa) •NT + 2d′ (|a| − |â|)
= ||fa − f∗||2T + 2ψ(fa − fâ) • (Ψ(f∗)−N)T + 2d′ (|a| − |â|)
= ||fa − f∗||2T + 2

∑
ϕ∈Φ

(aϕ − âϕ)ψ(ϕ) • (Ψ(f∗)−N)T + 2d′ (|a| − |â|)

≤ ||fa − f∗||2T + 2
∑
ϕ∈Φ

|aϕ − âϕ| × |b̄ϕ − bϕ|+ 2d′ (|a| − |â|) .

Using (2.5), we obtain:

||fâ − f∗||2T ≤ ||fa − f∗||2T + 2
∑
ϕ∈Φ

dϕ|aϕ − âϕ|+ 2
∑
ϕ∈Φ

dϕ (|aϕ| − |âϕ|)

≤ ||fa − f∗||2T + 2
∑
ϕ∈Φ

dϕ (|aϕ − âϕ|+ |aϕ| − |âϕ|) .
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Now, if ϕ 6∈ S(a), |aϕ − âϕ|+ |aϕ| − |âϕ| = 0, and

||fâ − f∗||2T ≤ ||fa − f∗||2T + 2
∑

ϕ∈S(a)

dϕ (|aϕ − âϕ|+ |aϕ| − |âϕ|)

≤ ||fa − f∗||2T + 4
∑

ϕ∈S(a)

dϕ (|aϕ − âϕ|)

≤ ||fa − f∗||2T + 4||â− a||`2

 ∑
ϕ∈S(a)

d2
ϕ

1/2

.

We now use the assumption on the Gram matrix given by (2.4) and the triangular inequality for ||.||T , which

yields

||â− a||2`2 ≤ c−1 (â− a)
′
G (â− a)

= c−1||fâ − fa||2T
≤ 2c−1

(
||fâ − f∗||2T + ||fa − f∗||2T

)
.

Let us take α ∈ (0; 1). Since for any x ∈ R and any y ∈ R, 2xy ≤ αx2 + α−1y2, we obtain:

||fâ − f∗||2T ≤ ||fa − f∗||2T + 4
√

2c−1/2
√
||fâ − f∗||2T + ||fa − f∗||2T

 ∑
ϕ∈S(a)

d2
ϕ

1/2

≤ ||fa − f∗||2T + α
(
||fâ − f∗||2T + ||fa − f∗||2T

)
+ 8α−1c−1

∑
ϕ∈S(a)

d2
ϕ

≤ (1− α)−1

(1 + α)||fa − f∗||2T + 8α−1c−1
∑

ϕ∈S(a)

d2
ϕ

 .

The theorem is proved just by taking an arbitrary absolute value for α ∈ (0; 1).

7.2 Proof of Theorem 2

Let us first define

T = {t ≥ 0 / sup
m
|ψ(m)
t (ϕ)| > Bϕ}. (7.1)

Let us define the stopping time τ ′ = inf T and the predictible process H by

H
(m)
t = ψ

(m)
t (ϕ)1t≤τ ′ .

Let us apply Theorem 3 to this choice of H with τ = T and B = Bϕ. The choice of v and w will be given later

on. To apply this result, we need to check that for all t and all ξ ∈ (0, 3),
∑
m

∫ t
0
e
ξ
H

(m)
s
Bϕ λ

(m)
s ds is a.s. finite.

But if t > τ ′, then ∫ t

0

e
ξ
H

(m)
s
Bϕ λ(m)

s ds =

∫ τ ′

0

e
ξ
H

(m)
s
Bϕ λ(m)

s ds+

∫ t

τ ′
λ(m)
s ds,

where the second part is obviously finite (it is just Λ
(m)
t − Λ

(m)
τ ′ .) Hence it remains to prove that for all t ≤ τ ′,∫ t

0

e
ξ
H

(m)
s
Bϕ λ(m)

s ds

is finite. But for all s < t, s < τ ′ and consequently s 6∈ T . Therefore |H(m)
s | ≤ Bϕ. Since we are integrating

with respect to the Lebesgue measure, the fact that it eventually does not hold in t is not a problem and∫ t

0

e
ξ
H

(m)
s
Bϕ λ(m)

s ds ≤ eξΛ(m)
t ,
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which is obviously finite a.s. The same reasoning can be applied to show that a.s. exp(ξH2/B2) •Λt <∞. We

can also apply Theorem 3 to −H in the same way. We obtain at the end that for all ε > 0

P
(
|H • (N − Λ)T | ≥

√
2(1 + ε)V̂ µx+

Bϕx

3
and w ≤ V̂ µ ≤ v and sup

m,t≤T
|H(m)

t | ≤ Bϕ
)
≤ 4

(
log(v/w)

log(1 + ε)
+ 1

)
e−x.

(7.2)

But on ΩV,B it is clear that ∀t ∈ [0, T ], t 6∈ T . Therefore τ ′ ≥ T . Therefore for all t ≤ T , one also has t ≤ τ ′

and H
(m)
t = ψ

(m)
t (ϕ). Consequently, on ΩV,B ,

H • (N − Λ)T = bϕ − b̄ϕ and V̂ µ = V̂ µϕ .

Moreover, on ΩV,B , one has that

B2
ϕx

µ− φ(µ)
≤ V̂ µϕ ≤

µ

µ− φ(µ)
Vϕ +

B2
ϕx

µ− φ(µ)
.

So, we take w and v as respectively the left and right hand side of the previous inequality. Finally note that on

ΩV,B ,

sup
m,t≤T

|H(m)
t | = sup

m,t≤T
|ψ(m)
t (ϕ)| ≤ Bϕ.

Hence, we can rewrite (7.2) as follows

P
(
|bϕ − b̄ϕ| ≥

√
2(1 + ε)V̂ µϕ x+

Bϕx

3
and ΩV,B

)
≤ 4

 log
(

1 +
µVϕ
B2
ϕx

)
log(1 + ε)

+ 1

 e−x. (7.3)

Apply this to all ϕ ∈ Φ, we obtain that

P
(
∃ϕ ∈ Φ s.t. |bϕ − b̄ϕ| ≥ dϕ and ΩV,B

)
≤ 4

∑
ϕ∈Φ

 log
(

1 +
µVϕ
B2
ϕx

)
log(1 + ε)

+ 1

 e−x.

Now on the event Ωc ∩ ΩV,B ∩ {∀ϕ ∈ Φ, |bϕ − b̄ϕ| ≤ dϕ}, one can apply Theorem 1. To obtain Theorem 2, it

remains to bound the probability of the complementary event by

P(Ωcc) + P(ΩcV,B) + P
(
∃ϕ ∈ Φ s.t. |bϕ − b̄ϕ| ≥ dϕ and ΩV,B

)
.

7.3 Proof of Theorem 3

First, replacing H with H/B, we can always assume that B = 1.

Next, let us fix for the moment ξ ∈ (0, 3). If one assumes that almost surely for all t > 0,
∑M
m=1

∫ t
0
eξH

(m)
s λ

(m)
s ds <

∞ (ie that the process eξH • Λ is well defined) then one can apply Theorem 2 of [7, p165], stating that the

process (Et)t≥0 defined for all t by

Et = exp(ξH • (N − Λ)t − φ(ξH) • Λt)

is a supermartingale. It is also the case for Et∧τ if τ is a bounded stopping time. Hence for any ξ ∈ (0, 3) and

for any x > 0, one has that

P(Et∧τ > ex) ≤ e−xE(Et∧τ ) ≤ e−x,

which means that

P(ξH • (N − Λ)t∧τ − φ(ξH) • Λt∧τ > x) ≤ e−x.

Therefore

P(ξH • (N − Λ)t∧τ − φ(ξH) • Λt∧τ > x and sup
s≤τ,m

|H(m)
s | ≤ 1) ≤ e−x.
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But if sups≤τ,m |H
(m)
s | ≤ 1, then for any ξ > 0 and any s,

φ(ξH(m)
s ) ≤ (H(m)

s )2φ(ξ).

So, for every ξ ∈ (0, 3), we obtain:

P
(
Mτ ≥ ξ−1φ(ξ)H2 • Λτ + ξ−1x and sup

s≤τ,m
|H(m)

s | ≤ 1

)
≤ e−x. (7.4)

Now let us focus on the event H2 • Λτ ≤ v where v is a deterministic quantity. We have that consequently

P
(
Mτ ≥ ξ−1φ(ξ)v + ξ−1x and H2 • Λτ ≤ v and sup

s≤τ,m
|H(m)

s | ≤ 1

)
≤ e−x.

It remains to choose ξ such that ξ−1φ(ξ)v+ ξ−1x is minimal. But this expression has no simple form. However,

since 0 < ξ < 3, one can bound φ(ξ) by ξ2(1− ξ/3)−1/2. Hence we can start with

P
(
Mτ ≥

ξ

2(1− ξ/3)
H2 • Λτ + ξ−1x and sup

s≤τ,m
|H(m)

s | ≤ 1

)
≤ e−x (7.5)

and also

P
(
Mτ ≥

ξ

2(1− ξ/3)
v + ξ−1x and H2 • Λτ ≤ v and sup

s≤τ,m
|H(m)

s | ≤ 1

)
≤ e−x. (7.6)

It remains now to minimize ξ 7−→ ξ
2(1−ξ/3)v + ξ−1x.

Lemma 2. Let a, b and x be positive constants and let us consider on (0, 1/b),

g(ξ) =
aξ

(1− bξ)
+
x

ξ
.

Then minξ∈(0,1/b) g(ξ) = 2
√
ax+ bx and the minimum is achieved in ξ(a, b, x) = xb−

√
ax

xb2−a .

Proof. The limits of g in 0+ and (1/b)− are +∞. The derivative is given by

g′(ξ) =
a

(1− bξ)2
− x

ξ2

which is null in ξ(a, b, x) (remark that the other solution of the polynomial does not lie in (0, 1/b)). Finally it

remains to evaluate the quantity in ξ(a, b, x) to obtain the result. �

Now, we apply (7.6) with ξ(v/2, 1/3, x) and we obtain this well known formula which can be found in [50]

for instance:

P
(
Mτ ≥

√
2vx+ x/3 and H2 • Λτ ≤ v and sup

s≤τ,m
|H(m)

s | ≤ 1

)
≤ e−x. (7.7)

Now we would like first to replace v by its random version H2 •Λτ . Let w, v be some positive constants and let

us concentrate on the event

w ≤ H2 • Λτ ≤ v. (7.8)

For all ε > 0 we introduce K a positive integer depending on ε, v and w such that (1 + ε)Kw ≥ v. Note that

K = dlog(v/w)/ log(1 + ε)e is a possible choice. Let us denote v0 = w, v1 = (1 + ε)w, ..., vK = (1 + ε)Kw. For

any 0 < ξ < 3 and any k in {0, ...,K − 1}, one has, by applying (7.5),

P
(
Mτ ≥

ξ

2(1− ξ/3)
H2 • Λτ + ξ−1x and vk ≤ H2 • Λτ ≤ vk+1 and sup

s≤τ,m
|H(m)

s | ≤ 1

)
≤ e−x.

This implies that

P
(
Mτ ≥

ξ

2(1− ξ/3)
vk+1 + ξ−1x and vk ≤ H2 • Λτ ≤ vk+1 and sup

s≤τ,m
|H(m)

s | ≤ 1

)
≤ e−x.
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Using the previous lemma, with ξ = ξ(vk+1/2, 1/3, x), this gives

P
(
Mτ ≥

√
2vk+1x+ x/3 and vk ≤ H2 • Λτ ≤ vk+1 and sup

s≤τ,m
|H(m)

s | ≤ 1

)
≤ e−x.

But if vk ≤ H2 • Λτ , vk+1 ≤ (1 + ε)vk ≤ (1 + ε)H2 • Λτ , so

P
(
Mτ ≥

√
2(1 + ε) (H2 • Λτ )x+ x/3 and vk ≤ H2 • Λτ ≤ vk+1 and sup

s≤τ,m
|H(m)

s | ≤ 1

)
≤ e−x.

Finally summing on k, this gives

P
(
Mτ ≥

√
2(1 + ε)(H2 • Λτ )x+ x/3 and w ≤ H2 • Λτ ≤ v and sup

s≤τ,m
|H(m)

s | ≤ 1

)
≤ Ke−x. (7.9)

This leads to the following result that has interest per se.

Proposition 5. Let N = (N (m))m=1,...,M be a multivariate counting process with predictable intensities λ
(m)
t

and corresponding compensator Λ
(m)
t with respect to some given filtration. Let B > 0. Let H = (H(m))m=1,...,M

be a multivariate predictable process such that for all ξ ∈ (0, 3), eξH/B • Λt <∞ a.s. for all t. Let us consider

the martingale defined for all t by

Mt = H • (N − Λ)t.

Let v > w be positive constants and let τ be a bounded stopping time. Then for any ε, x > 0

P
(
Mτ ≥

√
2(1 + ε)(H2 • Λτ )x+

Bx

3
and w ≤ H2 • Λτ ≤ v and sup

m,t≤τ
|H(m)

t | ≤ B
)
≤
(

log(v/w)

log(1 + ε)
+ 1

)
e−x.

(7.10)

Next, we would like to replace H2 • Λτ , the quadratic characteristic of M , with its estimator H2 •Nτ , i.e.

the quadratic variation of M . For this purpose, let us consider Wt = −H2 • (N −Λ)t which is still a martingale

since the −(H
(m)
s )2’s are still predictable processes. We apply (7.4) with µ instead of ξ, noticing that on the

event {sups≤τ,m |H
(m)
s | ≤ 1}, one has that H4 • Λτ ≤ H2 • Λτ . This gives that

P
(
H2 • Λτ ≥ H2 •Nτ + {φ(µ)/µ}H2 • Λτ + x/µ and sup

s≤τ,m
|H(m)

s | ≤ 1

)
≤ e−x,

which means that

P
(
H2 • Λτ ≥ V̂ µ and sup

s≤τ,m
|H(m)

s | ≤ 1

)
≤ e−x. (7.11)

So we use again (7.5) combined with (7.11) to obtain that for all ξ ∈ (0, 3)

P
(
Mτ ≥

ξ

2(1− ξ/3)
V̂ µ + ξ−1x and sup

s≤τ,m
|H(m)

s | ≤ 1

)
≤

P
(
Mτ ≥

ξ

2(1− ξ/3)
V̂ µ + ξ−1x and sup

s≤τ,m
|H(m)

s | ≤ 1 and H2 • Λτ ≤ V̂ µ
)

+

+ P
(
H2 • Λτ ≥ V̂ µ and sup

s≤τ,m
|H(m)

s | ≤ 1

)
≤ 2e−x.

This new inequality replaces (7.5) and it remains to replace H2 • Λτ by V̂ µ in the peeling arguments to obtain

as before that

P
(
Mτ ≥

√
2(1 + ε)V̂ µx+ x/3 and w ≤ V̂ µ ≤ v and sup

s≤τ,m
|H(m)

s | ≤ 1

)
≤ 2Ke−x. (7.12)

28



7.4 Proofs of the probabilist results for Hawkes processes

7.4.1 Proof of Lemma 1

Let K(n) denote the vector of the number of descendants in the n’th generation from a single ancestral point of

type `, define K(0) = e` and let W (n) =
∑n
k=0K(n) denote the total number of points in the first n generations.

Define for θ ∈ RM

φ`(θ) = logE`eθ
TK(1).

Thus, φ`(θ) is the log-Laplace transform of the distribution of K(1) given that there is a single initial ancestral

point of type `. We define the vector φ(θ) by φ(θ)′ = (φ1(θ), ..., φM (θ)). Note that φ only depends on the law

of the number of children per parent, ie it only depends on Γ. Then

E`eθ
TW (n) = E`

(
eθ
TW (n−1)E

(
eθ
TK(n) | K(n− 1), . . . , .K(1)

))
= E`

(
eθ
TW (n−1)eφ(θ)TK(n−1)

)
= E`e(θ+φ(θ))TK(n−1)+θTW (n−2)

Defining g(θ) = θ + φ(θ) we arrive by recursion at the formula

E`eθ
TW (n) = E`eg

◦(n−1)(θ)TK(1)+θTW (0)

= eφ(g◦(n−1)(θ))`+θ`

= eg
◦n(θ)` .

Or, in other words, we have the following representation

logE`eθ
TW (n) = g◦n(θ)`

of the log-Laplace transform of W (n).

Below we show that φ is a contraction in a neighborhood containing 0, that is, for some r > 0 and a constant

C < 1 (and a suitable norm), ||φ(s)|| ≤ C||s|| for ||s|| ≤ r. If θ is chosen such that

||θ||
1− C

≤ r

we have ||θ|| ≤ r, and if we assume that g◦k(θ) ∈ B(0, r) for k = 1, . . . , n− 1 then

||g◦n(θ)|| ≤ ||θ||+ ||φ(g◦(n−1)(θ))||
≤ ||θ||+ C||g◦(n−1)(θ)||
≤ ||θ||

(
1 + C + C2 + . . .+ Cn

)
≤ r

Thus, by induction, g◦n(θ) ∈ B(0, r) for all n ≥ 1. Since Wm(n) ↗ Wm(∞) monotonely for n → ∞, with

Wm(∞) the total number of points in a cluster of type m, and since W =
∑
mWm(∞) = 1TW (∞), we have

by monotone convergence that for ϑ ∈ R

logE`eϑW = lim
n→∞

g◦n(ϑ1)`.

By the previous result, the right hand side is bounded if |ϑ| is sufficiently small. This completes the proof up

to proving that φ is a contraction.

To this end we note that φ is continuously differentiable (on RM in fact, but a neighborhood around 0

suffice) with derivative Dφ(0) = Γ at 0. Since the spectral radius of Γ is strictly less than 1 there is a C < 1

and, by the Householder theorem, a norm || · || on RM such that for the induced operator norm of Γ we have

||Γ|| = max
x:||x||≤1

||Γx|| < C
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Since the norm is continuous and Dφ(s) is likewise there is an r > 0 such that

||Dφ(s)|| ≤ C < 1

for ||s|| ≤ r. This, in turn, implies that φ is Lipschitz continuous in the ball B(0, r) with Lipschitz constant C,

and since φ(0) = 0 we get

||φ(s)|| ≤ C||s||

for ||s|| ≤ r. This ends the proof of the lemma.

Note that we have not at all used the explicit formula for φ above, which is obtainable and simple since the

offspring distributions are Poisson. The only thing we needed was the fact that φ is defined in a neighborhood

around 0, thus that the offspring distributions are sufficiently light-tailed.

7.4.2 Proof of Proposition 1

We use the cluster representation, and we note that any cluster with ancestral point in [−n− 1,−n] must have

at least n + 1 − dAe points in the cluster if any of the points are to fall in [−A, 0). This follows from the

assumption that all the h
(m)
` -functions have support in [0, 1]. With ÑA,` the number of points in [−A, 0) from

a cluster with ancestral points of type ` we thus have the bound

ÑA,` ≤
∑
n

An∑
k=1

max{Wn,k − n+ dAe, 0}

where An is the number of ancestral points in [−n − 1,−n] of type ` and Wn,k is the number of points in the

respective clusters. Here the An’s and the Wn,k’s are all independent, the An’s are Poisson distributed with

mean ν` and the Wn,k’s are iid with the same distribution as W in Lemma 1. Moreover,

Hn(ϑ`) := E`eϑ` max{W−n+dAe,0} ≤ P`(W ≤ n− dAe) + e−ϑ`(n−dAe)E`eϑ`W ,

which is finite for |ϑ`| sufficiently small according to Lemma 1. Then we can compute an upper bound on the

Laplace transform of ÑA,`:

Eeϑ`ÑA,` ≤
∏
n

E
An∏
k=1

E
(
eϑ` max{Wn,k−n+dAe,0} | An

)
≤

∏
n

EHn(ϑ`)
An

=
∏
n

eν`(Hn(ϑ`)−1)

= eν`
∑
n(Hn(ϑ`)−1)

Since Hn(ϑ`) − 1 ≤ e−ϑ`(n−dAe)E`eϑ`W we have
∑
n(Hn(ϑ`) − 1) < ∞, which shows that the upper bound is

finite. To complete the proof, observe that N[−A,0) =
∑
` ÑA,` where ÑA,` for ` = 1, . . . ,M are independent.

Since all variables are positive, it is sufficient to take θ = min` ϑ`.

7.4.3 Proof of Proposition 2

In this paragraph, the notation � simply denotes a generic positive absolute constant that may change from

line to line. The notation �θ1,θ2,... denotes a positive constant depending on θ1, θ2, . . . that may change from

line to line.

Let

u = C1σ log3/2(T )
√
T + C2b(log(T ))2+η, (7.13)
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where the choices of C1 and C2 will be given later. For any positive integer k such that x := T/(2k) > A, we

have by stationarity:

P

(∫ T

0

[Z ◦ θt(N)− E(Z)]dt ≥ u

)
= P

(
k−1∑
q=0

∫ 2qx+x

2qx

[Z ◦ θt(N)− E(Z)]dt+

∫ 2qx+2x

2qx+x

[Z ◦ θt(N)− E(Z)]dt ≥ u

)

≤ 2P

(
k−1∑
q=0

∫ 2qx+x

2qx

[Z ◦ θt(N)− E(Z)]dt ≥ u

2

)
.

Similarly to [45], we introduce (M̃x
q )q a sequence of independent Hawkes processes, each being stationary with

intensities per mark given by ψ
(m)
t . For each q, we then introduce Mx

q the truncated process associated with

M̃x
q , where truncation means that we only consider the points lying in [2qx−A, 2qx+ x]. So, if we set

Fq =

∫ 2qx+x

2qx

[Z ◦ θt(Mx
q )− E(Z)]dt,

P

(∫ T

0

[Z ◦ θt(N)− E(Z)]dt ≥ u

)
≤ 2P

(
k−1∑
q=0

Fq ≥
u

2

)
+ 2kP

(
Te >

T

2k
−A

)
, (7.14)

where Te represents the time to extinction of the process. More precisely Te is the last point of the process

if in the cluster representation only ancestral points before 0 are appearing. For more details, see section 3 of

[45]. So, denoting al the ancestral points with marks l and H l
al

the length of the corresponding cluster whose

origin is al, we have:

Te = max
l∈{1,...,M}

max
al

{
al +H l

al

}
.

But, for any a > 0,

P(Te ≤ a) = E

[
M∏
l=1

∏
al

E
[
1{al+Hlal≤a}

|al
]]

= E

[
M∏
l=1

∏
al

exp
(
log
(
P(H l

0 ≤ a− al)
))]

= E

[
M∏
l=1

exp

(∫ 0

−∞
log(P(H l

0 ≤ a− x))dÑ (l)
x

)]
,

where Ñ (l) denotes the process associated with the ancestral points with marks l. So,

P(Te ≤ a) = exp

(
M∑
l=1

∫ 0

−∞

(
exp(log(P(H l

0 ≤ a− x)))− 1
)
ν(l)dx

)

= exp

(
−

M∑
l=1

ν(l)

∫ +∞

a

P(H l
0 > u)du

)
.

Now, by Lemma 1, there exists some ϑl > 0, such that cl = E`(eϑlW ) < +∞, where W is the number of points

in the cluster. But if all the interaction functions have support in [0, 1], one always have that H l
0 < W . Hence

P(H l
0 > u) ≤ E[exp(ϑlH

l
0)] exp(−ϑlu)

≤ cl exp(−ϑlu).
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So,

P(Te ≤ a) ≥ exp

(
−

M∑
l=1

ν(l)

∫ +∞

a

cl exp(−ϑlu)du

)

= exp

(
−

M∑
l=1

ν(l)cl/ϑl exp(−ϑla)

)

≥ 1−
M∑
l=1

ν(l)cl/ϑl exp(−ϑla).

So, there exists a constant Cα,f∗,A depending on α,A, and f∗ such that if we take k = bCα,A,f∗T/ log(T )c, then

kP
(
Te >

T

2k
−A

)
≤ T−α.

In this case x = T
2k ≈ log(T ) is larger than A for T large enough (depending on A,α, f∗).

Now, let us focus on the first term B of (7.14), where

B = P

(
k−1∑
q=0

Fq ≥
u

2

)
.

Let us consider some Ñ where Ñ will be fixed later and let us define the measurable events

Ωq =

{
sup
t
{Mx

q |[t−A,t)} ≤ Ñ
}
,

where Mx
q |[t−A,t) represents the set of points of Mx

q lying in [t − A, t). Let us also consider Ω = ∩1≤q≤kΩq.

Then

B ≤ P
(∑
q

Fq ≥ u/2 and Ω
)

+ P(Ωc).

We have P(Ωc) ≤
∑
q P(Ωcq). Each Ωq can also be easily controlled. Indeed it is sufficient to split [2qx−A, 2qx+x]

in intervals of size A (there are about �α,A,f∗ log(T ) of those) and require that the number of points in each

subinterval is smaller than Ñ/2. By stationarity, we obtain that

P(Ωcq) ≤ �α,A,f∗ log(T )P(N[−A,0) > Ñ/2).

Using Proposition 1 with u = dÑ/2e+ 1/2, we obtain:

P(Ωcq) ≤ �α,A,f∗ log(T ) exp(−�α,A,f∗Ñ ) and P(Ωc) ≤ �α,A,f∗T exp(−�α,A,f∗Ñ ). (7.15)

Note that this control holds for any positive choice of Ñ . Hence this gives also the following Lemma that will

be used later.

Lemma 3. For any R > 0,

P
(
there exists t ∈ [0, T ] | Mx

q |[t−A,t) > R) ≤ �α,A,f∗T exp(−�α,A,f∗R).

Hence by taking Ñ = C3 log(T ) for C3 large enough this is smaller than �α,A,f∗T−α
′
, where α′ = max(α, 2).

It remains to obtain the rate of D := P(
∑
q Fq ≥ u/2 and Ω). For any positive constant θ that will be

chosen later, we have:

D ≤ e−
θu
2 E

(
eθ

∑
q Fq

∏
q

1Ωq

)
≤ e−

θu
2

∏
q

E
(
eθFq1Ωq

)
(7.16)
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since the variables (Mx
q )q are independent. But

E
(
eθFq1Ωq

)
= 1 + θE(Fq1Ωq ) +

∑
j≥2

θj

j!
E(F jq 1Ωq )

and E(Fq1Ωq ) = E(Fq)− E(Fq1Ωcq
) = −E(Fq1Ωcq

).

Next note that if for any integer l,

lÑ < sup
t
Mx
q |[t−A,t) ≤ (l + 1)Ñ

then

|Fq| ≤ xb[(l + 1)ηÑ η + 1] + xE(f).

Hence, cutting Ωcq in slices of the type {lÑ < suptM
x
q [t−A,t) ≤ (l + 1)Ñ } and using Lemma 3, we obtain by

taking C3 large enough,

|E(Fq1Ωq )| = |E(Fq1Ωcq
)| ≤

+∞∑
l=1

x(b[(l + 1)ηÑ η + 1] + |E(Z)|)P(there exists t ∈ [0, T ] | {Mx
q |[t−A,t)} > `Ñ )

≤ �α,A,f∗
+∞∑
l=1

x(b[(l + 1)ηÑ η + 1] + |E(Z)|) log(T )e−�α,A,f∗ lÑ

≤ �α,A,f∗
+∞∑
l=1

x(bÑ η + |E(Z)|) log(T )2lηe−�α,A,f∗ lÑ

≤ �α,η,A,f∗ log2(T )bÑ η e−�α,A,f∗ Ñ

1− 2ηe−�α,A,f∗ Ñ

≤ z1 := �α,η,A,f∗bT
−α′ .

Note that in the previous inequalities, we have bounded |E(Z)| by bE[Nη
[−A,0)]. In the same way, one can bound

E(F jq 1Ωq ) ≤ E(F 2
q 1Ωq )z

j−2
b ,

with zb := xb[Ñ η + 1] + xE(Z) = �α,η,A,f∗b log(T )1+η. One can also note that by stationarity,

E(F 2
q 1Ωq ) ≤ xE

[∫ 2qx+x

2qx

[Z ◦ θs(Mx
q )− E(Z)]21{for all t,Mx

q |[t−A,t)≤Ñ}
ds

]
≤ xE

[∫ 2qx+x

2qx

[Z ◦ θs(Mx
q )− E(Z)]21{Mx

q |[s−A,s)≤Ñ}
ds

]
≤ x2E([Z(N)− E(Z)]21N[−A,0)≤Ñ )

≤ zv := �α,η,A,f∗(log(T ))2σ2.

Now let us go back to (7.16). We have that

D ≤ exp

−θu
2

+ k ln

1 + θz1 +
∑
j≥2

zvz
j−2
b

θj

j!


≤ exp

−θ (u
2
− kz1

)
+ k

∑
j≥2

zvz
j−2
b

θj

j!

 ,
using that ln(1 + u) ≤ u. It is sufficient now to recognize a step of the proof of the Bernstein inequality (weak

version see [36, p25]). Since kz1 = �α,η,sbT 1−α′/(log(T )), one can choose α′ > 1, C1 and C2 in the definition
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(7.13) of u (not depending on b) such that u/2 − kz1 ≥
√

2kzvz + 1
3zbz for some z = C4 log(T ), where C4 is a

constant. Hence

D ≤ exp

−θ(√2kzvz +
1

3
zbz) + k

∑
j≥2

zvz
j−2
b

θj

j!

 .
One can choose accordingly θ (as for the proof of the Bernstein inequality) to obtain a bound in e−z. It remains

to choose C4 large enough and only depending on α, η,A and f∗ to guarantee that D ≤ e−z ≤ �α,η,A,f∗T−α.
This concludes the proof of the proposition.

7.4.4 Proof of Proposition 3

Let Q denote a measure such that under Q the distribution of the full point process restricted to (−∞, 0] is

identical to the distribution under P and such that on (0,∞) the process consists of independent components each

being a homogeneous Poisson process with rate 1. Furthermore, the Poisson processes should be independent

of the process on (−∞, 0]. From Corollary 5.1.2 in [32] the likelihood process is given by

Lt = exp

(
Mt−

∑
m

∫ t

0

λ(m)
u du+

∑
m

∫ t

0

log λ(m)
u dN (m)

u

)
and we have for t ≥ 0 the relation

EPκt(f)2 = EQκt(f)2Lt, (7.17)

where EP and EQ denote the expectation with respect to P and Q respectively. Let, furthermore, Ñ1 = N[−1,0)

denote the total number of points on [−1, 0). Proposition 3 will be an easy consequence of the following lemma.

Lemma 4. If the point process is stationary under P, if

ed ≤ λ(m)
t ≤ a(N1 + Ñ1) + b

for t ∈ [0, 1] and for constants d ∈ R and a, b > 0, and if EP(1 + ε)Ñ1 <∞ for some ε > 0 then for any f ,

Q(f , f) ≥ ζ||f ||2 (7.18)

for some constant ζ > 0.

Proof. We use Hölders inequality on κ1(f)
2
pL

1
p

1 and κ1(f)
2
qL−

1
p

1 to get

EQκ1(f)2 ≤
(
EQκ1(f)2L1

) 1
p

(
EQκ1(f)2L−

q
p

1

) 1
q

= Q(f , f)
1
p

(
EQκ1(f)2L1−q

1

) 1
q

(7.19)

where 1
p + 1

q = 1. We choose q ≥ 1 (and thus p) below to make q − 1 sufficiently small. For the left hand side

we have by independence of the homogeneous Poisson processes that if f = (µ, (g`)`=1,...,M ),

EQκ1(f)2 = (EQκ1(f))2 + VQκ1(f)

=

(
µ+

∑
`

∫ 1

0

g`(u)du

)2

+
∑
`

∫ 1

0

g`(u)2du.

Exactly as on page 32 in [46] there exists c′ > 0 such that

EQκ1(f)2 ≥ c′
(
µ2 +

∑
`

∫ 1

0

g2
` (u)du

)
= c′||f ||2. (7.20)

To bound the second factor on the right hand side in (7.19) we observe, by assumption, that we have the lower

bound

L1 ≥ eM(1−b)e(d−aM)N1e−aMÑ1
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on the likelihood process. Under Q we have that (κ1(f), N1) and Ñ1 are independent, and with ρ = e(q−1)(aM−d)

and ρ̃ = e(q−1)(aM) we get that

EQκ1(f)2L1−q
1 ≤ e(q−1)M(b−1)EQρ̃

Ñ1EQκ1(f)2ρN1 .

Here we choose q such that ρ̃ is sufficiently close to 1 to make sure that EQρ̃
Ñ1 = EPρ̃

Ñ1 < ∞. Moreover, by

Cauchy-Schwarz’ inequality

κ2
1(f) ≤

(
µ2 +

∑
`

∫ 1−

0

g2
` (1− u)dN (`)

u

)
(1 +N1). (7.21)

Under Q the point processes on (0,∞) are homogeneous Poisson processes with rate 1 and N1, the total number

of points, is Poisson. This implies that conditionally on (N
(1)
1 , . . . , N

(M)
1 ) = (n(1), . . . , n(M)) the n(m)-points for

the m’th process are uniformly distributed on [0, 1], hence

EQκ1(f)2L1−q
1 ≤

(
µ2 +

∑
`

∫ 1

0

g2
` (u)du

)
e(q−1)M(b−1)EQρ̃

Ñ1EQ(1 +N1)2ρN1︸ ︷︷ ︸
c′′

= c′′||f ||2. (7.22)

Combining (7.20) and (7.22) with (7.19) we get that

c′||f ||2 ≤ (c′′)
1
q ||f ||

2
qQ(f , f)

1
p

or by rearranging that

Q(f , f) ≥ ζ||f ||2

with ζ = (c′)p/(c′′)p−1. �
For the Hawkes process it follows that if ν(m) > 0 and if

sup
t∈[0,1]

h
(m)
` (t) <∞

for l,m = 1, . . . ,M then for t ∈ [0, 1] we have ed ≤ λ(m)
t ≤ a(N1 + Ñ1) + b with

d = log ν(m), a = max
l

sup
t∈[0,1]

h
(m)
` (t), b = ν(m).

Proposition 1 proves that there exists ε > 0 such that EP(1 + ε)Ñ1 <∞. This ends the proof of Proposition 3.

7.5 Proofs of the results of Section 5.3

7.5.1 Proof of Proposition 4

As in the proof of Proposition 2, we use the notation �. Note that for any ϕ1 and any ϕ2 belonging to Φ,

Gϕ1,ϕ2
= ψ(ϕ1) •Ψ(ϕ2)T =

M∑
m=1

∫ T

0

κt(ϕ1
(m))κt(ϕ2

(m))dt

and E(Gϕ1,ϕ2) = T
∑M
m=1Q(ϕ1

(m), ϕ2
(m)) by using (5.2). This implies that

E(a′Ga) = a′E(G)a = T
∑
m

Q(f (m)
a , f (m)

a ).

Hence by Proposition 3, E(a′Ga) ≥ Tζ
∑
m ||f

(m)
a ||2 = Tζ||fa||2 by definition of the norm on H. Since Φ is an

orthonormal system, this implies that E(a′Ga) ≥ Tζ||a||`2 . Hence, to show that Ωc is a large event for some

c > 0, it is sufficient to show that for some 0 < ε < ζ, with high probability, for any a ∈ RΦ,

|a′Ga− a′E(G)a| ≤ Tε||a||`2 . (7.23)

35



Indeed, (7.23) implies that, with high probability, for any a ∈ RΦ,

a′Ga ≥ a′E(G)a− Tε||a||`2 ≥ T (ζ − ε)||a||`2 ,

and the choice c = T (ζ − ε) is convenient. So, first one has to control all the coefficients of G − E(G). For all

ϕ, ρ ∈ Φ, we apply Proposition 2 to

Z(N) =
∑
m

ψ
(m)
0 (ϕ)ψ

(m)
0 (ρ).

Note that Z only depends on points lying in [−1, 0). Therefore, |Z(N)| ≤ 2M ||ϕ||∞||ρ||∞
(
1 + N2

[−1,0)

)
. This

leads to

P

(
1

T

∣∣∣∣∣Gϕ,ρ − E(Gϕ,ρ)

∣∣∣∣∣ ≥ xϕ,ρ
)
≤ �α,f∗T

−α

with

xϕ,ρ = �α,f∗,M [σϕ,ρ log3/2(T )T−1/2 + ||ϕ||∞||ρ||∞ log4(T )T−1]

and

σ2
ϕ,ρ = E

[∑
m

ψ
(m)
0 (ϕ)ψ

(m)
0 (ρ)− E

(∑
m

ψ
(m)
0 (ϕ)ψ

(m)
0 (ρ)

)]2

1N[−1,0)≤Ñ

 .
Hence, with probability larger than 1−�α,f∗ |Φ|2T−α one has that

|a′Ga− a′E(G)a| ≤ �α,f∗

 ∑
ϕ,ρ∈Φ

|aϕ||aρ|[σϕ,ρ log3/2(T )T 1/2 + ||ϕ||∞||ρ||∞ log4(T )]

 .

Hence, for any positive constant δ chosen later,

|a′Ga− a′E(G)a| ≤ �α,f∗

T ∑
ϕ,ρ∈Φ

|aϕ||aρ|

[
δ

σ2
ϕ,ρ

||ϕ||∞||ρ||∞
+

[
1

δ log(T )
+ 1

]
||ϕ||∞||ρ||∞

log4(T )

T

] . (7.24)

Now let us focus on E :=
∑
ϕ,ρ∈Φ |aϕ||aρ|

σ2
ϕ,ρ

||ϕ||∞||ρ||∞ . First, we have:

E ≤ 2
∑
ϕ,ρ∈Φ

|aϕ||aρ|
E([
∑
m ψ

(m)
0 (ϕ)ψ

(m)
0 (ρ)]21N[−1,0)≤Ñ ) + (E[

∑
m ψ

(m)
0 (ϕ)ψ

(m)
0 (ρ)])2

||ϕ||∞||ρ||∞

with Ñ := �α,f∗ log(T ). Next,∑
m

ψ
(m)
0 (ϕ)ψ

(m)
0 (ρ) ≤ 2M ||ϕ||∞||ρ||∞(1 +N2

[−1,0)).

Hence, if N[−1,0) ≤ ˜N = �α,f∗ log(T ), for T large enough,∑
m

ψ
(m)
0 (ϕ)ψ

(m)
0 (ρ) ≤ �α,M,f∗ ||ϕ||∞||ρ||∞ log2(T )

and

E(
∑
m

ψ
(m)
0 (ϕ)ψ

(m)
0 (ρ)) ≤ �α,M,f∗ ||ϕ||∞||ρ||∞ log2(T ).

Hence,

E ≤ �α,M,f∗ log2(T )
∑
ϕ,ρ∈Φ

|aϕ||aρ|E

(∣∣∣∑
m

ψ
(m)
0 (ϕ)ψ

(m)
0 (ρ)

∣∣∣) .
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But note that for any f , |ψ(m)
0 (f)| ≤ ψ(m)

0 (|f |) where |f | = ((|µ(m)|, (|g(m)
` |)`=1,...,M )m=1,...,M . Therefore,

E ≤ �α,M,f∗ log2(T )
∑
ϕ,ρ∈Φ

|aϕ||aρ|E

(∑
m

ψ
(m)
0 (|ϕ|)ψ(m)

0 (|ρ|)
∣∣∣)

≤ �α,M,f∗ log2(T )
∑
m

E


∑
ϕ∈Φ

|aϕ|ψ(m)
0 (|ϕ|)

2


≤ �α,M,f∗ log2(T )
∑
m

E


ψ(m)

0

(∑
ϕ∈Φ

|aϕ||ϕ|
)2

 .

But if ϕ = (µ
(m)
ϕ , ((gϕ)

(m)
` )`)m, thenψ(m)

0

(∑
ϕ∈Φ

|aϕ||ϕ|
)2

=

[∑
ϕ

|aϕ|µ(m)
ϕ +

M∑
`=1

∫ 0−

−1

∑
ϕ

|aϕ||(gϕ)
(m)
` |(−u)dN (`)

u

]2

.

If one creates artificially a process N (0) with only one point and if we decide that (gϕ)
(m)
0 is the constant function

equal to µ
(m)
ϕ , this can also be rewritten asψ(m)

0

(∑
ϕ∈Φ

|aϕ||ϕ|
)2

=

[
M∑
`=0

∫ 0−

−1

∑
ϕ

|aϕ||(gϕ)
(m)
` |(−u)dN (`)

u

]2

.

Now we apply the Cauchy-Schwarz inequality for the measure
∑
` dN (`), which givesψ(m)

0

(∑
ϕ∈Φ

|aϕ||ϕ|
)2

≤ (N[−1,0) + 1)

M∑
`=0

∫ 0−

−1

[∑
ϕ

|aϕ||(gϕ)
(m)
` |(−u)

]2

dN (`)
u .

Consequently,

E ≤ �α,M,f∗ log2(T )

M∑
m=1

M∑
`=0

E

(N[−1,0) + 1)

∫ 0−

−1

[∑
ϕ

|aϕ||(gϕ)
(m)
` |(−u)

]2

dN (`)
u


≤ �α,M,f∗ log2(T )

M∑
m=1

M∑
`=0

∑
ϕ,ρ∈Φ

|aϕ||aρ|E
(∫ 0−

−1

(N[−1,0) + 1)|(gϕ)
(m)
` |(−u)|(gρ)(m)

` |(−u)dN (`)
u

)
.

Now let us use the fact that for every x, y ≥ 0, η, θ > 0 that will be chosen later,

xy − ηeθx ≤ y

θ
[log(y)− log(ηθ)− 1] ,

with the convention that y log(y) = 0 if y = 0. Let us apply this to x = N[−1,0)+1 and y = |(gϕ)
(m)
` |(−u)|(gρ)(m)

` |(−u).

We obtain that

E ≤ �α,M,f∗η log2(T )

M∑
m=1

∑
ϕ,ρ∈Φ

|aϕ||aρ|E
(

(N[−1,0) + 1)eθ(N[−1,0)+1)
)

+

�α,M,f∗θ
−1 log2(T )

M∑
m=1

M∑
`=0

∑
ϕ,ρ∈Φ

|aϕ||aρ|E

(∫ 0−

−1

|(gϕ)
(m)
` ||(gρ)(m)

` |(−u)
[
log(|(gϕ)

(m)
` ||(gρ)(m)

` |(−u))− log(ηθ)− 1
]

dN `
u

)
.
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Since for ` > 0, dN
(`)
u is stationnary, one can replace E(dN

(`)
u ) by �f∗du. Moreover since by Proposition

1, N[−1,0) has some exponential moments there exists θ = �f∗ such that E
(
(N[−1,0) + 1)eθ(N[−1,0)+1)

)
= �f∗ .

With |Φ| the size of the dictionary, this leads to

E ≤ �α,M,f∗η|Φ| log2(T )||a||2`2+

�α,M,f∗ log2(T )

M∑
m=1

 ∑
ϕ,ρ∈Φ

|aϕ||aρ||µ(m)
ϕ ||µ(m)

ρ |
[
log(|µ(m)

ϕ ||µ(m)
ρ |)− log(ηθ)− 1

]
+

M∑
`=1

∑
ϕ,ρ∈Φ

|aϕ||aρ|
∫ 1

0

|(gϕ)
(m)
` ||(gρ)(m)

` |(u)
[
log(|(gϕ)

(m)
` ||(gρ)(m)

` |(u))− log(ηθ)− 1
]

du

 .
Consequently, using ||Φ||∞ and rΦ,

E ≤ �α,M,f∗η|Φ| log2(T )||a||2`2 + �α,M,f∗ log2(T )rΦ[2 log(||Φ||∞)− log(ηθ)− 1]||a||2`2 .

We choose η = |Φ|−1 and obtain that

E ≤ �α,M,f∗ log2(T )rΦ[log(||Φ||∞) + log(|Φ|)]||a||2`2 .

Now, let us choose δ = ω/(log2(T )rΦ[log(||Φ||∞) + log(|Φ|)]) where ω depends only on α,M and f∗ and will be

chosen later and let us go back to (7.24):

1

T
|a′Ga− a′E(G)a| ≤ �α,M,f∗ω||a||2`2 + �α,f∗,ωrΦ[log(||Φ||∞) + log(|Φ|)]

∑
ϕ,ρ∈Φ

|aϕ||aρ|||ϕ||∞||ρ||∞
log5(T )

T

≤ �α,M,f∗ω||a||2`2 + �α,f∗,ω||a||2`2AΦ(T ).

Under assumptions of Proposition 4, for T0 large enough and T ≥ T0,

1

T
|a′Ga− a′E(G)a| ≤ �α,M,f∗ω||a||2`2 .

It is now sufficient to take ω small enough and then T0 large enough to obtain (7.23) with ε < ζ.

7.5.2 Proof of Corollary 3

First let us cut [−1, T ] in bT c+ 2 intervals I’s of the type [a, b) such that the first bT c+ 1 intervals are of length

1 and the last one is of length strictly smaller than 1 (eventually it is just a singleton). Then, any interval of

the type [t−1, t] for t in [0, T ] is included into the union of two such intervals. Therefore the event where all the

NI ’s are smaller than u = N/2 is included into ΩN . It remains to control the probability of the complementary

of this event. By stationarity, all the first NI ’s have the same distribution and satisfy Proposition 1. The last

one can also be viewed as the truncation of a stationary point process to an interval of length smaller than

1. Therefore the exponential inequality of Proposition 1 also applies to the last interval. It remains to apply

bT c+ 2 times this exponential inequality and to use a union bound.

7.5.3 Proof of Corollary 4

As in the proof of Proposition 2, we use the notation �. The non-asymptotic part of the result is just a pure

application of Theorem 2, with the choices of Bϕ and Vϕ given by (5.5) and (5.6). The next step consists in

controlling the martingale ψ(ϕ)2 • (N − Λ)T on ΩV,B . To do so, let us apply (7.7) to H such that for any m,

H
(m)
t = ψ

(m)
t (ϕ)2

1t≤τ ′ ,
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with B = B2
ϕ and τ = T and where τ ′ is defined in (7.1) (see the proof of Theorem 2). The assumption to be

fulfilled is checked as in the proof of Theorem 2. But as previously, on ΩV,B , H • (N −Λ)T = ψ(ϕ)2 • (N −Λ)T
and also H2 • ΛT = ψ(ϕ)4 • ΛT . Moreover on ΩN ⊂ ΩV,B

H2 • ΛT = ψ(ϕ)4 • ΛT ≤ v := TM(max
m

ν(m) +N max
m,`

h
(m)
` )B4

ϕ.

Recall that x = α log(T ). So on ΩV,B , with probability larger than 1− (M +KM2)e−x = 1− (M +KM2)T−α,

one has that for all ϕ ∈ Φ,

ψ(ϕ)2 •NT ≤ ψ(ϕ)2 • ΛT +
√

2vx+
B2
ϕx

3
.

So that for all ϕ ∈ Φ,

ψ(ϕ)2 •NT ≤ �M,f∗

[
N||ϕ||2T + ||Φ||2∞N 2

√
TN log(T )

]
.

Also, since N = log2(T ), one can apply Corollary 3, with β = α. We finally choose c as in Proposition 4. This

leads to the result.
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[10] Brunel, Elodie and Comte, Fabienne (2008) Adaptive estimation of hazard rate with censored data

Communications in Statistics. Theory and Methods, 37(8-10), 1284–1305.
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