
HAL Id: hal-00722550
https://hal.science/hal-00722550

Submitted on 2 Aug 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

D-Finder: A Tool for Compositional Deadlock Detection
and Verification

Saddek Bensalem, Marius Bozga, Thanh-Hung Nguyen, Joseph Sifakis

To cite this version:
Saddek Bensalem, Marius Bozga, Thanh-Hung Nguyen, Joseph Sifakis. D-Finder: A Tool for Com-
positional Deadlock Detection and Verification. Computer Aided Verification, 21st International
Conference, CAV 2009, Jun 2009, Grenoble, France. pp.614-619, �10.1007/978-3-642-02658-4_45�.
�hal-00722550�

https://hal.science/hal-00722550
https://hal.archives-ouvertes.fr


D-Finder: A Tool for Compositional Deadlock

Detection and Verification

Saddek Bensalem Marius Bozga Thanh-Hung Nguyen Joseph Sifakis

Verimag Laboratory, Université Joseph Fourier Grenoble, CNRS.

Abstract. D-Finder tool implements a compositional method for the
verification of component-based systems described in BIP language en-
compassing multi-party interaction. For deadlock detection, D-Finder
applies proof strategies to eliminate potential deadlocks by computing
increasingly stronger invariants.

1 Methodology

Compositional verification techniques are used to cope with state explosion in
concurrent systems. The idea is to aply divide-and-conquer approaches to infer
global properties of complex systems from properties of their components. Sepa-
rate verification of components limits state explosion. Nonetheless, components
mutually interact in a system and their behavior and properties are inter-related.
This is a major difficulty in designing compositional techniques. As explained in
[1], compositional rules are in general of the form

B1 < Φ1 >, B2 < Φ2 >, C(Φ1, Φ2, Φ)
B1‖B2 < Φ >

(1)

That is, if two components with behaviors B1, B2 meet individually properties
Φ1, Φ2 respectively, and C(Φ1, Φ2, Φ) is some condition taking into account the
semantics of parallel composition operation and relating the individual properties
with the global property, then the system B1‖B2 resulting from the composition
of B1 and B2 will satisfy a global property Φ.

- Compositional verification by assume-guarantee . In this approach prop-
erties are decomposed into two parts. One is an assumption about the global
behavior of the environment of the component; the other is a property guaran-
teed by the component when the assumption about its environment holds. This
approach has been extensively studied (see for example [2–9]). Many issues make
the application of assume-guarantee rules diffcult. These are discussed in detail in
a recent paper [10] which provides an evaluation of automated assume-guarantee
techniques. The main difficulties are finding decompositions into sub-systems and
choosing adequate assumptions for a particular decomposition.



- D-Finder’s approach to compositional verification . We present a different
approach for compositional verification of invariants based on the following rule:

{Bi < Φi >}i, Ψ ∈ II(‖γ{Bi}i, {Φi}i), (
∧
i Φi) ∧ Ψ ⇒ Φ

‖γ{Bi}i < Φ >

(2)

The rule allows to prove invariance of Φ for systems obtained by using a n-ary
composition operation parameterized by a set of interactions γ. It uses global in-
variants which are the conjunction of individual invariants of components Φi and
an interaction invariant Ψ . The latter expresses constraints on the global state
space induced by interactions between components. It can be computed automat-
ically from abstractions of the system to be verified. These are the composition of
finite state abstractions Bα

i of the components Bi with respect to their invariants
Φi. They can be represented as a Petri net whose transitions correspond to inter-
actions between components. Interaction invariants correspond to traps [11] of
the Petri net and are computed symbolically as solutions of a set of boolean equa-
tions.

ψ

φ2

φ1

Fig. 1.

Figure 1 illustrates the method for a system with
two components, invariants Φ1 and Φ2 and interac-
tion invariant Ψ . Our method differs from assume-
guarantee methods in that it avoids combinatorial
explosion of the decomposition and is directly appli-
cable to systems with multiparty (not only binary)
interactions. Furthermore, it needs only guarantees
for components. It replaces the search for adequate
assumptions for each component by the use of inter-
action invariants. These can be computed automati-
cally from given component invariants (guarantees).
Interaction invariants correspond to a “cooperation
test” in the terminology of [12] as they allow to elim-
inate product states which are not feasible by the
semantics.

1.1 Checking Deadlock-freedom and

Invariance Properties

D-Finder provides a method for automated verification of component-based sys-
tems described in BIP (Behavior-Interaction-Priority) language [13]. In BIP, a
system is the composition of a set of atomic components which are automata
extended with data and functions written in C. To prove a global invariant
Φ for a system γ(B1, . . . , Bn), obtained by composing a set of atomic compo-
nents B1, ..., Bn by using a set of interactions γ, we use the rule (2) above, where
Bi < Φi > means that Φi is an invariant of component Bi and Ψ is an interaction
invariant of γ(B1, . . . , Bn) computed automatically from Φi and γ(B1, . . . , Bn).
A key issue in the application of this rule is finding component invariants Φi. If
the components Bi are finite state, then we can take Φ = Reach(Bi), the set of



reachable state of Bi, or any upper approximation of Reach(Bi). If the compo-
nents are infinite state, Reach(Bi) is approximated using techniques presented
in [14, 15].

– Checking Invariance Properties. We give a sketch of a semi-algorithm al-
lowing to prove invariance of Φ by iterative application of the rule (2). The
semi-algorithm takes a system 〈γ(B1, . . . , Bn), Init〉 and a predicate Φ. It
iteratively computes invariants of the form X = Ψ ∧ (

∧n

i=1
Φi) where Ψ is an

interaction invariant and Φi an invariant of component Bi. If X is not strong
enough for proving that Φ is an invariant (X ∧ ¬Φ = false) then either a
new iteration with stronger Φi is started or we stop. In this case, we cannot
conclude about invariance of Φ.

– Checking Deadlock-Freedom. Checking global deadlock-freedom of a sys-
tem γ(B1, . . . , Bn) is a particular case of proving invariants - proving in-
variance of the predicate ¬DIS, where DIS is the set of the states of
γ(B1, . . . , Bn) from which all interactions are disabled.

1.2 Generating Component Invariants and Interaction Invariants

D-Finder provides methods for computing component invariants, particulary
useful for checking deadlock-freedom. It also provides a general method for com-
puting interaction invariants for γ(B1, . . . , Bn) from a given set of component
invariants Φi.

– Computing Component Invariants. Invariants for atomic components are
generated by simple forward analysis of their behavior. A key issue is effi-
cient computation of such invariants as the precise symbolic computation of
reachable states requires quantifier elimination. An alternative to quantifier
elimination is to compute over-approximations based on syntactic analysis
of the predicates occuring in guards and actions. In this case, the obtained
invariants may not be inductive. D-Finder uses different strategies which al-
low to derive local assertions, that is, predicates attached to control locations
and which are satisfied whenever the computation reaches the corresponding
control location. A more detailed presentation, as well as the techniques im-
plemented in D-Finder for generating component invariants are given in [16,
17].

– Computing Interaction Invariants. Interaction invariants express global
synchronization constraints between atomic components. Their computation
consists of the following steps. 1) For given component invariants Φi of the
atomic components Bi, we compute a finite-state abstractions Bαi

i of Bi

where αi is the abstraction induced by the elementary predicates occuring in
Φi. This step is necessary only for components Bi which are infinite state. 2)
The system γ(Bα1

1
, · · · , Bαn

n ) which is an abstraction of γ(B1, · · · , Bn), can
be considered as a safe Petri net. The set of the traps of the Petri net defines
a global invariant which we compute symbolically. 3) The concretization of
this invariant gives an interaction invariant of the initial system.



2 Tool Structure

D-Finder consists of a set of modules interconnected as shown in Figure 2.
It takes as input a BIP program and progressively find and eliminate potential

deadlocks. It basically works as follows. First, it constructs the predicate charac-
terizing the set of deadlock states (DIS generation module). Second, iteratively,
it constructs increasingly stronger local invariants of components (Φi generation
module) and using them, finer finite state abstractions and increasingly stronger
global interaction invariants (Abstraction and Ψ generation module). Third, it
checks deadlock freedom by checking satisfiabilty of ∧Φi ∧Φ∧Dis (satisfiability
module). If it succeeds, the system is proven deadlock-free, else it may continue
or gives up, according to the user choice. For doing all this, D-Finder is con-

BIP model

DIS

Yices

Omega

Deadlock-free Deadlocks

generation

Satisfiability

false

6= false-strengthen 6= false-give up

Abstraction and

simulationconfirmation

DIS

generation

BIPDeadlock

Local

verification

deadlock-free
Φi

Ψ
V

Φi ∧ Ψ ∧ DIS

V

Φi

Ψ generation

Fig. 2. DeadlockFinder tool

nected with several external tools. It uses Omega [18] for quantifier elimination
and Yices [19] for checking satisfiability of predicates. It is also connected to
the state space exploration tool of the BIP platform, for finer analysis when
the heuristic fails to prove deadlock-freedom. We provide non trivial examples
showing the capabilities of D-Finder as well as the efficiency of the method.

3 Experimentation and Concluding remarks

We provide experimental results for four examples. The first example is Utopar,
an industrial case study of the European Integrated project SPEEDS (http://www.speeds.eu.com/)
about an automated transportation system. A succinct description of Utopar can
be found at http://www.combest.eu/home/?link=Application2. The system is the
composition of three types of components: autonomous vehicles, called U-cars, a
centralized Automatic Control System and Calling Units. The latter two types
have (almost exclusively) discrete behavior. U-cars are equipped with a local
controller, responsible for handling the U-cars sensors and performing various



routing and driving computations depending on users’ requests. We analyzed a
simplified version of Utopar by abstracting from data exchanged between com-
ponents as well as from continuous dynamics of the cars. In this version, each
U-Car is modeled by a component having 7 control locations and 6 integer
variables. The Automatic Control System has 3 control locations and 2 integer
variables. The Calling Units have 2 control locations and no variables. In the
second example, we consider Readers-Writer systems in order to evaluate how
the method scales up for components without data. The third example is Gas
Station in order to compare with other compositional method assume-guarantee

[10]. Finally, as a last example, we consider Dinning Philosophers which is a
well-known classical example.

The table below provides an overview of the experimental results obtained for
these examples. In this table, n is the number of BIP components in the example,
q is the total number of control locations, xb (resp. xi) is the total number of
boolean (resp. integer) variables, Dci is the number of deadlock configurations
remaining in DIS ∧ CI ∧ II and t is the total time for computing invariants
and checking for satisfiability of DIS ∧CI ∧ II. Detailed results are available at
http://www-verimag.imag.fr/˜ thnguyen/tool.

example n q xb xi Dci t

Utopar System (40 U-Cars, 256 Calling Units) 297 795 40 242 0 3m46s
Utopar System (60 U-Cars, 625 Calling Units) 686 1673 60 362 0 25m29s
Readers-Writer (7000 readers) 7002 14006 0 1 0 17m27s
Readers-Writer (10000 readers) 10002 20006 0 1 0 36m10s
Gas station (100 pumps - 2000 customers) 1101 4302 0 0 0 14m06s
Gas station (300 pumps - 3000 customers) 3301 12902 0 0 0 33m02s
Philosophers (2000 Philos) 4000 10000 0 0 3 32m14s
Philosophers (3001 Philos) 6001 15005 0 0 1 54m34s

We did some comparison with some well-known monolithic verification tools
such as NewSMV (NuSMV) and Spin. All the experimentations are done on a
Linux machine Intel Pentium 4 3.0 GHz and 1G Ram.

Fig. 3. Comparison with NuSmv and Spin
on Dinning Philosopher

Fig. 4. Comparison with NuSmv on Gas
Station



The first comparison between NuSmv, Spin and DFinder is on Dinning
Philosopher example. We increase the number of Philosophers and compare the
verification time between these three tools (figure 3). In this figure , Spin runs
out of memory at the size 17 (Philosophers); NuSmv runs out of memory at the
size 150 while DFinder can go much further until the size 3000.

The second comparison between NuSmv and DFinder is on Gas Station exam-
ple. We consider a system with 3 pumps and increase the number of customers.
The comparison of verification time is in figure 4. In this figure, NuSmv runs
out of memory at the size 180 (Customers) while DFinder can go much further
until the size 3000.

References

1. Kupferman, O., Vardi, M.Y.: Modular model checking. LNCS 1536 (1998) 381–401
2. Alur, R., Henzinger, T.: Reactive modules. In: Proceedings of the 11th Annual

Symposium on LICS, IEEE Computer Society Press (1996) 207–208
3. Abadi, M., Lamport, L.: Conjoining specifications. Toplas 17(3) (1995) 507–534
4. Clarke, E., Long, D., McMillan, K.: Compositional model checking. In: Proceedings

of the 4th Annual Symposium on LICS. (1989) 353–362
5. Chandy, K., J.Misra: Parallel program design: a foundation. Addison-Wesley

Publishing Company (1988)
6. Grumberg, O., Long, D.E.: Model checking and modular verification. ACM Trans-

actions on Programming Languages and Systems 16(3) (1994) 843–871
7. McMillan, K.L.: A compositional rule for hardware design refinement. In: CAV

’97, Springer-Verlag (1997) 24–35
8. Pnueli, A.: In transition from global to modular temporal reasoning about pro-

grams. (1985) 123–144
9. Stark, E.W.: A proof technique for rely/guarantee properties. In: FSTTCS: pro-

ceedings of the 5th conference. Volume 206., Springer-Verlag (1985) 369–391
10. Cobleigh, J.M., Avrunin, G.S., Clarke, L.A.: Breaking up is hard to do: An eval-

uation of automated assume-guarantee reasoning. ACM Transactions on Software
Engineering and Methodology 17(2) (2008)

11. Peterson, J.: Petri Net theory and the modelling of systems. Englewood-Cliffs:
Prentice Hall (1981)

12. Apt, K.R., Francez, N., de Roever, W.P.: A proof system for communicating
sequential processes. ACM Trans. Program. Lang. Syst. 2(3) (1980) 359–385

13. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in
bip. In: SEFM. (2006) 3–12

14. Lakhnech, Y., Bensalem, S., Berezin, S., Owre, S.: Incremental verification by
abstraction. In: TACAS. (2001) 98–112

15. Bradley, A.R., Manna, Z.: Checking safety by inductive generalization of coun-
terexamples to induction. In: FMCAD. (2007) 173–180

16. Bensalem, S., Lakhnech, Y.: Automatic generation of invariants. FMSD 15(1)
(July 1999) 75–92

17. Bensalem, S., Bozga, M., Sifakis, J., Nguyen, T.H.: Compositional verification for
component-based systems and application. In: ATVA. (2008) 64–79

18. Team, O.: The omega library. Version 1.1.0 (November 1996)
19. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In:

CAV’06. Volume 4144 of LNCS. (2006) 81–94


