Saddek Bensalem

Marius Bozga

Thanh-Hung Nguyen

Joseph Sifakis

D-Finder: A Tool for Compositional Deadlock Detection and Verification

D-Finder tool implements a compositional method for the verification of component-based systems described in BIP language encompassing multi-party interaction. For deadlock detection, D-Finder applies proof strategies to eliminate potential deadlocks by computing increasingly stronger invariants.

Methodology

Compositional verification techniques are used to cope with state explosion in concurrent systems. The idea is to aply divide-and-conquer approaches to infer global properties of complex systems from properties of their components. Separate verification of components limits state explosion. Nonetheless, components mutually interact in a system and their behavior and properties are inter-related. This is a major difficulty in designing compositional techniques. As explained in [START_REF] Kupferman | Modular model checking[END_REF], compositional rules are in general of the form

B 1 < Φ 1 >, B 2 < Φ 2 >, C(Φ 1 , Φ 2 , Φ) B 1 B 2 < Φ > (1)
That is, if two components with behaviors B 1 , B 2 meet individually properties Φ 1 , Φ 2 respectively, and C(Φ 1 , Φ 2 , Φ) is some condition taking into account the semantics of parallel composition operation and relating the individual properties with the global property, then the system B 1 B 2 resulting from the composition of B 1 and B 2 will satisfy a global property Φ.

-Compositional verification by assume-guarantee . In this approach properties are decomposed into two parts. One is an assumption about the global behavior of the environment of the component; the other is a property guaranteed by the component when the assumption about its environment holds. This approach has been extensively studied (see for example [START_REF] Alur | Reactive modules[END_REF][START_REF] Abadi | Conjoining specifications[END_REF][START_REF] Clarke | Compositional model checking[END_REF][START_REF] Chandy | Parallel program design: a foundation[END_REF][START_REF] Grumberg | Model checking and modular verification[END_REF][START_REF] Mcmillan | A compositional rule for hardware design refinement[END_REF][START_REF] Pnueli | In transition from global to modular temporal reasoning about programs[END_REF][START_REF] Stark | A proof technique for rely/guarantee properties[END_REF]). Many issues make the application of assume-guarantee rules diffcult. These are discussed in detail in a recent paper [START_REF] Cobleigh | Breaking up is hard to do: An evaluation of automated assume-guarantee reasoning[END_REF] which provides an evaluation of automated assume-guarantee techniques. The main difficulties are finding decompositions into sub-systems and choosing adequate assumptions for a particular decomposition.

-D-Finder's approach to compositional verification . We present a different approach for compositional verification of invariants based on the following rule:

{B i < Φ i >} i , Ψ ∈ II(γ {B i } i , {Φ i } i), (i Φ i) ∧ Ψ ⇒ Φ γ {B i } i < Φ > (2)
The rule allows to prove invariance of Φ for systems obtained by using a n-ary composition operation parameterized by a set of interactions γ. It uses global invariants which are the conjunction of individual invariants of components Φ i and an interaction invariant Ψ . The latter expresses constraints on the global state space induced by interactions between components. It can be computed automatically from abstractions of the system to be verified. These are the composition of finite state abstractions B α i of the components B i with respect to their invariants Φ i . They can be represented as a Petri net whose transitions correspond to interactions between components. Interaction invariants correspond to traps [START_REF] Peterson | Petri Net theory and the modelling of systems[END_REF] of the Petri net and are computed symbolically as solutions of a set of boolean equations. Figure 1 illustrates the method for a system with two components, invariants Φ 1 and Φ 2 and interaction invariant Ψ . Our method differs from assumeguarantee methods in that it avoids combinatorial explosion of the decomposition and is directly applicable to systems with multiparty (not only binary) interactions. Furthermore, it needs only guarantees for components. It replaces the search for adequate assumptions for each component by the use of interaction invariants. These can be computed automatically from given component invariants (guarantees). Interaction invariants correspond to a "cooperation test" in the terminology of [START_REF] Apt | A proof system for communicating sequential processes[END_REF] as they allow to eliminate product states which are not feasible by the semantics.

1.1

Checking Deadlock-freedom and Invariance Properties D-Finder provides a method for automated verification of component-based systems described in BIP (Behavior-Interaction-Priority) language [START_REF] Basu | Modeling heterogeneous real-time components in bip[END_REF]. In BIP, a system is the composition of a set of atomic components which are automata extended with data and functions written in C. To prove a global invariant Φ for a system γ(B 1 , . . . , B n), obtained by composing a set of atomic components B 1 , ..., B n by using a set of interactions γ, we use the rule (2) above, where

B i < Φ i > means that Φ i is an invariant of component B i and Ψ is an interaction invariant of γ(B 1 , . . . , B n) computed automatically from Φ i and γ(B 1 , . . . , B n).
A key issue in the application of this rule is finding component invariants Φ i . If the components B i are finite state, then we can take Φ = Reach(B i), the set of reachable state of B i , or any upper approximation of Reach(B i). If the components are infinite state, Reach(B i) is approximated using techniques presented in [START_REF] Lakhnech | Incremental verification by abstraction[END_REF][START_REF] Bradley | Checking safety by inductive generalization of counterexamples to induction[END_REF].

-Checking Invariance Properties. We give a sketch of a semi-algorithm allowing to prove invariance of Φ by iterative application of the rule (2). The semi-algorithm takes a system γ(B 1 , . . . , B n), Init and a predicate Φ. It iteratively computes invariants of the form

X = Ψ ∧ (n i=1 Φ i)
where Ψ is an interaction invariant and Φ i an invariant of component B i . If X is not strong enough for proving that Φ is an invariant (X ∧ ¬Φ = f alse) then either a new iteration with stronger Φ i is started or we stop. In this case, we cannot conclude about invariance of Φ.

-Checking Deadlock-Freedom. Checking global deadlock-freedom of a system γ(B 1 , . . . , B n) is a particular case of proving invariants -proving invariance of the predicate ¬DIS, where DIS is the set of the states of γ(B 1 , . . . , B n) from which all interactions are disabled.

Generating Component Invariants and Interaction Invariants

D-Finder provides methods for computing component invariants, particulary useful for checking deadlock-freedom. It also provides a general method for computing interaction invariants for γ(B 1 , . . . , B n) from a given set of component invariants Φ i .

-Computing Component Invariants. Invariants for atomic components are generated by simple forward analysis of their behavior. A key issue is efficient computation of such invariants as the precise symbolic computation of reachable states requires quantifier elimination. An alternative to quantifier elimination is to compute over-approximations based on syntactic analysis of the predicates occuring in guards and actions. In this case, the obtained invariants may not be inductive. D-Finder uses different strategies which allow to derive local assertions, that is, predicates attached to control locations and which are satisfied whenever the computation reaches the corresponding control location. A more detailed presentation, as well as the techniques implemented in D-Finder for generating component invariants are given in [START_REF] Bensalem | Automatic generation of invariants[END_REF][START_REF] Bensalem | Compositional verification for component-based systems and application[END_REF]. -Computing Interaction Invariants. Interaction invariants express global synchronization constraints between atomic components. Their computation consists of the following steps. 1) For given component invariants Φ i of the atomic components B i , we compute a finite-state abstractions B αi i of B i where α i is the abstraction induced by the elementary predicates occuring in Φ i . This step is necessary only for components B i which are infinite state. 2)

The system γ(B α1 1 , • • • , B αn n) which is an abstraction of γ(B 1 , • • • , B n)
, can be considered as a safe Petri net. The set of the traps of the Petri net defines a global invariant which we compute symbolically. 3) The concretization of this invariant gives an interaction invariant of the initial system. D-Finder consists of a set of modules interconnected as shown in Figure 2.

It takes as input a BIP program and progressively find and eliminate potential deadlocks. It basically works as follows. First, it constructs the predicate characterizing the set of deadlock states (DIS generation module). Second, iteratively, it constructs increasingly stronger local invariants of components (Φ i generation module) and using them, finer finite state abstractions and increasingly stronger global interaction invariants (Abstraction and Ψ generation module). Third, it checks deadlock freedom by checking satisfiabilty of ∧Φ i ∧ Φ ∧ Dis (satisfiability module). If it succeeds, the system is proven deadlock-free, else it may continue or gives up, according to the user choice. For doing all this, D-Finder is con-

Φ i Ψ V Φ i ∧ Ψ ∧ DIS V Φ i Ψ generation
Fig. 2. DeadlockFinder tool nected with several external tools. It uses Omega [START_REF] Team | The omega library[END_REF] for quantifier elimination and Yices [START_REF] Dutertre | A fast linear-arithmetic solver for DPLL(T)[END_REF] for checking satisfiability of predicates. It is also connected to the state space exploration tool of the BIP platform, for finer analysis when the heuristic fails to prove deadlock-freedom. We provide non trivial examples showing the capabilities of D-Finder as well as the efficiency of the method.

Experimentation and Concluding remarks

We provide experimental results for four examples. The first example is Utopar, an industrial case study of the European Integrated project SPEEDS (http://www.speeds.eu.com/) about an automated transportation system. A succinct description of Utopar can be found at http://www.combest.eu/home/?link=Application2. The system is the composition of three types of components: autonomous vehicles, called U-cars, a centralized Automatic Control System and Calling Units. The latter two types have (almost exclusively) discrete behavior. U-cars are equipped with a local controller, responsible for handling the U-cars sensors and performing various routing and driving computations depending on users' requests. We analyzed a simplified version of Utopar by abstracting from data exchanged between components as well as from continuous dynamics of the cars. In this version, each U-Car is modeled by a component having 7 control locations and 6 integer variables. The Automatic Control System has 3 control locations and 2 integer variables. The Calling Units have 2 control locations and no variables. In the second example, we consider Readers-Writer systems in order to evaluate how the method scales up for components without data. The third example is Gas Station in order to compare with other compositional method assume-guarantee [START_REF] Cobleigh | Breaking up is hard to do: An evaluation of automated assume-guarantee reasoning[END_REF]. Finally, as a last example, we consider Dinning Philosophers which is a well-known classical example.

The table below provides an overview of the experimental results obtained for these examples. In this table, n is the number of BIP components in the example, q is the total number of control locations, x b (resp. x i) is the total number of boolean (resp. integer) variables, D ci is the number of deadlock configurations remaining in DIS ∧ CI ∧ II and t is the total time for computing invariants and checking for satisfiability of DIS ∧ CI ∧ II. Detailed results are available at http://www-verimag.imag.fr/˜thnguyen/tool. We did some comparison with some well-known monolithic verification tools such as NewSMV (NuSMV) and Spin. All the experimentations are done on a Linux machine Intel Pentium 4 3.0 GHz and 1G Ram.

 Fig. 1.

Fig. 3 .

 3 Fig. 3. Comparison with NuSmv and Spin on Dinning Philosopher

Fig. 4 .

 4 Fig. 4. Comparison with NuSmv on Gas Station

The first comparison between NuSmv, Spin and DFinder is on Dinning Philosopher example. We increase the number of Philosophers and compare the verification time between these three tools (figure 3). In this figure , Spin runs out of memory at the size 17 (Philosophers); NuSmv runs out of memory at the size 150 while DFinder can go much further until the size 3000.

The second comparison between NuSmv and DFinder is on Gas Station example. We consider a system with 3 pumps and increase the number of customers. The comparison of verification time is in figure 4. In this figure, NuSmv runs out of memory at the size 180 (Customers) while DFinder can go much further until the size 3000.