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Abstract—BIP (Behavior, Interaction, Priorities) is a compo-
nent framework for constructing systems from a set of atomic
components by using two kinds of composition operators: inter-
actions and priorities.

In this paper we present a method that transforms the
interactions of a component-based program in BIP and generates
a functionally equivalent program. The method is based on the
successive application of three types of source-to-source transfor-
mations: flattening of components, flattening of connectors and
composition of atomic components. We show that the system of
the transformations is confluent and terminates. By exhaustive
application of the transformations, any BIP component can be
transformed into an equivalent monolithic component. From this
component, efficient C code can be generated.

The method combines advantages of component-based descrip-
tion such as clarity, incremental construction and reasoning with
the possibility to generate efficient monolithic code. It has been
integrated in the design methodology for BIP and it has been
successfully applied to two non trivial examples described in the
paper.

I. INTRODUCTION

Component-based systems are desirable because they allow

reuse of sub-systems as well as their incremental modification

without requiring global changes. Their development requires

methods and tools supporting a concept of architecture which

characterizes the coordination between components. An archi-

tecture is the structure of a system, which involves components

and relationships between the externally visible properties of

those components. The global behavior of a system can in

principle be inferred from the behavior of its components and

its architecture.

An advantage of component-based systems is that they have

logically clear descriptions. Nonetheless, clarity may be at the

detriment of efficiency. Naive compilation of component-based

systems results in great inefficiency as a consequence of the

interconnection of components [14].

Source-to-source transformations have been considered as a

powerful means for optimizing programs [13], [6]. In contrast

to conventional optimization techniques, these can be applied

for deeper semantics-preserving transformations which are

visible to the programmer and subject to his direction and

guidance.

Source-to-source architecture transformations transform a

component-based system into a functionally equivalent system,

by changing the structure of its architecture. They may affect

performance and quality attributes. They are useful for find-

ing functionally equivalent systems that meet different extra-

functional (platform dependent) requirements.

We study transformations for a subset of the BIP (Behavior,

Interaction, Priority) language [4], [9] where an architecture is

characterized as a hierarchically structured set of components

obtained by composition from a set of atomic components.

In BIP, composition is parameterized by interactions and

priorities between the composed components. In this paper

we consider only composition by interactions. Composite

components can be hierarchically structured. BIP has been

used to model complex heterogeneous systems. It can be

considered as an extension of C with powerful primitives

for multiparty interaction between components. It has a com-

pilation chain allowing the generation of C++ code from

BIP models. The generated code is modular and can be

executed on a dedicated platform consisting of an Engine

which orchestrates the computation of atomic components by

executing their interactions. Hierarchical description allows

incremental reasoning and progressive design of complex

systems. Nonetheless, it may lead to inefficient programs if

structure is preserved at run time. Compared to functionally

equivalent monolithic C programs, BIP programs may be more

than two times slower. This overhead is due to the computation

of interactions between components by the Engine.

The aim of the work is to show that it is possible to

synthesize efficient monolithic code from component-based

software described incrementally. We study source-to-source

transformations for BIP allowing the composition of compo-

nents and thus leading to more efficient code. These are based

on the operational semantics of BIP which allows to compute

the meaning of a composite component as a behaviorally

equivalent atomic component.

A BIP component is characterized by its interface and its

behavior. An interface consists of a set of ports used to specify

interactions. Each port pi has an associated variable vpi
which

is visible when an interaction involving pi is executed. We

assume that the sets of ports and variables of components are

disjoint. The behavior of a composite component is obtained

by composing the behavior of its atomic components (see

Figure 1).

The behavior of atomic components is described as a Petri

net extended with data and functions given in C. A transition

of the Petri net is labelled with a trigger and a function f
describing a local computation. A trigger consists of a guard

g on (local) data and a port p through which synchronization



is sought. For a given marking and data state, a transition can

be executed if it is enabled for this marking, its guard g is

true and an interaction involving p is possible. Its execution is

atomic. It is initiated by the interaction and followed by the

execution of f .

Composition consists in applying a set of connectors to a

set of components. A connector is defined by:

1) its port p and the associated variable vp;

2) its interaction defined by a set of ports p1, . . . , pn of the

composed components ;

3) functions U and D1, . . . , Dn, specifying the flow of data

upstream and downstream, respectively (see Figure 1).

The global behavior resulting from the application of a con-

nector to a set of components is defined as follows.

An interaction p1, . . . , pn of the connector is possible only

if for each one of its ports pi, there exists an enabled transition

in some component labelled by pi. Its execution involves two

steps:

1) the variable v is assigned the value U(vp1 , . . . , vpn
);

2) the variables vi associated with the ports pi are assigned

values Di(v).

The execution of an interaction is followed by the execution

of the local computations of the synchronized transitions. In

Figure 1, we provide a simple BIP model. It is composed of

three atomic components, which compute integers exported

through the variables v1, v2 and v3. The connector defines the

interaction (strong synchronization) between p1, p2 and p3.

As a result of this interaction, each component receives the

maximum of the exported values.

p1, v1 p2, v2 p3, v3

p, v

p1, v1 p2, v2 p3, v3

p, v

G : true
U : v := Max(v1, v2, v3);
D1 : v1 := v; D2 : v2 := v;

D3 : v3 := v;

Fig. 1. Example 1

A composite component is obtained by successive applica-

tion of connectors from a set of atomic components. It is a

finite set of components equipped with an acyclic containment

relation and a set of connectors such that: 1) minimal elements

are atomic components; 2) if p is the port of a connector then

its interaction consists only of ports of components contained

in the component with port p. The containment relation defines

for each component a level in the hierarchy. A component

of level n is obtained by composing a set of components of

lower level among which there is at least one component of

level n−1. The semantics of a composite component is defined

from the semantics of atomic components (components at level

0) and the semantics of composition by using connectors.

It allows computing for a composite component, an atomic

component with an equivalent global behavior.

The main contributions of the paper are the following. We

define composite components in BIP and their semantics. We

show how by incremental composition of the components

contained in a composite component, a behaviorally equivalent

component can be computed. This composition operation has

been implemented in the BIP2BIP tool, by using three types of

source-to-source transformations. A set of interacting compo-

nents is replaced by a functionally equivalent component. By

successive application of compositions, an atomic component

can be obtained, that is a component with no interactions.

The transformation from a composite component to an

atomic one is fully automated and implemented through three

steps:

1) Component flattening which replaces the hierarchy on

components by a set of hierarchically structured con-

nectors applied on atomic components;

2) Connector flattening which computes for each hierarchi-

cally structured connector an equivalent flat connector;

3) Component composition which composes atomic com-

ponents to get an atomic component.

Using such a transformation allows to combine advantages

of component-based descriptions such as clarity and reuse

with efficient implementation. The generated code is readable

and by-construction functionally equivalent to the component-

based model. We show through non trivial examples the

benefits of this approach.

To the best of our knowledge, we have not seen major

work on source-to-source transformations for component-

based frameworks. In contrast to other frameworks, component

composition in BIP is based on operational semantics. Fur-

thermore, composition can be expressed not only at execution

level but also at source level. Similar component frameworks

such as [2], [12] have well-defined denotational semantics.

Nonetheless, it is not clear how to define component compo-

sition at source level from these semantics. There also exist

many component frameworks without rigorous semantics. In

this case, using ad hoc transformations, may lead easily to

consistences e.g. transformations may not be confluent.

The paper is structured as follows. In section 2 we define

the syntax for the description of structured components in BIP.

In section 3, we define the semantics by successive application

of the three source-to-source transformations. In section 4, we

provide benchmarks for two examples: a MPEG encoder and

a concurrent sorting program. In Section 5, we discuss other

applications and future developments.

II. COMPONENT BASED CONSTRUCTION

We define atomic components and their composition in BIP.

Definition 1 (port): A port p[x] is defined by

• p – the port identifier,

• x – the data variable associated with the port.

An atomic component is a Petri net extended with data.

It consists of a set of ports P used for the synchronization

with other components, a set of transitions T and a set of

local variables X . Transitions describe the behavior of the

component. They are represented as a labelled relation on the

set of control locations L.



Definition 2 (atomic component): An atomic component B
is defined by: B = (P,L, T, X, {gτ}τ∈T , {fτ}τ∈T ), where,

• (P,L, T ) is a Petri net, that is

– P is a set of ports,

– L = {l1, l2, . . . , lk} is a set of control locations,

– T ⊆ 2L × P × 2L is a set of transitions,

• X = {x1, . . . , xn} is a set of variables and for each

τ ∈ T respectively gτ is a guard, an action X := fτ (X).

We will use the following notations. For a transition τ ∈ T ,

we define its pre-set •τ (resp. post-set τ•) as the set of the

places which are direct predecessors (resp. successors) of this

transition. Moreover, we use the dotted notation to denote the

parameters of atomic components. For example, B.P means

the set of ports of the atomic component B.

Figure 2 shows an example of an atomic component with

two ports r1, t1, a variable a, and two control locations l1,

l2. At control location l1, the transition labelled t1 is possible.

When an interaction through t1 takes place, a random value is

assigned for the variable a. This value is exported through the

port r1. From the control location l2, the transition labelled

r1 can occur (the guard is true by default), the variable a is

eventually modified and the value of a is printed.

print(a)a := rand()

B
l2

l1

r1t1

t1

r1, a

Fig. 2. An example of an atomic component in BIP

Definition 3 (connector): A connector γ = (p[x], P, δ) is

defined as follows

• p is the exported port of the connector γ,

• P = {pi[xi]}i∈I is the support set of γ, that is, the set

of ports that γ synchronize,

• δ = (G, U,D) where,

– G is the guard of γ, an arbitrary predicate

G({xi}i∈I),
– U is the upward update function of γ of the form,

x := Fu({xi}i∈I),
– D is the downward update function of γ of the form,

∪pi
xi := F d

xi
(x).

Figure 3 shows a connector with two ports p1, p2, and

exported port p. Synchronization through this connector in-

volves two steps: 1) The computation of the upward update

function U by assigning to x the maximum of the values of

x1 and x2 associated with p1 and p2; 2) The computation of

the downward update function D by assigning the value of x
to both x1 and x2.

For a set of connectors Γ = {γj}j∈J , we define the

dominance relation → on Γ as follows :

γi → γj ≡ γj .p ∈ γi.P

That is, γi dominates γj means that the exported port of γj

belongs to the support set of γi (see Figure 4).

p1[x1 : int] p2[x2 : int]

p[x : int]

G : true
U : x := max(x1, x2);
D : x1 := x; x2 := x;

Fig. 3. An example of a connector in BIP

Definition 4 (flat connectors): Γ is a set of flat connectors,

iff no connector dominates another, that is, ∀γi, γj ∈ Γ we

have γi 6→ γj .

γi

pj

pi

γj

Fig. 4. γi dominates γj

Definition 5 (component): Composite components are de-

fined from existing components (atomic or composite) by the

following grammar:

C ::= B | ({Ci}i∈I ,Γ, P )
where,

• B is an atomic component,

• {Ci}i∈I is a set of constituent components,

• P = (∪i∈ICi.P ) ∪ (∪j∈Jγj .p), is the set of ports of the

component, that is P contains the ports of the constituent

components and the exported ports of the connectors,

• Γ = {γj}j∈J is a set of connectors, such that,

1) (Γ,→) has no cycle,

2) ∪j∈Jγj .P ⊆ P (P is defined above),

3) Each γ ∈ Γ uses at most one port of every

constituent component, that is, ∀γ ∈ Γ,∀i ∈ I ,

|Ci.P ∩ γ.P | ≤ 1.

That is, a component is either an atomic component B or

a composite component obtained as the composition of a

set of constituent components {Ci}i∈I by using a set of

connectors Γ = {γj}j∈J . The restriction 3) is needed to

prevent simultaneous firing of two or more transitions in the

same atomic component, because they may operate a priori on

the same set of variables.

For example, consider the BIP component composed of two

composite components shown in Figure 5. Each constituent

component consists of three identical atomic components

described in Figure 2, connected by using the connector

described in Figure 3. Each atomic component generates

an integer. Then it synchronizes with all the other atomic

components. During synchronization the global maximal

value is computed and each atomic component receives the

maximum of the values generated.



Definition 6 (flat component): Composite component C is

flat, iff the set of constituent component {Ci}i∈I are atomic

components.

C

t1

C1 C2

γ3

γ2 γ4

γ5

r1 r2 r4 r5

t2 t3 t4 t5 t6

r3 r6

p3 p5

γ1p1

p2 p4

Fig. 5. Example 2

III. SEMANTICS (TRANSFORMATIONS)

We define the semantics of composite components by a

set of transformations which successively transform them

into atomic components. That is, they eliminate component

hierarchy and the hierarchical connectors by computing the

product behavior.

The transformation from a composite component to an

atomic one is released through three steps: Component flat-

tening, Connector flattening, Component composition.

In this section, we describe the three transformations, and we

illustrate them on Example 2 shown in Figure 5.

A. Component flattening

This transformation replaces the hierarchy on components

by a set of hierarchically structured connectors applied on

atomic components. Consider a composite component C,

obtained as the composition of a set of components {Ci}i∈I .

The purpose of this transformation is to replace each non

atomic component Cj of C by its description. By successive

applications of this transformation, the component C can

be modelled as the set of its atomic components and their

hierarchically structured connectors (see Figure 6).

Definition 7 (Component flattening): Consider a non at-

omic component C = ({Ci}i∈I ,Γ, P ) such that there ex-

ists a non atomic component Cj ∈ {Ci}i∈I with Cj =
({Cjk}k∈K ,Γj , Pj). We define C[Cj 7→ Γj ] as the com-

ponent C = ({Ci}i∈I ∪ {Cjk}k∈K \ {Cj},Γ ∪ Γj , P ).
Component flattening is defined by the following function:

Fc(C) =

{

C if C is flat

Fc(C[Cj 7→ Γj ]) if C is not flat

Proposition 1: Component flattening is well-defined i.e.,

Fc is a function which produces a unique result on every input

component, and terminates in a finite number of steps.

Proof: Regarding the unicity of result, we can show

that, if two constituent components respectively Cj and Ck

can be replaced inside the composite component C, then the

replacement can be done in any order and the final result is

the same. That is, formally we have C[Cj 7→ Γj ][Ck 7→ Γk] =

C[Ck 7→ Γk][Cj 7→ Γj ]. The result follows immediately from

the definition and elementary properties of union on sets.

Regarding termination, every transformation step decreases

the overall number of composite components by one, so

component flattening eventually terminates when all the com-

ponents are atomic.

C C

Cj

Fig. 6. Component flattening

By applying to Example 2 the transformation C[C1 7→
{γ2, γ3}] then C[C2 7→ {γ4, γ5}], we obtain the new com-

ponent in Figure 7.

C

p3

p2 p4

p5

p1

γ3

γ2

γ1

γ4

γ5

r1 r2 r3 r4 r5 r6

t6t5t4t3t2t1

Fig. 7. Component flattening for Example 2

Finally, let us remark that this transformation never in-

creases the structural complexity of the transformed compo-

nent. The overall set of atomic components as well as the

overall set of the hierarchical connectors are preserved as such

during the transformation.

B. Connector flattening

This transformation flattens hierarchical connectors. It takes

two connectors γi and γj with γi → γj and produces an

equivalent connector.

We show in Figure 8 the composition of two connectors

γi and γj . It consists in ”glueing” them together on the

exported port pj . For the composite connector, the update

functions are respectively, the bottom-up composition of the

upward update functions, and the top-down composition of the

downward update functions. This implements a general two-

phase protocol for executing hierarchical connectors. First,

data is synthesized in a bottom up fashion by executing upward

update functions, as long as guards are true. Second, data is

propagated downwards through downward update functions,

from the top to the support set of the connector.

Definition 8 (Connector glueing): Given connectors

γi = (pi[xi], Pi, δi = (Gi, Ui, Di)) and γj = (pj [xj ], Pj , δj =
(Gj , Uj , Dj)) such that γi → γj we define the composition

γi[pj 7→ γj ] as a connector γ = (p, P, δ) where

• p = pi,

• P = Pj ∪ Pi \ {pj},



pj

xi
pi

xj

γi(Gi, Ui, Di)

γj(Gj , Uj , Dj)

xi
piγ(G, U, D)

Fig. 8. Connector glueing

• δ = (G, U,D) is defined as follows:

– G = Gj ∧ Gi[F
u
j /xj ],

– U = xi := Fu
i [Fu

j /xj ],
– D = ∪pk∈Pj

xk := F d
j,xk

[F d
i,xi

/xi] ∪
∪pk∈Pi\{pj} xk := F d

i,xk
.

Let us introduce some notations. Let Γ = {γi =
(pi[x], Pi, δi)}i∈I a set of connectors, and let

P = {{pi} ∪ Pi}i∈I the set of all used ports. We call

a port pj ∈ P transient in Γ if it is both exported by some

connector γj from Γ and used by another connector γi

from Γ. Obviously, transient ports can be eliminated through

connector glueing.

For a transient port pj exported by a connector γj , we will use

the notation Γ[pj 7→ γj ] to denote the new set of connectors

obtained by replacing thoroughly pj by its exporting connector

γj , formally: Γ[pj 7→ γj ] = {γ | γ ∈ Γ, pj 6∈ γ.ports, γ 6= γj}
∪ {γ[pj 7→ γj ] | γ ∈ Γ, pj ∈ γ.ports}. That is, all connectors

(except γj) without pj in their support set are kept unchanged,

while the others are transformed according to definition 8.

Definition 9 (Connector flattening): Connector flattening is

defined by the following function:

Fγ(Γ) =



















Γ if Γ is a set of flat connectors

Fγ(Γ[pj 7→ γj ]) if Γ is not a set of flat

connectors, pj is a transient

port of Γ

Proposition 2: Connector flattening is well-defined i.e., Fγ

is a function which produces a unique result on every set of

connectors, and terminates in a finite number of steps.

Proof:

Regarding the unicity of result, if pj and pk are two transient

ports of Γ defined respectively by connectors γj and γk, then

flattening can be done in any order, formally

Γ[pj 7→ γj ][pk 7→ γk] = Γ[pk 7→ γk][pj 7→ γj ].

The equality amounts to show that any connector γ of

Γ, different from γj and γk gets transformed in the same

way, independently of the order of application of the two

transformations. This is easily shown, case by case, depending

on the occurrence of ports pj and pk on the support of γ, γj

and γk following the definition 8.

Regarding termination, flattening of connectors is applicable

as long as there are transient ports. Moreover, it can be shown

that, every flattening step reduces the number of transient ports

by one - the one that is replaced by its definition. Hence, the

flattening eventually terminates when no more transient ports

exist, that is, Γ is a set of flat connectors.

C

γ4

r6

p4

r1 r2 r3

γ1

r5r4

p5 γ5
γ3p3

p1

p3
r3

p4

p1[x1] γ1

t1 t2 t3 t4 t5 t6

G : true

U : x1 := max(max(p3.x, r3.x), p4.x);
D : p3.x := x1; r3.x := x1; p4.x := x1;

Fig. 9. Connector wiring for Example 2

By application of the transformation γ1[p2 7→ γ2] to Exam-

ple 2 in Figure 7, we obtain the new composite component

presented in Figure 9. If we apply successively, γ1[p3 7→
γ3], γ1[p4 7→ γ4], γ1[p5 7→ γ5] we obtain the new composite

component presented in Figure 10.

C

r1 r2 r3 r4 r5 r6

U : x1 := max(max(max(r1.x, r2.x), r3.x), max(max(r4.x, r5.x), r6.x));

G : true

D : r1.x := x1; r2.x := x1; r3.x := x1; r4.x := x1; r5.x := x1; r6.x := x1;

t1 t2 t3 t4 t5 t6

r1 r2 r3 r4 r5 r6

p1[x1]

p1

Fig. 10. Result for connector flattening for Example 2

In a similar way to component flattening, this second

transformation does not increase the structural complexity

of the transformed components. The overall set of atomic

components is preserved as such, whereas, the overall set of

connectors is decreasing. However, the remaining connectors

have an increased computational complexity, because they

should integrate the guards and the data transfer of the

eliminated ones.



C. Component composition

We present the third transformation which allows to obtain

a single atomic component from a set of atomic components

and a set of flat connectors. This transformation defines the

composition of behaviors.

Intuitively, as shown in Figure 11, the composition opera-

tion consists in ”glueing” together transitions from atomic

components that are synchronized through the interaction of

some connector (interaction p1p2 for this example). Guards of

synchronized transitions are obtained by conjuncting individ-

ual guards and the guard of the connector. Similarly, actions

of synchronized transitions are obtained as the sequential

composition of the upward update function followed by the

downward update function of the connector, followed by the

actions of the components in an arbitrary order.

p1
g1

f1
f2

g2

p2

p1 p2

p

p = p1p2

g12

f12

f12 = U12; D12; (f1 ∪ f2)

g12 = G12 ∧ g1 ∧ g2

G12 U12 D12

Fig. 11. Component composition

Definition 10 (Component composition): Consider a com-

ponent C = ({Bi}i∈I ,Γ, P ) such that ∀i ∈ I Bi is an

atomic component and Γ is a set of flat connectors. We define

the composition Γ({Bi}i∈I) as component B = (P,L, T, X,
{gτ}τ∈T , {fτ}τ∈T ) defined as follows:

• the set of ports P = ∪γ∈Γγ.p,

• the set of places L = ∪i∈IBi.L,

• the set of variables X = (∪i∈IBi.X) ∪ (∪γ∈Γγ.p.x),
• each transition in T corresponds to a set of interacting

transitions {τ1, . . . , τk} ⊆ ∪i∈ITi such that ∪k
i=1τi.p =

γ.P (γ ∈ Γ). We define the transition τ = (l, γ.p, l′)
where,

– l =• τ1 ∪ . . . ∪• τk,

– l′ = τ•
1 ∪ . . . ∪ τ•

k ,

– the guard gτ = ∧k
i=1gτi

∧ γi.δ.G,

– the action X := fτ (X) with fτ = γi.δ.U ; γi.δ.D;
(∪k

i=1fτi
).

Figure 12 shows the Petri net obtained by composition of

the atomic components of Figure 10 through the interaction

r1r2r3r4r5r6.

In contrast to previous transformations, component com-

position may lead to an exponential blowup of the number of

transitions in the resulting Petri net. This situation may happen

if the same interaction can be realized by combining different

transitions from each one of the involved components. For

instance, the interaction p1p2 can give rise to four transitions

in the resulting Petri net if there are two transitions labeled

by p1 and p2 in the synchronizing components. Nevertheless,

in practice we are rarely faced to this situation, as in atomic

t1

r = r1r2r3r4r5r6
G : true

a1=rand()
t2
a2=rand() a3=rand() a4=rand() a5=rand() a6=rand()

t6t3 t4 t5

F : U; D; f

f : print(a1) ∪ print(a2) ∪ print(a3) ∪ print(a4) ∪ print(a5) ∪ print(a6)

D : a1 := x1; a2 := x1; a3 := x1; a4 := x1; a5 := x1; a6 := x1;

U : x1 := max(max(max(a1, a2), a3), max(max(a4, a5), a6));

Fig. 12. Component composition for Example 2

components each port occurs at most in one transition (as in

examples shown hereafter). In this case, the resulting Petri net

has as many transitions as connectors in Γ.

IV. EXPERIMENTAL RESULTS

A. The BIP2BIP tool

These transformations have been implemented in the

BIP2BIP tool, which is currently integrated in the BIP toolset

[8] as shown in Figure 13.

The frontend of the BIP toolset is a parser that generates

a model from a system described in the BIP language. The

BIP language allows the description of hierarchically struc-

tured components as described in the previous sections. The

functions and data are written in C. The language supports

description of atomic components as extended Petri nets. It

also allows the description of composite components by using

connectors.

From the generated model, the code-generator generates C++

code, executable on a dedicated middleware, the BIP Engine.

The BIP Engine can perform execution and enumerative state-

space exploration. The generated state graphs can be analyzed

by using model-checking tools. The BIP2BIP tool is written in

Java (∼4000 loc). It allows transformation of parsed models.

It contains the following modules implementing the presented

transformations.

• Component flattening : this module transforms a com-

posite component to an equivalent one consisting only

of atomic components of the initial model and a set of

connectors.

• Connector flattening : this module transforms an hierar-

chically structured connector to an equivalent flat one.

• Component composition : this module transforms a set

of atomic components and a set of flat connectors into

an equivalent atomic component.

By exhaustive application of these transformations, an atomic

component can be obtained. From the latter, the code-

generator can generate standalone C code, which can be run

directly without the Engine. In particular, all the remaining

non-determinism in the final atomic component is eliminated

at code generation by applying an implicit priority between
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Fig. 13. BIP toolset: General architecture

transitions.

It should be noted that the transformations also can be applied

independently, to obtain models that respond to a particular

user needs. For example, one may decide to eliminate only

partially the hierarchy of components, or to compose only

some components.

The performance of BIP2BIP is quite satisfactory. For ex-

ample, when applied to an artificially complex BIP model,

consisting of 256 atomic components, composed by using 509

connectors with 7 levels of hierarchy, it takes less than 15

seconds to generate the corresponding C program.

B. Examples of transformation

For two examples, we compare the execution times of BIP

programs before and after flattening. These examples show

that it is possible to generate efficient C code from component-

based descriptions in BIP.

1) MPEG video encoder: In the framework of an industrial

project, we have componentized in BIP an MPEG4 encoder

written in C by an industrial partner. The aim of this work

was to evaluate gains in scheduling and quality control of

the componentized program. The results were quite positive

regarding quality control [11] but the componentized program

was almost two times slower than the handwritten C program.

We have used BIP2BIP to generate automatically C code from

the BIP program as explained below (see Figure 14).

The BIP program consists of 11 atomic components, and

14 connectors. It uses the data and the functions of the

initial handwritten C program. It is composed of two atomic

components and one composite component. The atomic com-

ponent GrabFrame gets a frame and produces macroblocks

(each frame is split into N macroblocks of 256 pixels).

The atomic component OutputFrame produces an encoded

c < MAX
c := c + 1

in

grabFrame()

GrabFrame

outputFrame()

Encode OutputFrame

in

in

in

in

in

in

in

out

out

out

out

out

out

out

out

GrabMacroBlock

Coding

Intraprediction

Quant IQuant

IDCT

Reconstruction

DCT

in out

IDCT()

W = width of frame
H = height of frame

MAX = ( W * H ) / 256

reconstruction()
c := 0
c = MAX

MotionEstimation

c := c+1
grabMacroBlock()

c < Max

out

c = Max
c := 0

exit

fin fout

fin fin
fout fin

fout

fout

fin

fout

in1 in2

fin

fout

fout

fin

Fig. 14. MPEG4 encoder

frame. The composite component Encode consists of 9 atomic

components and the corresponding connectors. It encodes

macroblocks produced by the component GrabFrame.

Figure 15 shows the execution times for the initial hand-

written C code, for the BIP program and the corresponding

C code generated automatically by using the presented tech-

nique. Notice that the automatically generated C code and the

handwritten C code have almost the same execution times.

The advantages from the componentization of the handwritten

code are multiple. The BIP program has been rescheduled as

shown in [11] so as to meet given timing requirements.

Table I gives the size of the handwritten C code, the BIP

model, as well of the generated C++ code from the BIP

model C(1) and the generated C code from the BIP model

after flattening C(2). The time taken by the BIP2BIP tool to

generate automatically C(2) is less than 1sec.

Handwritten BIP C(1) C(2)

loc 600 350 1800 800

TABLE I
CODE SIZE IN LOC FOR MPEG4 ENCODER

2) Concurrent Sorting: This example is inspired from a

network sorting algorithm [1]. We consider 2n atomic compo-

nents, each of them containing an array of N values. We want

to sort all the values, so that the elements of the first compo-

nent are smaller than those of the second component and so

on. We solve the problem by using incremental hierarchical

composition of components with particular connectors.

In Figure 16, we give a model for sorting the elements of 4

atomic components. The components C1 and C2 are identical.
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Fig. 15. Execution time for the MPEG4 Encoder

The pair (B1, B2) is composed by using two connectors γ1

and γ2 to form the composite component C1. Each atomic

component computes the minimum and the maximum of the

values in its array. These values are then exported on the port

p. The connector γ1 is used to compare the maximum value

of B1 with the minimum value of B2, and to permute them if

the maximum is bigger than the minimum value.

When the maximum value of the B1 is smaller than the

minimum value of B2, that is the components are correctly

sorted, then the second connector γ2 is triggered. It is used

to export the minimum value of B1 and the maximum value

of B2 to the upper level. At this level the same principle is

applied to sort the values of the composite components C1

and C2. This pattern can be repeated to obtain arbitrary higher

hierarchies (see Figure 17).

... ... ... ...

C2C1
γ1

γ2

B1 B2

γ1 γ2

p(Min, Max)

r(Min, Max)

q(Min, Max)p(Min, Max)q(Min, Max)

G : p.Max > q.Min

U :

G : p.Max <= q.Min

U : Min := p.Min; Max := q.Max;

D : p.Min := Min; q.Max := Max;D : x := p.Max; p.Max := q.Min;
q.Min := x;

Fig. 16. Concurrent Sorting

Figure 18 shows the execution times for the hierarchically

structured BIP program and for the corresponding C code

generated automatically by using the presented technique.

Fig. 17. Concurrent Sorting

Notice the exponentially increasing difference between the

execution time of the component-based BIP program and the

corresponding C code.

Table II shows the size in lines of code of the BIP program,

the component-based C++ corresponding program and the C

code for 4, 8, 16, 32 and 64 atomic components. The size of

the BIP model changes only linearly with n.

n BIP C(1) C(2)

2 loc 112 360 400

3 loc 120 400 620

4 loc 128 440 1100

5 loc 136 480 1850

6 loc 144 520 2850

TABLE II
CODE SIZE IN LOC FOR CONCURRENT SORTING
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V. CONCLUSION

The paper shows that it is possible to reconcile component-

based incremental design and efficient code generation by

applying a paradigm based on the combined use of 1) a high

level modelling notation based on well-defined operational

semantics and supporting powerful mechanisms for expressing

structured coordination between components; 2) semantics-

preserving source-to-source transformations that progressively



transform architectural constraints between components into

internal computation of product components.

BIP has already successfully been used for the compo-

nentization of non trivial systems such as the controller

of the DALA robot [5]. This allowed building component-

based models for which enhanced analysis and verification

is possible by using tools such as D-Finder [7] for compo-

sitional verification. The use of the BIP2BIP tool allows to

reduce overheads in execution time by reducing modularity

introduced by the designer when it is not necessary at imple-

mentation level.

This paradigm opens the way to the synthesis of efficient

monolithic software which is correct-by-construction by using

the design methodology supported by BIP. The methodology

is currently under study, and involves the following steps:

1) The system (software) to be designed is decomposed

into components. The decomposition can be represented

as a tree which shows how the system can be obtained

as the incremental composition of components. Its root

is the system and its leaves correspond to atomic com-

ponents;

2) Description of the behavior of the atomic components;

3) Description of composite components as the composi-

tion of atomic components by using only connectors and

priorities.

This is possible because BIP is expressive enough for ex-

pressing any kind of coordination by using only architectural

constraints [10].

Along steps 2) and 3) it is possible by using the D-Finder

tool, to generate and/or check invariants of the components and

validate their properties. The methodology provides sufficient

conditions for preserving the already established properties of

the sub-systems along the construction.

The BIP2BIP tool is an essential feature of the BIP toolset.

Further developments will focus on source-to-source trans-

formations for BIP programs with priorities by following

a similar flattening principle. In fact, priority rules can be

compiled in the form of restrictions of the guards of com-

ponents. We plan to use BIP2BIP, for optimizing distributed

implementations [3], in particular to generate monolithic C

code for subsystems implemented on the same site.
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