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Abstract 

One of the most important challenges in complex embedded systems design is developing 

methods and tools for modeling and analyzing the behavior of application software running on 

multi-processor platforms. 

We propose a tool-supported flow for systematic and compositional construction of mixed 

software/hardware system models. These models are intended to represent, in an operational 

way, the set of timed executions of parallel application software statically mapped on a multi-

processor platform. As such, system models will be used for performance analysis using 

simulation-based techniques as well as for code generation on specific platforms. The 

construction of the system model proceeds in two steps. In the first step, an abstract system 

model is obtained by composition and specific transformations of (1) the (untimed) model of the 

application software, (2) the model of the platform and (3) the mapping between them. In the 

second step, the abstract system model is refined into concrete system model, by including 

specific timing constraints for execution of the application software, according to chosen 

mapping on the platform. 

We illustrate the system model construction method and its use for performance analysis and 

code generation on an object recognition application provided by Hellenic Airspace Industry. This 

case study is build upon the HMAX models algorithm [RP99] and is looking at significant speedup 

factors. This paper reports results obtained on different system model configurations and used to 

determine the optimal implementation strategy in accordance to hardware resources. 

1. Introduction 
Performance of embedded application software strongly depends on features of the underlying hardware 

platform. Getting the maximum throughput out of many-core platforms demands application software to be 

designed taking parallelism into account from scratch. This is needed to catch up with the fast growth of 

computing capacity due to the foreseeable exponential increase of physical parallelism. But programming, 

testing and verifying parallel software with currently existing tools is notoriously hard, even for experts.  

The aim of the SMECY project is to develop new programming technologies and design flows enabling the 

exploitation of many (100s) core platforms. This paper illustrates one of the design flows developed in SMECY, 
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as depicted in Figure 1.  This flow is rigorous, automated and allows fine-grain analysis of final 

hardware/software system dynamics. It is rigorous because it is based on formal models described in BIP 

[BBS06], with precise semantics that can be analyzed by using formal techniques. A system model in BIP is 

derived by progressively integrating constraints induced on application software by the underlying hardware 

platform.  The system construction method has been introduced in [BB+11a].  The application software and the 

abstract model of the platform are initially defined using DOL [TBHH07].  In contrast to ad-hoc modeling 

approaches, the system model is obtained, in a compositional and incremental manner, from BIP models of the 

application software and respectively, the hardware architecture, by application of (automated) source-to-

source transformations that are proven correct-by-construction. The system model describes the behavior of 

the mixed hardware/software system and can be simulated and formally verified using the BIP toolset.  

Moreover, it can be used as a basis for automatic code generation for the target platform. 

 

Figure 1 : The BIP/DOL Design Flow in SMECY 

We experiment the design flow above on the parallel software model derived from a sequential version of the 

HMAX models algorithm [RP99] developed at Hellenic Airspace Industries. We target implementations on the 

P2012 platform [STM10]. P2012 is a high performance, embedded multicore platform currently developed by 

STMicroelectronics.  Although the hardware is not yet physically available, P2012 is supported by compilation 

and virtual simulation tools. Using the system model and the associated performance analysis tools, we are 

able to obtain, in a fully automatic way, fine-grained performance results for various implementations.  Such 

results provide helpful insights to a software developer both for the selection of the right parallel 

decomposition and its optimal mapping on the given platform.  

Building faithful system models is mandatory for performance evaluation.  Simulation-based methods use ad-

hoc executable system models such as [KDVW97] or tools based on SystemC [MGN03]. The latter provide cycle-

accurate results, but in general, they have long simulation time as a major drawback.  As such, these tools are 

not adequate for thorough exploration of hardware architecture dynamics neither for estimating effects on 

real-life software execution.  Alternatives include trace-based co-simulation methods as used in Spade 

[LSWD01] or Sesame [EPTP07].  Additionally, there exist much faster techniques that work on abstract system 

models e.g., Real Time Calculus [TCN02] and SymTA/S [H05].  They use formal analytical models representing a 



system as a network of nodes exchanging streams. The dynamics of the execution platform can be usually over-

simplified and characterized by execution times.  Nonetheless, these techniques allow usually estimation of 

pessimistic worst-case quantities (delays, buffer sizes, etc) and moreover, they require an abstract model of the 

application software. Building such abstract models requires a significant modeling effort and, if done 

manually, the construction can be error-prone and lead to inaccurate models. Similar limitations exist in 

performance analysis techniques based on Timed-Automata [AAM06, SBM09].  These can be used for modeling 

and solving scheduling problems. An approach combining simulation and analytic models is presented in 

[KBPT06], where simulation results can be propagated to analytic models and vice versa through adequate 

interfaces. 

The paper is organized as follows. Section 2 introduces the HMAX models algorithm. Section 3 introduces the 

target platform, that is, the P2012 many-core developed by STMicroelectronics. Section 4 introduces the 

modeling formalisms used and the system model construction method.  The implementation and experimental 

results obtained on the HMAX mapped on P2012 platform are presented in sections 5 and 6.  Section 7 

concludes and provides ongoing and future work directions. 

2. HMAX Algorithm 
HMAX is a powerful computational model of object recognition [RP99] which attempts to model the rapid 

object recognition of human brain.  Hierarchical approaches to generic object recognition have become 

increasingly popular over the years [SWP05, ML08], they indeed have been shown to consistently outperform 

flat single-template (holistic) object recognition systems on a variety of object recognition task. Recognition 

typically involves the computation of a set of target features at one step, and their combination in the next 

step. A combination of target features at one step is called a layer, and can be modeled by a 3D array of units 

which collectively represent the activity of set of features (F) at a given location in a 2D input grid. 

HMAX starts with an image layer of gray scale pixels (a 

single feature layer) and successively computes higher 

layers, alternating “S” and “C” layers:  

 Simple (“S”) layers apply local filters that 

compute higher-order features by combining 

different types of units in the previous layer. 

 Complex (“C”) layers increase invariance by 

pooling units of the same type in the previous 

layer over limited ranges. At the same time, 

the number of units is reduced by 

subsampling. 

In our case study experiment, we only considered the 

two first layers of the HMAX model algorithm. In a preprocessing phase, the input raw image is converted to 

gray scale input (only one input feature: intensity at pixel level) and the image is then sub-sampled at several 

resolutions. For the S1 layer, a battery of three filters is applied to the sub-sampled images (three features) and 

finally for C1 layer we take the spatial max of computed filters across two successive scales. 

In this application model, parallelism can be exploited at several levels. First at the layer level, independent 

features can be computed simultaneously. Second, at the pixel level, the atomic computation of contribution to 

a feature may be distributed among computing resources. In the scope of this paper, we will consider 

parallelism at the layer level. 

Figure 2 : HMax Layers Computation 



3. P2012 Platform 
Platform 2012 (P2012) [STM10] is an area and power efficient many-core computing fabric, jointly developed 

by STMicroelectronics and CEA.  The P2012 computing fabric is highly modular, as it is based on multiple 

clusters implemented with independent power and clock domains, enabling aggressive fine-grained power, 

reliability and variability management. Clusters are connected via a high-performance fully-asynchronous 

network-on-chip (NoC), which provides scalable bandwidth, power efficiency and robust communication across 

different power and clock domains. Each cluster features up to 16 tightly-coupled processors sharing multi-

banked level-1 instruction and data memories, a multi-channel advanced DMA engine, and specialized 

hardware for synchronization and scheduling acceleration. P2012 achieve extreme area and energy efficiency 

by aggressive exploitation of domain-specific acceleration at the processor and cluster level. In the scope of this 

case study, each processor has been specialized with modular extensions dedicated to floating-point unit 

computation. Other extension such as vector units or other special-purpose instructions may also be chosen at 

design-time. 

 
Figure 3 : P2012 Fabric Template 

 
Figure 4 : P2012 Cluster 

P2012 is based on a modular infrastructure as depicted in Figure 3. Fabric-level communication is based on an 

asynchronous NoC organized in a 2D mesh structure. The routers of this NoC are implemented in a Quasi-

Delay-Insensitive (QDI) asynchronous (clock-less) logic. They provide a natural Globally Asynchronous Locally 

Synchronous (GALS) scheme isolating the clusters logically and electrically. The number of clusters is a 

parameter of the fabric. A configuration up to 32 clusters is supporter in the current implementation. One 

important characteristic of the fabric is that all local storage at the cluster level is visible in a global memory 

map, which also includes memory-mapped peripherals. In this non-uniform memory architecture (NUMA), 

remote memories (off-cluster or off-fabric) are expensive to access. For this reason, DMA engines are available 

for hardware-accelerated global memory transfers. At the fabric level, a configurable number of I/O channels, 

implemented via multiple DMAs, can be used for connecting the fabric to the rest of the SoC. Finally, a fabric 

controller serves as the control interface between the SoC and the fabric. 

A P2012 cluster (Figure 4) aggregates a multi-core computing engine, called Encore and a cluster controller. 

The Encore cluster includes a number of processing elements (PEs) varying from 1 to 16. Each PE is built with a 

highly configurable an extensible processor called STxP70-v4. It is a cost effective and customizable 32-bit RISC 

core supported by comprehensive state-of-art toolset. The Encore 16 PEs do not have private data caches or 

memories, therefore avoiding memory coherency overhead. Instead, the PEs can directly access a L1-shared 

program cache (P$) and a L1-shared tightly coupled data memory (TCDM). Each core therefore has two 64 bit-

ports to the shared memories, a read-only instruction port and a read/write data port. The P$ cache is a 256 

KB, 64-bank, direct mapped cache memory while the TCDM is a 256-KB, 32-bank memory. The P$ and the 

TCDM have been architected with a banking factor of 4 and 2, respectively. The P$ and the TCDM can therefore 

support a throughput of one instruction fetch and one data access per PE on each clock cycle. Encore provides 



runtime acceleration by the means of the Hardware Synchronizer (HWS). Various synchronization primitives 

such as semaphores, mutexes, barriers, joins, etc. can be implemented using accelerated support of the HWS. 

The cluster controller (CC) consists of a cluster processor subsystem, a DMA subsystem, a CC interconnect and 

several interfaces: one to the Encore 16 PEs and one to the asynchronous NoC. The cluster processor is 

designed around a STxP70-V4 dual-issue core without extension and with 16-KB P$ and 16-KB of local memory. 

The Platform 2012 Development Kit provides support for several platform programming models (PPM). 

Standards-based programming models are based on industry standards that can be implemented effectively on 

P2012. The supported standards are OpenMP and OpenCL. Another supported PPM is called Native 

Programming Layer (NPL). NPL is an API which closely coupled the platform capabilities. It allows the highest 

level of control on application to resource mapping at the expense of abstraction and platform independence.  

The P2012 SDK also features platform models for the execution and the simulation of applications running on 

the P2012 platform. For the scope of this paper, we used a mono-cluster simulator of the fabric and an Encore 

engine featuring 16 PEs. We targeted the NPL for fine-tuned control of the deployment of the application on 

the platform, and to achieve better performances. 

4. System Level Modeling 
We briefly recall hereafter the construction of a mixed software/hardware system model introduced in 

[BB+11a]. The flow of the construction is illustrated in Figure 1. The method takes as inputs representations of 

the application software, the hardware platform and the mapping. These inputs are provided using the 

concrete formalism available in the DOL framework [TBHH07]. The output is the system model in BIP 

framework [BBS06]. The construction breaks down into several well identified translation and model 

transformation phases operating on DOL and BIP models. 

DOL (Distributed Operation Layer) [TBHH07]) is a framework devoted to the specification and analysis of mixed 

hardware systems. DOL provides languages for the representation of particular classes of applications 

software, multi-processor architectures and their mappings. In DOL, application software is defined using a 

variant of Kahn process network model. It consists of a set of deterministic, sequential processes (in C) 

communicating asynchronously through FIFO channels. The hardware architecture is described as 

interconnections of computational and communication resources such as processors, buses and memories. The 

mapping associates application software components to resources of the hardware architecture, that is, 

processes to processors and FIFO channels to memories. 

Figure 5 presents the process network model constructed from the S1 layer of the HMAX models algorithm. It 

contains processes Splitter, GFilter1 … GFilter12, MaxFilter1 … MaxFilter11 and Joiner.  The Splitter builds the 

12 scales of the input image and dispatches them to Filters. Each GFilter1 … GFilter12 implements a 2D-Gabor 

filter with different orientation. Their results are then sent, feature by feature, to MaxFilters.  Each MaxFilter 

convolves outputs produced by two adjacent GFilters.  The results are finally gathered by the Joiner. 

For the scope of this paper, we target a simplified, preliminary version of the P2012 platform.  This version 

consists of a mono-cluster version of the P2012 fabric and an Encore engine featuring 16 PEs.   Figure 6 

presents the abstract model of this platform in DOL.  
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Figure 5 : KPN model of the HMAX S1-C1 layers in DOL 

 
Figure 6 : Abstract model of a P2012 cluster in DOL 

 

BIP (Behavior-Interaction-Priority) [BBS06, 

BB+11a] is a formal framework for building 

complex systems by coordinating the 

behavior of a set of atomic components. 

Behavior is defined as automata or Petri 

nets extended with data and functions 

described in C/C++. The description of 

coordination between components is 

layered. The first layer describes the 

interactions between components. The 

second layer describes dynamic priorities 

between interactions and is used to 

express scheduling policies. BIP has clean 

operational semantics that describe the 

behavior of a composite component as the 

composition of the behaviors of its atomic 

components. This allows a direct relation between the underlying semantic model (transition systems) and its 

implementation.  The BIP toolset [BIPa, BIPb] includes a rich set of tools for modeling, execution, analysis (both 

static and on-the-fly) and transformations of BIP models. It provides a dedicated programming language for 

describing BIP models. The front-end tools allow editing and parsing of BIP programs, followed by code 

generation (in C/C++). The code can be used either for execution or for performance analysis using backend 

simulation tools. 

As an example, Figure 7 presents the model of a 2D-Gabor filter as an atomic component in BIP.  This 

component consists of 6 control locations (START, S1,... S4, DETACH) and two ports, DOL_read and DOL_write.   

NDPF_state, size and address are local data (variables) of the component. The variables address and size are 

associated with the ports. The transitions are either internal transitions (internal_step) where local 

computation and updates are made, or port interactions, where the component exchanges data and 

synchronizes with the other BIP components.   

The system model embodies the hardware constraints into the software model according to the mapping.   The 

construction of the system model in BIP is obtained by a sequence of translations and transformations of the 

DOL representations, as follows: 

Figure 7 : BIP Model of a 2D-Gabor Filter 



1. automatic translation of the application software in DOL into a BIP model.  The translation is 

structural: processes and FIFO channels in DOL are translated into atomic components in BIP, 

connections in DOL are translated into connectors in BIP. 

2. automatic translation of the hardware architecture model in DOL into a BIP model.  The translation is 

also structural: hardware resources (processor, memory, bus, etc) are translated into BIP components, 

hardware interconnections are translated into connectors in BIP. 

3. construction of an initial, abstract system model using source-to-source transformation of the previous 

two models and composition according to the mapping. 

4. refinement of the  previous system model by including specific timing information about the execution 

of the software on the platform. 

All the transformations above preserve functional properties of the application software model.  Moreover, the 

system model includes specific timing constraints for execution of the application software on the hardware 

platform. These constraints are obtained by cross compiling the application model into executable code for the 

target and measuring the execution time of the elementary blocks of code (e.g., BIP transitions). The timing 

information is integrated in the system model through the source-to-source transformation done in last 

refinement step (number 4 in the list above). 

For experiments, we restrict ourselves to the S1 layer of the HMAX models algorithm.  The process network in 

DOL consists of 14 processes and 24 FIFO channels.  This DOL model is about 700 lines of XML (defining the 

process network structure) and 1500 lines of C (defining the process behavior).   The software model in BIP is 

constructed automatically from the DOL model.  It consists of 38 atomic components interconnected using 48 

connectors.  The BIP software model is about 2000 lines of BIP code.   The system model obtained by deploying 

the S1 layer on a single P2012 cluster consists of 125 atomic components interconnected using about 1500 

connectors.  The total BIP description totalizes about 13000 lines of BIP code.  This description is compiled into 

about 50000 lines of C++ code, used for simulation and performance analysis, as explained below. 

5. Performance Analysis on the System Model 
The system model captures, besides the pure functionality of the application software, all the non-functional 

constraints induced on it by the target platform.  The system model can therefore be used to analyze non-

functional properties such as contention for buses and memory accesses, transfer latencies, contention for 

processors, etc.  In the proposed design flow, these properties are evaluated by simulation of the system model 

extended with observers.  Observers are regular BIP components that sense the state of the system model and 

collect pertinent information with respect to the properties of interest i.e., the delay for particular data 

transfers, the blocking time on buses, etc.  Actually, we provide a collection of predefined observers allowing to 

monitor and record specific information for most common non-functional properties. 

Simulation is performed by using the native BIP simulation tool [BIPa].  The BIP system model extended with 

observers is used to produce simulation code that runs on top of the BIP engine, that is, the middleware for 

execution/simulation of BIP models.  The outcome of the simulation with the BIP engine is twofold.  First, the 

information recorded by observers can be used as such to gain insight about the properties of interest.  

Second, with some caution3, the same information can be used to build much simpler, abstract stochastic 

models.  These models can be further used to compute probabilistic guarantees on properties by using 

statistical-model checking.  This two-phase approach combining simulation and statistical model-checking has 

been successfully experimented in a different context [BB+10].  Moreover, it is fully scalable and allows  (at 

least partially) overcoming the drawbacks related to simulation-based approaches, that is, the long simulation 

times and the lack of confidence in the results obtained. 
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For example, in our application, the execution time of 2D-Gabor filters on P2012 PEs ranges from 220 106 to 

0,68 106 cycles, depending on the size of the input image (ranging from 100x100 to 15x15 pixels).  By using 

these values in the system model, the total execution time of the S1 layer is estimated as 225 106 cycles.  This 

overall execution time is negatively impacted by the long access time (i.e., about 100 cycles) to the L3 memory 

(where all FIFOs are mapped) as well as by the bus contention.  A slightly better result is obtained if the FIFOs 

are all mapped into the TCDM memory.  In this case, the memory access time is about 1 cycle and there is no 

more contention.  The total execution time reduces to about 220 106 cycles.  However, such a mapping is not 

feasible due to memory size constraints, that is, FIFOs cannot fit all simultaneously within the TCDM memory. 

6. Implementation and experiments on P2012 
We are developing an infrastructure for generating code from the BIP system models.  We seek for portability 

and therefore, the generated code targets a particular runtime that can be eventually deployed and run on 

different platforms, including P2012. 

The runtime provides generic API for thread management, memory allocation, communication and 

synchronization. The generated code is not bound to any particular platform and consists of the functional 

code and the glue code. The functional code implements the application tasks, that is, processes in the original 

DOL/BIP models. For each task, a C file is generated that contains the description of the data and a thread 

routine describing the behavior. The behavior is a sequential program consisting of computation statements 

and communication calls, that is, invocation of particular API provided by the runtime. The glue code 

implements the main routine that handles the allocation of threads to cores and the allocation of data to 

memories.  Threads are created and allocated to processors according to the mapping description.  Moreover, 

data allocation consists of allocation of the thread stacks and allocation of FIFO queues for communication. All 

these operations are realized by using the API provided by the runtime.  

As shown in Figure 1, the generated code is finally compiled by the native platform compiler. The code is linked 

with the runtime, hardware dependent library, to produce the binary executable(s) for execution on the 

platform.  For our experiments, we have used the Native Programming Layer (NPL), a common runtime 

implemented for both P2012 and MPARM platforms [BBB+05, MPS].  The generated code has been run on 

virtual platforms available in the P2012 SDK 2011.1, namely GEPOP - the P2012 POSIX-based simulator - and 

the P2012 TLM simulator.  

7. Conclusions 
We illustrate a rigorous design flow for development of application on manycore platforms.   We consider one 

of the most challenging case studies provided in the SMECY project, namely the implementation of the HMAX 

models algorithm for object recognition on P2012, a highly modular, embedded manycore platform developed 

by STMicroelectronics.  Given the application software, an abstract model of the target platform and a 

mapping, our design flow allows (1) to derive a faithful system model for performance analysis and (2) to 

produce implementations.   The flow is fully automated and mainly supported by the BIP toolset. 

This work is being extended in several directions.  First of all, we are refining the input DOL model of the HMAX 

in order to exhibit more fine-grain parallelism, i.e., within 2D-Gabor and Max filters.  This refinement seems to 

be mandatory to increase overall runtime performances.  Second, we plan to evaluate and target 

implementations on the latest P2012 SDK available, which features multi-cluster support as well as optimized 

runtimes.   Third, regarding the design flow, we are working on extensions to richer hardware models, which 

include for example DMA controllers, bus bridges and/or NoC communication.  Moreover, we plan to include 

and evaluate statistical model checking for system models consisting of multiple software applications running 

in parallel, following the method described in [BBB+10]. 
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