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Abstract. This paper addresses the problem of conditional terminatidnich
is that of defining the set of initial configurations from whia given program
terminates. First we define the dual set, of initial configiores, from which a
non-terminating execution exists, as the greatest fixpittte pre-image of the
transition relation. This definition enables the represion of this set, whenever
the closed form of the relation of the loop is definable in addbat has quanti-
fier elimination. This entails the decidability of the temation problem for such
loops. Second, we present effective ways to compute the eségkecondition
for non-termination for difference bounds and octagonahfdeterministic) re-
lations, by avoiding complex quantifier eliminations. Wsaainvestigate the ex-
istence of linear ranking functions for such loops. Finalg study the class of
linear affine relations and give a method of under-approtiilgethe termination
precondition for a non-trivial subclass of affine relation&e have performed pre-
liminary experiments on transition systems modeling fiéalsystems, and have
obtained encouraging results.

1 Introduction

The termination problem asks whether every computationgi¥@n program ends in
a halting state. The universal termination asks whethewangbrogram stops for ev-
ery possible input configuration. Both problems are amoefitist ever to be shown
undecidable, by A. Turing [24]. In many cases however, paogs will terminate when
started in certain configurations, and rhayn forever, when started in other configu-
rations. The problem of determining the set of configuraisom which a program
terminates on all paths is callednditional termination

In program analysis, the presence of non-terminating rasskeen traditionally
considered faulty. However, more recently, with the adwdneactive systemsacci-
dental termination can be an equally serious error. Foairt®t, when designing a web
server, a developer would like to make sure that the mainrprodoop will not exit

* This work was supported by the French national project ANRSEGI-016 VERIDYC,
by the Czech Science Foundation (projects P103/10/0306182¢09/H042), the Czech
Ministry of Education (projects COST OC10009 and MSM 0021%23), the Bar-
rande project MEB021023, and the EU/Czech IT4Innovatiorent@ of Excellence
CZ.1.05/1.1.00/02.0070.

3 |f the program is non-deterministic, the existence of alsinigfinite run, among other finite
runs, suffices to consider an initial configuration non-teating.



unless a stopping request has been issued. These factssléadansidering theon-
ditional non-terminatiorproblem, which is determining the set of initial configuoais
which guarantee that the program will not exit.

In this paper we focus on programs that handle integer a@saperforming linear
arithmetic tests and (possibly non-deterministic) upslaefirst observation is that the
set of configurations guaranteeing non-termination is tieatgst fixpoint of the pre-
image of the program’s transition relatfbR. This set, called theveakest recurrent set
and denotedrs(R) in our paper, can be defined in first-order arithmetic, predithat
the closed form of the infinite sequence of relatigi# },~, obtained by composing
the transition relation with itself, 1, 2, . . . times, can also be defined using first-order
arithmetic. Moreover, if the fragment of arithmetic we uses lquantifier elimination,
the weakest recurrent set can be expressed in a quantdedécidable fragment of

arithmetic. This also means that the problems(R) Z0is decidable, yielding univer-
sal termination decidability proofs for free.

Contributions of this paper The main novelty in this paper is of rather theoretical na-
ture: we show that the non-termination preconditions fteger transition relations de-
fined as eitheoctagonsor linear affine loops with finite monoid propertye definable

in quantifier-free Presburger arithmetic. Thus, the ursaktermination problem for
such program loops is decidable. However, since quantifii@iretion in Presburger
arithmetic is a complex procedure, we have developed alteeways of deriving the
preconditions for non-termination, and in particular:

— for difference boundsve reduce the problem of finding the weakest recurrent set
to finding the maximal solution of a system of inequalitieshie complete lattice
of integers extended with-co, where the right-hand sides use addition amich
operators. Efficient algorithms for finding such maximalusioins are based on
policy iteration [14]. This encoding gives us a worst-casetcomplexity ofO(n?-
2™) in the number of variables, for the computation of the weakest recurrent set
for difference bounds relations.

— for octagonal relationgand implicitly for difference bounds relations, which are
subclass), we use a result from [5], namely that the sequgRite > is, in some
sense, periodic. We give here a simple quantifier eliminati@thod, targeted for
the class of formulae defining weakest recursive sets. Twitim suggested here
runs in worst-case time complexity 6¥(n* - 5*) in the number of variables.
Moreover, we investigate the existence of linear rankingfions, and prove that,
for each well-founded octagonal relations, there existeféactively computable
witness relation i.e., a well-founded relation that hawadr ranking function.

— for linear affine relationsweakest recurrent sets can be defined in Presburger arith-
metic if we consider several restrictions concerning th@gformation matrix. If
the matrix A defining R has eigenvalues which are either zeros or roots of unity,
all non-zero eigenvalues being of multiplicity one (thesaditions are equivalent
to the finite monoid property of [2, 12]), theors(R) is Presburger definable. Oth-
erwise, if all non-zero eigenvalues dfare roots of unity, of multiplicities greater
or equal to onewrs(R) can be expressed using polynomial terms. In this case, we

4 This definition is the dual of theeachability setneeded for checking safety properties: the
reachability set is the least fixpoint of the post-image eftifansition relation.



can systematically issue termination preconditions, tvhie of significant practi-
cal importance, as noted in [10].

For space reasons, all proofs are deferred to the Appendix.

Practical applications Unfortunately, in practice, the cases in which the closethfo
of the sequencéR'};> is definable in a logic that has quantifier elimination, ardyfa
rare. All relations considered so far are conjunctive, megathat they can represent
only simple program loops of the forwhi | e( condi ti on) {body }, where the loop
body contains no further conditional constructs. In ordeté¢al with more complicated
program loops, one can use the results from this paper inaavays:

— use the decision procedures as a back-end of a terminatadyzan, in order to de-
tect spurious non-termination counterexamples congistfra finite prefix (stem)
and a conjunctive loop body (lasso). The spurious counéengies can be dis-
carded by intersecting the program model with the complémithe weak deter-
ministic Blichi automaton representing the counterexargs in [16].

— abstract a disjunctive loop body; Vv ...V R, by a non-deterministic difference
bounds or octagonatelationR# DO R; ... », and compute the weakest recurrent set
of the latter. The complement of this set is a set of configamatfrom which the
original loop terminates.

— attempt to compute mansition invarianti.e., an overapproximations of the transi-
tive closure of the disjunctive loop body?; Vv ...V R,,)* (using e.g., the semi-
algorithmic unfolding technique described in [6]) and @amrroximate it by a dis-
junctionRi‘iE V...V R? of difference bounds or octagonal relations. Then compute

the weakest recurrent set of each relation in the latteuwiision. Ifwrs(Rf) =
. = wrs(R#) = 0, the original loop terminates on any input, following the
principle of transition invariants [19].

1.1 Related Work

The literature on program termination is vast. Most workuiges however on universal
termination, such as the techniques for synthesizing tinaaking functions of Sohn

and Van Gelder [22] or Podelski and Rybalchenko [18], andntiee sophisticated
method of Bradley, Manna and Sipma [8], which synthesizesdgraphic polynomial

ranking functions, suitable when dealing with disjunctigeps. However, not every
terminating program (loop) has a linear (polynomial) ramgkfunction. In this paper

we show that, for an entire class of non-deterministic linedations, defined using
octagons, termination is always witnessed by a computattégonal relation that has
a linear ranking function.

Another line of work considers the decidability of termiatfor simple (conjunc-
tive) linear loops. Initially Tiwari [23] shows decidaliii of termination for affine lin-
ear loops interpreted oveeals while Braverman [9] refines this result by showing
decidability overrationals and overintegers for homogeneous relations of the form
Cix >0 A Cox > 0 A x' = Ax. The non-homogeneous integer case seems to be

5 The linear affine relations considered in this paper arerdméstic, which makes them un-
suitable for abstraction.



much more difficult as it is closely related to the offgkolem’s Problemil5]: given a
linear recurrencéu; };>¢, determine whether; = 0 for somei > 0.

Our work is concerned mostly with proofs of decidability: slew that the termina-
tion problem for a program loop becomes decidable if theadderm of the sequence
of iterations of the loop can be defined in a decidable log&shown in [5], for oc-
tagonal and linear affine relations with the finite monoidpany, this closed form is
Presburger definable, which now entails the decidabilitheftermination problem for
these classes of relations.

The work which is closest to ours is probably that of Cook efld]. In this paper,
the authors develop an algorithm for deriving terminatiogcpnditions, by first guess-
ing a ranking function candidate (typically the linear tefrom the loop condition) and
then inferring a supporting assertion, which guaranteaisttte candidate function de-
creases with each iteration. The step of finding a suppoasisgrtion requires a fixpoint
iteration, in order to find an invariant condition. Unlikerouork, the authors of [10]
do not address issues related to completeness: the methotigsaranteed to find the
weakest precondition for termination, even in cases whisrsét can be computed. On
the other hand, it is applicable to a large range of prograrisacted from real-life soft-
ware. To compare our method with theirs, we tried all exasplailable in [10]. Since
most of them are linear affine relations, we used our undpreagimation method and
have computed termination preconditions, which turn outdaslightly more general
than the ones reported in [10].

2 Preconditions for Non-termination

In the rest of this paper we denote Ry= {z1,...,z,} the set of working variables,
ranging over a domain of values denotedlasA stateis a valuations : x — D, or
equivalently, am-tuple of values fronD. An execution stejs a relationk C D" x D"
defined by ararithmetic formulaR(x, x’), where the sex’ = {«7,..., 2]} denotes
the values of the variables after executiR@nce. Ifs ands’ are valuations of the sets
x andx’, we denote byR (s, s') the fact that(s,s’) € R. A relation R is said to be
consistentf there exist states, s’ such thatR (s, s).

Relational composition is defined @& o Ry = {(s,s’) € D" x D" | 3" €
D" . Ri(s,s") N Ra(s”,s')}. For any relation? € D™ x D", we conside?° to be
the identity relation, and we defilg’™* = R’ o R, for all i > 0. The pre-image of a
setS C D" via R is the seppreg(S) = {s € D" | 3s’ € S . R(s,s)}. Itis easy to
check thaprel, (S) = preg:(S), for anyS C D™ and for alli > 0. For anyi > 0, we
write R* for the formula defining the relatioR* andR~*(T) for the formula defining
the setpreg: (D™).

Definition 1. A relation R is said to bex-consistentf and only if, for anyk > 0, there
exists a sequence of statgs. . ., s, such thatR(s;, s;+1),foralli=1,... )k —1. R
is said to bewell-foundedif and only if there is no infinite sequence of stafes};~,
such thatR(s;, s;+1), forall i > 0.

Notice that if a relation is not-consistent, then it is also well-founded. However the
dual is not true. For instance, the relatiBn= {(n,n — 1) | n > 0} is both«-consistent
and well-founded.



Definition 2. A setS C D" is said to be anon-termination preconditiofor R if,
for each states € S there exists an infinite sequence of statigs, so, . .. such that
s = sp andR(s;, s;+1), forall i > 0.

If So,S1,... are all preconditions for non-termination f&, then the (possibly infi-
nite) unionlJ,_, , S is a precondition for non-termination fdt as well. The set
wnt(R) = J{S € D™ | S is a precondition for non-termination fdét} is called the
weakest non-termination preconditifor R. A relation R is well-founded if and only
if wnt(R) = 0. A setS such thatSNwnt(R) = () is called atermination precondition

Definition 3. A setS C D" is said to berecurrenfor a relationR € D™ x D" if and
only if S C prer(S).

Proposition 1. Let Sy, S1,... € D™ be a (possibly infinite) sequence of sets, all of
which are recurrent for a relation? € D" x D". Then their uniorJ,_, Si is
recurrent for R as well. '

The setwrs(R) = |J{S € D" | S is arecurrent set faR} is called theveakest recur-
rent setfor R. By Proposition 1wrs(R) is recurrent forR. Next we define the weakest
recurrent set as the greatest fixpoint of the transitiorticgls pre-image.

Lemma 1. Given a relationR € D" x D™, the weakest recurrent set fd@t is the
greatest fixpoint of the functiai — prer(X).

As a consequence, we obtains(R) = ), pre (D"), by the Kleene Fixpoint The-
orem. Sinceprel; = pregi, we havewrs(R) = (,.,preg:(D™). In other words,

from any state in the weakest recurrent set for a relatiorteaation of any finite length
of the given relation is possible. The following lemma shakat in fact, this is exactly
the set of states from which an infinite iteration is also fzes

Lemma 2. Given a relationk € D" x D", the weakest recurrent set fér equals its
weakest precondition for non-termination.

The characterization of weakest recurrent sets as grdajasints of the pre-image
function suggests a method for computing such sets. In #guso® we show that, for
certain classes of relations, these sets are definableshigger arithmetic, which gives
a decision procedure for the well-foundedness problemdaam classes of relations,
and consequently, for the termination problem for sevdealses of program loops.

Definition 4. Given arelationk € D" x D" defined by an arithmetic formufa(x, x’),
the closed formof R is a formulaR®) (x, x’?_, with free variablesc U x’ U {k}, such
that for every integer valuation> 0 of k, R())(x,x’) defines the relatiom".

Example Consider for instance the relatid®(z,2’) = 2 > 0 A2’ = 2 — 1. Then we
haveR¥) (z, 2 ) =2 >k —1A2 =2 — k. O

Since, by Lemma 1, we havers(R) = gfp(prer) = (;», prer: (D™), using the
closed form ofR, one can now define:

wrs(R) =Yk > 03x" . R (x,x') 1)



Because Presburger arithmetic has quantifier elimination(R) can be defined
in Presburger arithmefiavheneveR(¥) can. In [5] we show three classes of relations
for whichR(*) is Presburger definable: difference bounds, octagonal aite-fnonoid
affine relations (the formal definitions of these classesgaren in the next section).
For each of these classes of loops termination is decidaypliwe above argument.

Example Consider again the relatioR(z,z') = # > 0 A2’ = x — 1 for which
R¥) (x,2') =z >k —1 A2’ =z — k. Quantifier elimination yieldsrs(R) = Vk >
032" .xa>k—1AN2'=2—k=VEk>0.2>k—1=false. Hence the relatioR is
well-founded. O

3 Difference Bounds Relations

In this and the following sections, we assume that the viatab= {z1, ..., z,} range
over integers i.e., tha = Z.

Definition 5. A formula¢(x) is a difference bounds constraiiftit is equivalent to a
finite conjunction of atomic propositions of the forn— z; < a;;, for1 < i,j <
n,i # j, wherea;; € Z.

Given a difference bounds constraifita difference bounds matrigDBM) repre-
sentingg is a matrixmg € Z33" such that(mg),. = ag;, if 2, —2; < ay; is an
atomic proposition inp, andoo, otherwise. I is inconsistent (logically equivalent to
false) we also say thab, is inconsistent. The next definition gives a canonical form
for consistent DBMs.

Definition 6. A consistent DBMn € ZZ*™ is said to beclosedif and only ifm,;; = 0
andm,; < mg, +my;, forall 1 <4, 4,k <n.

Given a consistent DBMn, we denote byn* the (unique) closed DBM equivalent
with it. It is well-known that, ifm is consistent, them* is unique, and can be computed
fromm in time O(n?), by the classical Floyd-Warshall algorithm. The closur®8M
provides an efficient means to compare difference boundsticonts.

Proposition 2 ([17]). Given two consistent difference bounds constraintg) and
1 (x), the following conditions are equivalent:

= Vx . p(x) = (x)
— (mf;,)w < (m:‘/})ij, forall 1 < i,j <n
In the following, letR be a relation defined by a difference bounds constraint. It is
easy to show that, for any> 0, the relationR’ is a difference bounds relation as well —
in other words, difference bounds relations are closed ucol@position. Moreover, if
S is a set defined by a difference bounds constraint, then the'sg: (5) is defined by
a difference bounds constraint as well. But sinee(R) = [, preg: (Z"), it turns
out thatwrs(R) can be defined by a difference bounds constraint, since #ss df
difference bounds constraints is closed under (possifilyiie) intersections.
We are now ready to describe the procedure computing theeseadcurrent set
for a difference bounds relatiad®. Sincewrs(R) is a (possibly inconsistent) difference
bounds constraint, we use the templatg, p) = /\1<i¢j<n x; — xj < p;j, wherep;;

6 Or, for that matter, in any theory that has quantifier elirtiora



are parameters ranging ov&r. ., (we clearly do not need to track the constraints of the
form z; — z; < py). Moreover, we assume that the template is closed (Defingio
which can be encoded as a system of inequalities of the form:

pij < min {pi, +prj | k #i,k # 5} (2)

Next, we compute the (symbolic) difference bounds const@rresponding to the set
prer(p) = Ix' . R(x,x’) A u(x’, p). This step requires computing the closure of the
DBM corresponding t&R A i, and elimination of th&’ variables. The result is a closed
symbolic DBM 7, whose entries armin-terms consisting of sums ¢f; and integer
constants. Further, we encode the recurrence condliti@rprer (1), again as a system
of inequalities (Proposition 2) of the form:

Pij S Tij, 1 # J 3

By conjoining the inequalities (2) and (3), we obtain a systd inequalities with vari-
ablesp;;, whose right-hand sides are linear combinationg;pvith addition andnin.

We are interested in the maximal solution of this systemgctviecan be obtained using
an efficient policy iteration algorithm [14] in the complédgtice ofZ ., with addition,
min andmax operators. This solution defines the weakest recurrenvsét,fand con-
sequently, the weakest precondition for non-terminatiothe R loop. Sincewrs(R)

is a difference bounds constraint, for any relati®mefinable by a difference bounds
constraint, the maximal solution of the system is uniqués tb be noted that, if for
somel < i # j < n we obtainp;; = —oo, then the weakest recurrent set is empty i.e.,
the relationR is well-founded, as shown by the following example.

Example Let us computevrs(R) for R(z,2') =z —a < 0Az' =z — 1A 2 = z.
The template used ig(x,2) = 2 — 2 < p1 A z — 2 < py. We computerrer(p) =
x —z < min(p; + 1,1) A 2 — x < pa — 1. The recurrence condition C preg(u)
is given by the following systen{p; < min(p; + 1,1),p2 < p2 — 1}, whose unique
maximal solution ig; = 1, po = —oo. This proves the well-foundednessmif a

Lemma 3. Computing the weakest recurrent set of a difference bourlddan can be
done in timeD(n? - 2™), wheren is the number of variables.

4 Octagonal Relations

Definition 7. A formula¢(x) is an octagonal constrairif it is equivalent to a finite
conjunction of terms of the foreaz; + z; < a,;, wherea;; € Zandl <4,j < n.

We represent octagons as difference bounds constraintdhedrial set of variables
v = {y1,v2, ..., y2n}, With the convention thags;_; stands forz; andys,; for —z;,
respectively. For example, the octagonal constraint x» = 3 is represented ag —
ys < 3 ANy2 —ys < —3. To handle the dual variables in the following, we define
1=1i—1,if i is even, and = i + 1if i is odd. We say that a DBMh € Z27*?" is
coherentff m;; = mj; forall1 <4, j < 2n. The coherence property is needed because
any atomic propositiom; — z; < a, in ¢ can be represented as bgth_1 —y2;—1 < a

andys; —y2 < a, 1 < 4,5 < n. We denote byp the difference bounds formula



dlyr/x1,y2/ — 1, -+, Yon—1/Tn, Yan/ — ] With free variablesy. The following
equivalence relates and¢ :

P(x) & Gy, Y5+ Yo2n - G A /\ Y2i-1 + Y20 = 0)[z1/y1, .. 0 /Y2n—1]  (4)
i=1

Given a coherent DBMn representing, we say thain is octagonal-consisterit and
only if ¢ is consistent. The following definition gives the canoniftain of a DBM
representing an octagonal-consistent constraint.

Definition 8. An octagonal-consistent coherent DBM¢ Z2"*2" is said to beightly
closedif and only if the following hold:

2. myiseven VvVl <i < 2n dom; < [ 4 B2, V1<d,j<2n

Given an octagonal-consistent DBM, we denote byn’ the equivalent tightly closed
DBM. The tight closure of an octagonal-consistent DBMs unique and can be com-

puted in timeO(n?) asmj ; = min {m;j, V;J + {%J} [1]. This generalizes to

unbounded finite compositions of octagonal relations [4]:
mr i m*. )= .
szo-(quk)i,j—min{(m*ﬁk)iw \‘( R;), J N \‘( R;)J,JJ} (5)

Notice that the above relates the entries of the tightlyedd3BM representation at*

with the entries of the closed DBM representation of thetiatedefined byTz’“.

We are now ready to introduce a result [5] that defines thegshaf the closed form
R(*) for an octagonal relatio®. Intuitively, for eachi > 0, R is an octagon, whose
bounds evolve in a periodic way. The following definitionegthe precise meaning of
periodicity for relations that have a matrix representatio

Definition 9. An infinite sequence of matricd/;}7°, € Z7*™ is said to beulti-
mately periodidf and only if;

db>0dc>0 3/10, A17 ceey Ac—l S Zg’éxm . Mb+(k+1)c+i = Al + ]\/[b+kc+i

forall k > 0andi = 0,1,...,c — 1. The smallesb, ¢ for which the above holds are
calledprefixandperiodof the{ M} }32 , sequence, respectively.

Aresult reported in [5] is that the sequer{ee?,, }>( (5) of tightly closed matrices
representing the sequenf®},, of powers of an octagonal relatidi is ultimately
periodic, in the sense of the above definition. The constaatsd ¢ from Definition 9
will also be called theprefix and period of the octagonal relatiaR, throughout this
section.

For a setv of variables, letU(v) = {£v1 £ v2 | v1,v2 € v} denote the set of
octagonal terms over. As a first remark, by the periodicity of the sequetig€,,. }i>o,
the closed form of the subsequerd@*<‘},>, (of { R'};>0) can be defined as:

Riy= N\ u<ad+d, (6)

ueU (xUx")



for all ¢ > 0, wherea,, andd,, are entriegi, j) corresponding to the term= y; — y;
in the octagonal DBMs1, and m’;%b, respectively. This is the case, since the matrix
sequencgm’y,, .. }¢>o is ultimately periodici.e.qnt, .., = mk, + (Ao, forall £ > 0.

ExampleGiven an octagonal relatioR = z+y <5Az' =2+2 Ay’ =y—1, we compute

Rl(77) =c+y<—l+5 N ' —x=2+2 N y—y' =0+1

c =

ANo+y <=20+4 N 2/ +y<~L+T7 A 2'+9y' <6

We haveh=c=1, andR*) = R{"). O

Second, we notice that the greatest fixpoint of a monofduiuction can be com-
puted by an infinite subsequence of the classical decreddeene iteration. Con-
cretely, we have thatrs(R) = (oo prei(Z") = ysoprels “(Z"). The latter
set can now be defined using the closed form of the subseq(éhce., wrs(R) =
ve>03x' . Ry

The proof of periodicity from [5] relies on the fact that th&M encoding of the
closed form ofR is tightly closed for any unfolding length, see (5). Hence, the ex-
istential quantifiedx’ can be eliminated by simply deleting all atomic proposision
involving primed variables from (6). Further, we obtain:

wrs(R) =VE 20 A\ cpp t < aul +du = \yepy v < inf {aul +dy [ € >0}

where, for a sef C Z, inf S denotes the minimal element 8f if one exists, oo,
otherwise. We have

—oo ifay, <0

inf {aul +d, | £ >0} = { d, otherwise

Hencewrs(R) is the empty set, i, < 0 for someu € U(x). Otherwise, we obtain
wrs(R) = \,epp t < du. However, this is exactly the set defined Ry(T) =

Ix . RU(x,x') = Ix . RIEOC) by (6). The following complexity upper bound is a
consequence of this fact.

Lemma 4. Computing the weakest recurrent set of an octagonal ratatEn be done
in time O(b - n?), whereb is its prefix andn is the number of variables. Alternatively,
this problem ha)(n? - 5™) worst-case time complexity.

Example (continued) Following the decision procedure above, waiobt
wrs(R) =V¢ > 03x". Rl(f(): =V0>0.24+y<—L+5

Hencewrs(R) = () i.e., R is well-founded. O

4.1 Onthe Existence of Linear Ranking Functions

A ranking function for a given relatio? constitutes a proof of the fact that is
well-founded. We distinguish here two casesRlfis not x-consistent, then the well-
foundedness oR is witnessed simply by an integer constant 0 such thatk* = (.

" In our casepret! (Z") D pref2 (Z™), for ky < ko.



Otherwise, ifR is x-consistent, we need a better argument for well-foundesinas

this section we show that, for amyconsistent well-founded octagonal relatinthe
(strenghtened) relation defined ®7°(T) A R is well-founded and has a linear rank-
ing function, even wheii alone does not have one. For space reasons, we do not give
here all the details of the construction of such a functioowklver, the existence proof
suffices, as one can usempleteranking function extraction tools (such as e.g. Rank-
Finder [18]) in order to find them.

Definition 10. Given arelationkR C Z" x 7', alinear ranking functiorior R is a term
f(x) =>"" | a;z; such that, for all states, s’ : x — Z:

1. fisdecreasingR(s,s’) = f(s) > f(s')
2. fisboundedR(s,s’) = (f(s) > h A f(s') > h), for someh € Z.

The main result of this section is the following:

Theorem 1. Let R C Z™ x Z"™ be ax-consistent and well-founded octagonal relation,
with prefixb > 0. Then, the relation defined iy —°(T) A R is well founded and has a
linear ranking function.

The first part of the theorem is proved by the following lemma:

Lemma 5. LetR C Z" x Z™ be a relation, andn > 0 be an integer. Thewrs(R) = 0
if and only ifwrs(R,,) = 0, whereR,, is the relation defined bR~ (T) A R.

It remains to prove that the witness relation defined’by’(T) A R has a linear
ranking function, provided that it is well-founded. The pfds organized as follows.
First we show that well-foundedness of an octagonal refaiiois equivalent to the
well-foundedness of its difference bounds representakiofbemma 6). Second, we
use a result from [7], that the constraints in the sequendemated difference bounds

relations{ﬁl}izo can be represented by a finite-state weighted automatdaddake
zigzag automatoin the sequel. If the relation defined & is well-founded, then this
weighted automaton must have a cycle of negative weight.stiaeture of this cycle,
representing several of the constraint§dnis used to show the existence of the linear
ranking function for the witness relatiGd—*(T) A R.

Lemma 6. LetR C Z" x Z" be an octagonal relation anil;, be the difference bounds
relation defined byR. ThenR is well-founded if and only iRy, is well-founded.

The above lemma reduces the problem of showing existenceasfkéng function for
an octagonal relatioR (x, x’) to showing existence of a ranking function for its differ-
ence bounds encodi@(y,y’). Assume thatf (y) is a ranking function fofR. Then
flzi/y2i—1, —xi/y23)"_; is a linear ranking function foR. Hence, in the rest of this
section, we consider without loss of generality tias a difference bounds relation.

Zigzag Automata For the later developments, we need to introducezieag au-
tomatoncorresponding to a difference bounds relatidrintuitivelly, for any: > 0, the
relation R* can be represented by a constraint graph which is-tiraes repetition of
the constraint graph k. The constraints induced by’ can be represented as shortest
paths in this graph, and can be recognized (in the classitaihsata-theoretic sense)



by a weighted automatad . The structure of this automaton is needed to show the
existence of a linear ranking function.

For a difference bounds relatia®, we define the directed gragh;, whose set of
vertices is the set U x’, and in which there is an edge framto z; labeleda;; if and
only if the atomic propositior; — z; < a,; occurs inR. Clearly,mp is the incidence
matrix of Gr. We define the concatenation@f, with itself as the disjoint union of two
copies ofGg, in which thex vertices of the second copy overlap with tklevertices
of the first copy. TherR™ corresponds to the graiglj;, obtained by concatenating the
graph ofR to itselfm > 0 times.

ExampleLet R = z3—ab < 0Az1—ah < OAzj—x4 < O0Azh—29 < 0. Figure 1
(b) showsG s, theg-times unfolding of the grapfir representing. a
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Fig. 1. (a) Unfolding ofGr. Herex® = {:c(i) | z € x}. (b) A run of the zigzag automaton over
apathinGgs.

Given a difference bounds relatid?) thezigzag automatos  recognizes all paths
from z; to x; in G. Intuitively, a pathr betweenr; andz; in G%, is represented by
a wordw of lengthk, as follows: thew; symbol representsimultaneouslall edges of
7 that involve only nodes fromx) U x(+1) forall 0 < I < k. The alphabet of the
zigzag automaton consists of subgraphg gf where the weight of a subgraph is the
sum of the weights on its edges. The set of control stateseofitizag automatonds
{l,r,lr,rl, L}". Clearly, the size of the zigzag automaton is at n3¢stor a complete
definition, the interested reader may consult [7].

Example Consider the relatiolR = zo—2] < -1 Azg—af < 0Nz —af <
0Az)—zy < O0Aah—z2 < 0. An example of a run ofdr recognizing a path of
constraints irg% is given in Figure 1 (b). The word acceptedbys a subgraph of%

shown in Figure 1 (a). The cycle: ¢; AN q2 AN qs Gs, q1 is taken several times

in this run. The weights of the symbols on the runafé,) = w(G2) = w(Gy) =0

andw(Gs) = —1. O
The following lemma proves the existence of a negative waigble in the zigzag

automata corresponding to well-founded difference bouatigion. The intuition be-
hind this fact is that the rates of the DBM sequefiger: };~o are weights of optimal

8 The intuition behind the named, r, I, 7l, 1} of components of control states is that they
capture the direction of incoming and outgoing eddéder(left, » for right).



ratio (weight per length) cycles in the zigzag automatorcakding to the previous sec-
tion, if R is well-founded, there exists a negative rate{forz. };~0, which implies the
existence of a negative cycle in the zigzag automaton.

Lemma 7. If Ris ax-consistent well-founded difference bounds relation efigpb >
0, and A is its corresponding zigzag automaton, then there existgcteer from a
stateq to itself, such thatv(m) < 0 and there exists paths, from an initial state toy,
and fromg to a final state, such thatr;| + || = b.

Next we prove the existence of a linear decreasing funchiased on the existence
of a negative weight cycle in the zigzag automaton.

Lemma 8. If R is ax*-consistent well-founded difference bounds relation efigpb >
0, then there exists a linear functigi{x) such that, for all states, s’ : x — Z we have
R7Y(T)(s) AR(s,s") = f(s) > f(s").

Example We illustrate the construction of linear decreasing fumctbn the relation
R=xo—a) < -1 ANa3—ahb <O A z1—25<0Aaj—24 <0 A zf—22<0
from the previous example. Summing the edges,imne obtainz, — 2] + x1 — 5 +
T3 — Th + ) — x4 + Ty — 14 + ) — 14 < —1, which simplifies tary + x2 + x5 —
3xy — (2} + xh + x5 — 3x4) < —1. Letting f(x) = — (21 + x2 + z3 — 324), We have
that f(x) > f(x'). O
Last, we prove that the functighof Lemma 8 is bounded from below, concluding
that it is indeed a ranking function. Since each run in theadggautomaton recognizes
a path from some; to somez;, a run that repeats a cycle can be decomposed into a
prefix, the cycle itself and a suffix. The path recognized mayerse the cycle several
times, however each exit point from the cycle must match sement entry point.
These paths from the exit to the corresponding entries gigethe necessary lower
bound. In fact, these paths appear already on gréph$or i > b, whereb is the prefix
of R (Lemma 9). Hence the need for a strenghtened witAesq T) A R, asR alone
is not enough for proving boundednessfof

Lemma 9. Let R be ax-consistent octagonal relation with prefixand periode. Then,
foranyl <i,j < 2nandk > 1, we havemp —x(1y)ij < 00 = (Mg-b(T))ij < 0.

Lemma 10. If R is a x-consistent well-founded difference bounds relation efigb,
and f (x) is the linear decreasing function from Lemma 8, there esistimitegerh such
that, for all statess, s’ : x — Z, (R®(T)(s) A R(s,s")) = (f(s) > h A f(s') > h).

Example (continued) We will continue the previous example and iliate the bound-
edness off = —(z1 + a2 + 23 — 3z4) (See Figure 1b). Since there is a path fmg??
to xff) in G3G4 (and hence ig%), thenR? — (x5 — 24 < —1), and by Lemma 9, we
obtainR? — (25 — x4 < —1). Similarly, since there is a palskﬁ‘r)) ~ xff’) in GoG3Gy
(and hence irG3), we obtainR® — (z3 — 24 < —1). Similarly, since there is a path
x§4) ~ xff) in G1G2G3G4 (and hence i), we obtainR® — (w3 — x4 < —1).
Summing up these inequalities, we obtain tfiat) = —(x; + 22 + 23 — 324) > 3
and, thusR*(T) AR — (f > 3).

As an experiment, we have tried thesiR< FINDER [18] tool (complete for linear
ranking functions), which failed to discover a ranking ftiao on this example. This
comes with no surprise, since no linear decreasing funtkiahis bounded after the
first iteration exists. a



5 Linear Affine Relations

Letx = (z1,...,x,) " be acolumn vector of variables ranging over integers. Adline
affine relation is a relation of the forR (x,x’) = Cx > d A x' = Ax + b, where
A ez, C e ZP*™ are matrices, and € Z", d € ZP are column vectors of integer
constants. Notice that we consider linear affine relatiortsetdeterministic, unlike the
difference bounds and octagonal relations considereceipitivious. In the following,
it is convenient to work with the equivalent homogeneoustor

R(X,X/) =Cpxp >0 A X', = Apxp

w(asean-(z) "

Tn+1
The closed form of a linear affine relation is defined by théofeing formula:
R*) (x,x') = Elxn+1,x;1+l.x’h = Aixh/\VO <Ii< k.C’Aéx >0Azp1=1(8)

Intuitively, the first conjunct defines the (unique) outcomhéerating the relatiox’ =
Ax + b for k steps, while the second (universally quantified) conjunstiees that the
condition (Cx > d) has been always satisfied all along the way. The definitichef
weakest recursive set of a linear affine relation is (afterelimination of the trailing
existential quantifier):

wrs(R)(x) = Iz, 1V > 0. CLAFX >0 A zpp1 =1 9)

The main difficulty with the form (9) comes from the fact thla¢ powers of a matrix
cannot usually be defined in a known decidable theory of metic. In the following,
we discuss the case of having the finite monoid property [2, 25], which leads to
wrs(R) being Presburger definable. Further, we relax the finite ricbcmndition and
describe a method for generating sufficient terminatiordd@ns, i.e. setsS € Z™
such thatS Nwrs(R) = 0.

Some basic notions of linear algebra are needed in the foitpif A € Z™"*"™ is
a square matrix, ang € Z" is a column vector of integer constants, then any com-
plex numberA € C such thatAv = Av, for some complex vectorC", is called an
eigenvaluef A. The vectow in this case is called agigenvectoof A. It is known that
the eigenvalues oft are the roots of theharacteristic polynomiatle{ A — \I,,) = 0,
which is an effectively computable univariate polynomrahi A complex number is
said to be aoot of the unityif »? = 1 for some integed > 0.

In the previous work of Weber and Seidl [25], Boigelot [2]ddfinkel and Leroux
[12], a restriction of linear affine relations has been idtreed, with the goal of defining
the closed form of relations in Presburger arithmetic. Arrad € Z"*" is said to have
thefinite monoid propertyf and only if its set of power§ A* | i > 0} is finite. A linear
affine relation has the finite monoid property if and only ié thnatrix A defining the
update has the finite monoid property.

Lemma 11 ([12,2]).A matrix A € Z™*™ has the finite monoid property iff:

1. all eigenvalues oft are either zero or roots of the unity, and
2. all non-zero eigenvalues are of multiplicity one.

Both conditions are decidable.



In the following, we drop the second requirement of Lemmaaht] consider only
linear relations, such that all non-zero eigenvalueg @re roots of the unity. In this
case,R*) cannot be defined in Presburger arithmetic any longer, theisemounce
definingwrs(R) precisely, and content ourselves with the discovergudficient con-
ditions for termination Basically given a linear affine relatioR, we aim at finding
a disjunctiong(x) of linear constraints o, such thatp A wrs(R) is inconsistent,
without explicitly computingurs(R).

Lemma 12. Given a square matrid € Z"*", whose non-zero eigenvalues are all
roots of the unity. ThefA™); ; € Q[m], forall1 < i, j < n, are effectively computable
polynomials with rational coefficients.

We turn now back to the problem of defining s(R) for linear affine relations?
of the form (9). First notice that, if all non-zero eigenvadof A are roots of the unity,
then the same holds fat;, (7). By Lemma 12, one can find rational polynomigls (k)
defining(Af), ;, forall 1 < i, j < n. The condition (9) resumes to a conjunction of the
form:

wrs(R)(x) = /"\ Vk>0.P(k,x)>0 (10)
i=1

where eactP; = a; 4(x) - k% + ... + a;1(x) - k + ai o(x) is a polynomial ink whose
coefficients are the linear combinations; € Q[x]. We are looking after a sufficient
condition for termination, which is, in this case, any sevaluations ofx that would
invalidate (10). The following proposition gives suffictenvalidating clauses for each
conjunct above. By taking the disjunction of all these cémusie obtain a sufficient
termination condition foiR.

Lemma 13. Given a polynomiaP (k,x) = aq(x)-k?+ ...+ a1(x) -k +ao(x), there
existsn > 0 such thatP(n,x) < 0 if, for somei = 0, 1,...,d, we haver;_;(x) < 0
andag(x) = ag-1(x) = ... = ag—i+1(x) = 0.

Example Consider the following program [10], and its linear transfation matrixA.

while (z > 0) 110 1k kG=1)
¥=x+y A=[011 P 2
Y =y+z 001 AT=(oL k
00 1

The characteristic polynomial ofl is de{A — A\3) = (1 — \)3, hence the only
eigenvalue isl, with multiplicity 3. Then we computed” (see above), and’ =
c+k-y+ @z gives the value of afterk iterations of the loop. Hence the (pre-
cise) non-termination conditionisk > 0. £ - k* + (y — %) - k 4+« > 0 The sufficient
condition for terminationisfz < 0) V(z =0Ay < 0)V(z=0Ay=0Axz < 0) O
We can generalize this method further to the case wheregdhealues ofA are
of the formq - r, with ¢ € R andr € C being a root of the unity. The main reason
for not using this condition from the beginning is that we, aoethis point, unaware of
its decidability status. With this condition instead, itsigfficient to consider only the
eigenvalues with the maximal absolute value, and the pahyals obtained as sums of
the polynomial coefficients of these eigenvalues (see Goyo? in Appendix 5). The
result of Lemma 12 and the sufficient condition of Lemma 13ycawer when using

these polynomials instead.

6 Experimental Evaluation

We have validated the methods described in this paper byratically verifying ter-

mination of all the octagonal running examples, and of sehiateger programs syn-
thesized from (i) programs with lists [3] and (ii)) VHDL mode]21]. We have first
computed automatically their precise transition invarifirby adapting the method for
reachability analysis for counter automata, described®dlndnd implemented in the



FLATA tool [13]. Then we automatically proved thatis contained in a disjunction of
octagonal relations, which are found to be well-foundedhgygrocedure described in
Section 4.

We first verified termination of theSTCOUNTER and LISTREVERSAL programs,
which were obtained using a translation scheme from [3]ctvlgenerates an inte-
ger program from a program manipulating dynamically altedasingle-selector linked
lists. Using the same technique, we also verified tb& €TERand SYNLIFO programs,
obtained by translating VHDL designs of hardware countdrsymchronous LIFO [21].
These models have infinite runs for any input values, whidb tse expected, as they
encode the behavior of synchronous reactive circuits.

Second, we compared (Table 1) our method for terminatioimefl affine loops
with the examples given in [10], and found the same termamgtreconditions as they
do, with one exception, in which we can prove universal teation in integer input
values (row 3 of Table 1). The last example from [10] is thellEi@gan Greatest Com-
mon Divisor algorithm, for which we infer automatically tleerrect termination pre-
conditions using a disjunctively well-founded octagoniastaaction of the transition
invariant.

PROGRAM COOK ET. AL [10] LINEAR AFFINE LOOPS
if(var = 0) a0 w0 toar®) —2k 1par©
while (lvar < 2°%) lvar > 0V lvar < 0V lvar > 2 30
Ivar = lvar <« 1; —(lvar=0)Vivar>2
while (x < N)
if (*) { 2(8) >2F . (£(0) 4y (0) £ 1) _j_y(©) _1
X=2*x+y N >0 (k) < (0) 4
y=y+1; T > Ve+y=> y <y 4+
} else z>NVaz+y>0
X ++
while (x > N) ) =(—2)*.(£(0) _10)4 10
X = -2*x + 10; z>5Ve+y=0 x#l—; true
/1@ requiresn > 200
x=0;
while (1) 2(8) =3 (0) 4 .y ()
if (x < n){ y>0 —_—
y>0
X=X+Y;
if (x > 200) break;}

Table 1. Termination preconditions for several program fragmeramf[10]. The even rows of
column 3 represent the closed form of the transition refatichile the rows give the termination
preconditions.

7 Conclusions

We have presented several methods for deciding conditiemalination of several
classes of program loops manipulating integer variablé& @iniversal termination
problem has been found to be decidable for octagonal ratad linear affine loops
with the finite monoid property. In other cases of linear &finops, we give sufficient
termination conditions. We have implemented our methothénRLATA tool [13] and
performed a number of preliminary experiments.
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A Proofs from Section 2

Proof of Proposition 1For each we haveS; C prer(S;) C preR(Uj:O,Lm S;). The

lastinclusion is by the monotonicity pfcr. Hencel J,_, ,  S; € prer(U =1, 5))-
o

Proof of Lemma 1By the Knaster-Tarski Fixpoint Theorem, gfper) = U{S | S C
prer(S)} = wrs(R). O

Proof of Lemma 2'wrs(R) C wnt(R)” Let sg € wrs(R) be a state. Then there exists
s1 € wrs(R) such thatR (s, s1). Applying this argument infinitely many times, one
can construct an infinite sequengg s1, s, . .. such thatR(s;, s;+1), for all i > 0.
Hencesy € wnt(R).

“wnt(R) C wrs(R)" Let so € wnt(R). Then there exists an infinite sequence
S0, 81, S2, - . . such thatR (s;, s;11) forall i > 0. Then, for alli > 0, sg € pre%(s;) C
pre’p (D™), by monotonicity ofprer. Hencesg € (,~, preR(DP") = ofp(prer). By
Lemma 1,59 € wrs(R). - O

B Proofs from Section 3

Proof of Lemma 3The algorithm of Gawlitza and Seidl [14] runs in time at most
O(n-|8]), wheren is the number of variables in the system, &ffldenotes the size of
the system i.e., the sum of the expression sizes of the hight} sides. In our case, the
min-terms in the first system (2) are of size at m@st:), while in the second system
(3), we have min-terms of size at mas(2"). Since the number of variables in both
systems i%:2, the result follows. a

C Proofs from Section 4

Proof of Lemma 4Let b andc be the prefix and period aR, respectively. IfAy has
at least one negative entry, thems(R) = (). Otherwise,wrs(R) = R~*(T), and
we can compute it by composing with itself b times. Each composition requires a
quantifier elimination which takes at mo®{(n?). Since there are exactlyquantifier
eliminations, we have the result. For the second pa¥tc is the length of a path in the
zigzag automatopl z, with no repeated states. Herfce ¢ is bounded by the number
of states in the zigzag automatgty, which is at most™. Also, computingd, of R
requires iterating? up tob + c. a

Proof of Lemma 5“=-" By the fact thatR < R~ (T) A R and the monotonicity
of wrs. “<" We prove the dual. Assume thairs(R) # 0 i.e., there exists an infinite
sequences, ss, . .. such thatR(s;, s;+1), for all ¢ > 0. Then alls; belong to the set
defined byR~™(T), hencesy, s2, . .. is an infinite sequence for the relation defined by
R~™(T) AR as well. O

Proposition 3. Let{a, }22, and{b,}5°, be sequences. Then the following hold:

— if inf{| % |}22; = —oo theninf{a, }72 ) = —o0



— if inf{a, + np}°2, = —oc theninf{a, }5°, = —oco or inf{b,}52 ; = —o0
— if inf{min(ay, b,)}5, = —oo theninf{a,}>2, = —oo or inf{b,, }32, = —o0

Proof. By contraposition. Suppose thaf S; # —oo andinf Sy # —oo. Then,3k; >
1.Vl > k. ap, = ay, and3k2 >1.Viy > ks . bk2 = bl2. Letk = max{kl,kg}.
Then cIearIy,Vl >k. L%“J = L%J ANag+br = a;+b /\min{ak, bk} = min{al, bl}
Henceinf S; # —oo, inf S, # —oo, andinf S,,, # —oo. a

Proof of Lemma 6Let b andc be the prefix and period ak. In Section 4 we proved
that ax-consistent octagoi® is well-founded if and only if the closed form of the
sequence[Rb“é}gZO contains an atomic proposition of the form < a.¢ + d.,

whereu € U(x) is an octagonal term, angl, < 0. We will show that the same

holds if we use the closed form of the sequen@@b“g}gzo instead. Notice that for
anyk > 0, the difference bounds encoding Bf *(T) is the projection ofnk,, on

the entries corresponding to unprimed variables (m%k)iy. By the monotonicity

of preg, the sequenceg(m’,,. ),y }r>0 iS decreasing. Since the elements of the se-
guence are defined by (5), we can apply Proposition 3 and wbseat if for some

1< i,j < 2n, inf{(m%k)i7j}k20 = —0Q, then a'Sdnf{(m%k)iz,jz}kzo = —oo for
some(iz, j2) € {(4,7), (i,), (j,j)}. HenceR is well-founded iff there exists a nega-
tive coefficienta,, in the closed form o{ﬁbﬂl}gzo iff Rgpis well founded. ad

Definition 11. The sequencég;}7° , is ultimately geometric if there exi$t € Ny,
c €N, and\ € Q such that

Vk >0,Vs € {0,...,c—1} - Obtst (k1) = A+ Gotstke

Definition 12. The sequencgy; }52, is ultimately periodic if there exidt € Ny, ¢ €
N, and)\g, ..., Ac_1 € Q4 such that

Vk > 0,¥s € {0,...,c=1} . Ghpoq(kr1)e = As + Gbtstke

For the sake of completeness, we present key results of [20]z = (V. E,v :
E — 7Z) be aweighted digraph ardd the associated incidence matrix. Ig&f”"), V/ C
V be a subgraph induced B¥. We say that (V') is strongly connected if for any two
differentverticesvy, v, € V' ;v1 # vs there exists a path fromy to vo. G(V') is a
strongly connected component @fif there is noV’ ¢ V" C V such thaG(V") is
strongly connected.

Given a pathr : vg < v 2 vy... v, 1 — vy, the length ofr is x| = p, the

weight ofm isw(mw) = >°%_; ¢;, average weight of is Um) A cycle is a path where
vo = vp. A cycle of a strongly connected graghis critical if it has maximum average
weight among all cycles af.

A cycle of a strongly connected graghis critical if it has minimum average weight

and cyclicity ofG is the greatest common divisor of lengths of critical cydfe&'.

Theorem 2. (Theorem 2.4 in [20]) Le& be a strongly connected digraphits cyclic-
ity and A the minimum average weight of critical cyclesGh Then,M is ultimately
geometric with period and rate/A, whereA; ; = cA for all 4, j.



Theorem 3. (Corollary of Theorem 3.3 in [20]) Lef be a digraph and lefcy, . . ., ¢ }
and {\1,..., A\ } be cyclicities and minimum average weights of critical egcbf
strongly connected components @f Then, M is ultimately periodic with period
¢ = lem(cy,...,cm) and rates{Ag, ..., A._;}, where(A});; € {cAi,...,chn}

forall 0 < k < candforalli, j.

Corollary 1. For all v1,v2 € V s.t. (Ao)w, v, # o0 there exists a critical cycle :
v ~ v of lengthp and pathsr; : v1 ~ vandny : v ~ va S.t.|m;| + |7f| = bS.L.

Wk > 0. (MEPE),, 0, = w(m) + kw(r) +w(ry)

Notice that zigzag automaton can be viewed as a digraph ar@figheorems 2 and
3 apply to them. This means that difference bounds relatiomsltimately periodic. Let
b, c, Ay, ..., A._1 be the prefix, period, and ratesBf Thenb+ 2, ¢, Ag, ..., A._1 are
the prefix, period, and rates @l r, the incidence matrix of a zigzag automatdr .
Moreover, the closed form dfR?+‘},> is

(l) = /\ I’L_I] -~ j,Fi)jg—i_ (MRb)ZJ (11)
i#j
or, equivalently
l) = /\ zi—x; < (o)1, ;.m0 + (MR)1, p, (12)
i#£]

Proof of Lemma 7By the decision procedure in Section 4,7f is x-consistent and
well-founded, then the closed formrl) of {Rb“é}bo contains an atomic formula
ri—x; < al+dwherea,d € Z, a < 0. By the Equation (11)¢ = (Ao)s, ;.7 ;- By
Theorems 2 and E(,AO)IW,FW is ac-multiple of the average weight of some critical
cycle in some SCC aflz . One of these cycles is of lengthp from Corollary 1 (since

b + 2 in this lemma corresponds #in Corollary 1, due to special initial and final
transitions inAr). a < 0 implies (Ao)z, ;.7 ; < 0, which in turn impliesw(r) =
2(Ao)r1, ,;,r,;, < 0. Other properties stated in this lemma follow from Coragllarfor
special casé = 1. a

Proof of Lemma 8By Lemma 7, there is a negative critical cyetef lengthp in the
zigzag automatony; G, g2 .. qp N q. LetG; = (xUx/',Ej) foralll < j <p.

Consider the following sum of all constraints representeddiges appearing in the
zigzag cycle (note that the sum of weights of these edged=q(a)):

> ( > (wi-H+ X (zé—wj)) < w(m) (13)
1<5<p (z,—)z;)EE] (z}—rxj)EE;
The left-hand side of (13) can be written equivalently as
S (wma)+ ¥ (mta)+ X (wite)+ ¥ (~oita)) | (14)

1<5<p | 1<i<n, 1<i<n, 1<i<n, 1<i<n,
(g5)i=r (g5)i=l (g5)i=lr (g5)i=rl



and thus, after simplificationsz; +z; = 0, —x+x} = 0), (13) can be written equiv-
alently as

> @i-a)+ Y (i) | <w(m) (15)
1<5<p | 1<i<n, 1<i<n,
(g5)i=r (g5)i=l
Let f denote the negated sum of all unprimed terms in (14) drdenote the negated
sum of all primed terms in (14). Then, cleafly= — f[x’/x]. Thus, (15) can be written
as

f = <w(m) (16)

Notice that sincev(w) < 0, we establish that’ — f < 0 hencef is strictly decreasing.
Since, for all states, s’ we haveR(s,s’) — f(s) > f'(s), we have thaR~°(T)(s) A
R(s,s") = f(s) > f'(s). O

Proof of Lemma 9(Casel < k < b) By monotonicity ofprer, (mg-x(1))i; >
(mR—b(T))iJ‘. Thus if (mek(T))i_’j 75 oo, then C|ear|y(m7sz(-|—))id < Q.

(Casek > b) Letp = [£=2], andk’ = b + pe. Note thatR*¥ = Rffg[p/é]. Since
k' > k, by the same argument as for case<( k¥ < b), (mR,k,(T))Z—J— < 0. Since

Rffg is closedy; — y; < al + d, wherea, d € Z, is one of its conjuncts. Sindél(fz is
closed,(mg-»(Ty)i,j = d # oo. O

Proof of Lemma 1Q.et f be a linear decreasing function from Lemma 8. ketg; CER

G . .
¢ ...q, — ¢ be the negative cycle used to constrficendr, be the suffix from
Lemma 8. By construction of the zigzag automaton, for ary j < p,

il (g5)i =il = il (g5)i = U]

It follows from (15) that eacl{g;); = r contributes tof with a term—z; and that
each(¢;); = I contributes tof with a term-+xz; and that eaclg;); ¢ {r,1} doesn't
contribute at all. We now demonstrate that for each j < p, there exists a bijective
matchingB; : {i | (g;);i = r} — {i| (g;); = } such that forany < i; < n s.t.
B;(i1) = is, the differencer;, — z;, is bounded iR ~°(T) A R, formally R=°(T) A
R — (xi, —xiy > h) for someh € Z.

Letj € {1,...,p}. By construction of the zigzag automaton, the concatenated
graphG;Gj41 ... Gpmy connects eaclyy;);, s.t.(¢;):;, = r with a unique(g;);, s.t.
(gj)i, = L. This induces the required bijectigfy. SinceG;G,11...Gpmy is a sub-
graph ofgh '™, it follows that there is a patk(” ~ x\”) in G&*/™!  in other words,
RpHI7s L 5 2 — x5, < hfor someh € Z. By Lemma 9,R? — z;, — x;, < K’ for
someh’ € Z too.

Clearly,R"°(T) AR — x;, — x;, < h' too. Sincer;, — x;, < b’ if and only if
x;, — x4, > —h', we obtain the required property.

Now sincef = >, .., Zlgz‘l,;zgn(xh — x;, ) and since we proved that each of

- B (i1)=i2
the differences;, — z;, in the sum is bounded iR ~*(T) A R, it follows that f is
bounded iR ~*(T) A R too, formallyR~°(T) AR — (f > h) forsomeh € Z. O



D Proofs from Section 5

Definition 13. A functionf : N — C is said to be &C-finite recurrencé and only if:
fm+d)=as_1fim+d—-1)+...4arf(m+1)+aof(n), Ym >0

for somed € N andag,ay,...,aq-1 € C, with ag_; # 0. The polynomiak? —
ag_12%" 1 — ... a1z — ag is called thecharacteristic polynomiaf f.

A C-finite recurrence always admits a closed form.

Theorem 4 ([11]).The closed form of a C-finite recurrence is:

f(m) =pr(m)AT" + ...+ ps(m)AT"

where\s,..., As € C are non-zero distinct roots of the characteristic polynahaf
f,andpy,...,ps € C[m] are polynomials of degree less than the multiplicities of
A1, ..., Ag, FESPECtively.

Next, we define the closed form for the sequence of powers of

Corollary 2. Given a square matrid € Z"*", we have:
(A™)ij = prij (M)A + .. 4 Poyi g (M)A

where, ..., A; € C are non-zero distinct eigenvalues 4f andp; ; ;,...,ps; €
C[m] are polynomials of degree less than the multiplicitieagf. . ., A, respectively.

Proof. Ifdet(A—x1,,) = 2% —aq_12%"'—...—a;x—ay is the characteristic polynomial
of A, then we have

Ad—ad_lAd_l —...—alA—a(J:O
by the Cayley-Hamilton Theorem. If we defiifg; (m) = (4™), ;, then we have

At = g, AL 4 4 g AL 4 g A™
fijm+d) =aq-1fij(m+d—1)+...+afij(m+1)+aofi;(m)

By Theorem 4, we have that

(A™)ij = prij(m)AT + ..+ psij(M)AS

for some polynomialgs ; ;.. .., ps,i,; € C[m] of degrees less than the multiplicities of
A1, ..., Ag, FESPECtively. a
Proof of Lemma 12Assume from now on that all non-zero eigenvalugs. . ., As

of A are such thaﬁ\fl = ... = X\ = 1, for some integerd;,...,ds > 0. The
method given in [2] for testing the finite monoid condition f& gives also bounds for
di,...,ds. Thenwe havelr = ...\l =1, whereL = Icm(dy, .. .,ds). Asdy, . .., ds

are effectively bounded, so . By Corollary 2, we have that, ifn is a multiple of
L, then(A™); ; = pi,;j(m) for some effectively computable polynomjal; € C[m]
i.e., form multiple of L, A™ is polynomially definable. But singe ;(m) assumes real



values in an infinity of pointsn = kL, k > 0, the it must be that its coefficients are
all real numbers, i.ep; ; € R[m]. Moreover, these coefficients are the solutions of the
integer system:

pij(L) = (A",
pii((d+1)L) = (AU+HDL),
Clearly, sinced € Z"*", AP € Z"*", for anyp > 0. Hencep; ; € Q[m]. O

Proof of Lemma 13Assuming the conditiom;—;(x) < 0 andag(x) = ag_1(x) =
.= ag_is1(x) = 0, for some0 < i < d, we haveP(k,x) = ag_;(x) - k¥ 4+ ... +
a1(x) - k + ap(x). Since the dominant coefficienf,—;(x) is negative, the polynomial
will assume only negative values, from some point on. a



