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Abstract. This paper addresses the problem of conditional termination, which
is that of defining the set of initial configurations from which a given program
terminates. First we define the dual set, of initial configurations, from which a
non-terminating execution exists, as the greatest fixpointof the pre-image of the
transition relation. This definition enables the representation of this set, whenever
the closed form of the relation of the loop is definable in a logic that has quanti-
fier elimination. This entails the decidability of the termination problem for such
loops. Second, we present effective ways to compute the weakest precondition
for non-termination for difference bounds and octagonal (non-deterministic) re-
lations, by avoiding complex quantifier eliminations. We also investigate the ex-
istence of linear ranking functions for such loops. Finally, we study the class of
linear affine relations and give a method of under-approximating the termination
precondition for a non-trivial subclass of affine relations. We have performed pre-
liminary experiments on transition systems modeling real-life systems, and have
obtained encouraging results.

1 Introduction

The termination problem asks whether every computation of agiven program ends in
a halting state. The universal termination asks whether a given program stops for ev-
ery possible input configuration. Both problems are among the first ever to be shown
undecidable, by A. Turing [24]. In many cases however, programs will terminate when
started in certain configurations, and may3 run forever, when started in other configu-
rations. The problem of determining the set of configurations from which a program
terminates on all paths is calledconditional termination.

In program analysis, the presence of non-terminating runs has been traditionally
considered faulty. However, more recently, with the adventof reactive systems, acci-
dental termination can be an equally serious error. For instance, when designing a web
server, a developer would like to make sure that the main program loop will not exit

⋆ This work was supported by the French national project ANR-09-SEGI-016 VERIDYC,
by the Czech Science Foundation (projects P103/10/0306 and102/09/H042), the Czech
Ministry of Education (projects COST OC10009 and MSM 0021630528), the Bar-
rande project MEB021023, and the EU/Czech IT4Innovations Centre of Excellence
CZ.1.05/1.1.00/02.0070.

3 If the program is non-deterministic, the existence of a single infinite run, among other finite
runs, suffices to consider an initial configuration non-terminating.



unless a stopping request has been issued. These facts lead us to considering thecon-
ditional non-terminationproblem, which is determining the set of initial configurations
which guarantee that the program will not exit.

In this paper we focus on programs that handle integer variables, performing linear
arithmetic tests and (possibly non-deterministic) updates. A first observation is that the
set of configurations guaranteeing non-termination is the greatest fixpoint of the pre-
image of the program’s transition relation4 R. This set, called theweakest recurrent set,
and denotedwrs(R) in our paper, can be defined in first-order arithmetic, provided that
the closed form of the infinite sequence of relations{Ri}i≥0, obtained by composing
the transition relation with itself0, 1, 2, . . . times, can also be defined using first-order
arithmetic. Moreover, if the fragment of arithmetic we use has quantifier elimination,
the weakest recurrent set can be expressed in a quantifier-free decidable fragment of

arithmetic. This also means that the problemwrs(R)
?
= ∅ is decidable, yielding univer-

sal termination decidability proofs for free.

Contributions of this paper The main novelty in this paper is of rather theoretical na-
ture: we show that the non-termination preconditions for integer transition relations de-
fined as eitheroctagonsor linear affine loops with finite monoid propertyare definable
in quantifier-free Presburger arithmetic. Thus, the universal termination problem for
such program loops is decidable. However, since quantifier elimination in Presburger
arithmetic is a complex procedure, we have developed alternative ways of deriving the
preconditions for non-termination, and in particular:

– for difference bounds, we reduce the problem of finding the weakest recurrent set
to finding the maximal solution of a system of inequalities inthe complete lattice
of integers extended with±∞, where the right-hand sides use addition andmin
operators. Efficient algorithms for finding such maximal solutions are based on
policy iteration [14]. This encoding gives us a worst-case time complexity ofO(n2 ·
2n) in the number of variablesn, for the computation of the weakest recurrent set
for difference bounds relations.

– for octagonal relations(and implicitly for difference bounds relations, which area
subclass), we use a result from [5], namely that the sequence{Ri}i≥0 is, in some
sense, periodic. We give here a simple quantifier elimination method, targeted for
the class of formulae defining weakest recursive sets. The algorithm suggested here
runs in worst-case time complexity ofO(n3 · 5n) in the number of variablesn.
Moreover, we investigate the existence of linear ranking functions, and prove that,
for each well-founded octagonal relations, there exists aneffectively computable
witness relation i.e., a well-founded relation that has a linear ranking function.

– for linear affine relations, weakest recurrent sets can be defined in Presburger arith-
metic if we consider several restrictions concerning the transformation matrix. If
the matrixA definingR has eigenvalues which are either zeros or roots of unity,
all non-zero eigenvalues being of multiplicity one (these conditions are equivalent
to the finite monoid property of [2, 12]), thenwrs(R) is Presburger definable. Oth-
erwise, if all non-zero eigenvalues ofA are roots of unity, of multiplicities greater
or equal to one,wrs(R) can be expressed using polynomial terms. In this case, we

4 This definition is the dual of thereachability set, needed for checking safety properties: the
reachability set is the least fixpoint of the post-image of the transition relation.



can systematically issue termination preconditions, which are of significant practi-
cal importance, as noted in [10].

For space reasons, all proofs are deferred to the Appendix.

Practical applications Unfortunately, in practice, the cases in which the closed form
of the sequence{Ri}i≥0 is definable in a logic that has quantifier elimination, are fairly
rare. All relations considered so far are conjunctive, meaning that they can represent
only simple program loops of the formwhile(condition){body},where the loop
body contains no further conditional constructs. In order to deal with more complicated
program loops, one can use the results from this paper in several ways:

– use the decision procedures as a back-end of a termination analyzer, in order to de-
tect spurious non-termination counterexamples consisting of a finite prefix (stem)
and a conjunctive loop body (lasso). The spurious counterexamples can be dis-
carded by intersecting the program model with the complement of the weak deter-
ministic Büchi automaton representing the counterexample, as in [16].

– abstract a disjunctive loop bodyR1 ∨ . . . ∨ Rn by a non-deterministic difference
bounds or octagonal5 relationR# ⊇ R1,...,n and compute the weakest recurrent set
of the latter. The complement of this set is a set of configurations from which the
original loop terminates.

– attempt to compute atransition invarianti.e., an overapproximations of the transi-
tive closure of the disjunctive loop body(R1 ∨ . . . ∨ Rn)+ (using e.g., the semi-
algorithmic unfolding technique described in [6]) and overapproximate it by a dis-
junctionR#

1 ∨ . . .∨R
#
m of difference bounds or octagonal relations. Then compute

the weakest recurrent set of each relation in the latter disjunction. Ifwrs(R#
1 ) =

. . . = wrs(R#
m) = ∅, the original loop terminates on any input, following the

principle of transition invariants [19].

1.1 Related Work

The literature on program termination is vast. Most work focuses however on universal
termination, such as the techniques for synthesizing linear ranking functions of Sohn
and Van Gelder [22] or Podelski and Rybalchenko [18], and themore sophisticated
method of Bradley, Manna and Sipma [8], which synthesizes lexicographic polynomial
ranking functions, suitable when dealing with disjunctiveloops. However, not every
terminating program (loop) has a linear (polynomial) ranking function. In this paper
we show that, for an entire class of non-deterministic linear relations, defined using
octagons, termination is always witnessed by a computable octagonal relation that has
a linear ranking function.

Another line of work considers the decidability of termination for simple (conjunc-
tive) linear loops. Initially Tiwari [23] shows decidability of termination for affine lin-
ear loops interpreted overreals, while Braverman [9] refines this result by showing
decidability overrationals and overintegers, for homogeneous relations of the form
C1x > 0 ∧ C2x ≥ 0 ∧ x′ = Ax. The non-homogeneous integer case seems to be

5 The linear affine relations considered in this paper are deterministic, which makes them un-
suitable for abstraction.



much more difficult as it is closely related to the openSkolem’s Problem[15]: given a
linear recurrence{ui}i≥0, determine whetherui = 0 for somei ≥ 0.

Our work is concerned mostly with proofs of decidability: weshow that the termina-
tion problem for a program loop becomes decidable if the closed form of the sequence
of iterations of the loop can be defined in a decidable logic. As shown in [5], for oc-
tagonal and linear affine relations with the finite monoid property, this closed form is
Presburger definable, which now entails the decidability ofthe termination problem for
these classes of relations.

The work which is closest to ours is probably that of Cook et al. [10]. In this paper,
the authors develop an algorithm for deriving termination preconditions, by first guess-
ing a ranking function candidate (typically the linear termfrom the loop condition) and
then inferring a supporting assertion, which guarantees that the candidate function de-
creases with each iteration. The step of finding a supportingassertion requires a fixpoint
iteration, in order to find an invariant condition. Unlike our work, the authors of [10]
do not address issues related to completeness: the method isnot guaranteed to find the
weakest precondition for termination, even in cases when this set can be computed. On
the other hand, it is applicable to a large range of programs,extracted from real-life soft-
ware. To compare our method with theirs, we tried all examples available in [10]. Since
most of them are linear affine relations, we used our under-approximation method and
have computed termination preconditions, which turn out tobe slightly more general
than the ones reported in [10].

2 Preconditions for Non-termination

In the rest of this paper we denote byx = {x1, . . . , xn} the set of working variables,
ranging over a domain of values denoted asD. A stateis a valuations : x → D, or
equivalently, ann-tuple of values fromD. An execution stepis a relationR ⊆ Dn×Dn

defined by anarithmetic formulaR(x,x′), where the setx′ = {x′1, . . . , x
′
n} denotes

the values of the variables after executingR once. Ifs ands′ are valuations of the sets
x andx′, we denote byR(s, s′) the fact that(s, s′) ∈ R. A relationR is said to be
consistentif there exist statess, s′ such thatR(s, s′).

Relational composition is defined asR1 ◦ R2 = {(s, s′) ∈ Dn × Dn | ∃s′′ ∈
Dn . R1(s, s

′′) ∧ R2(s
′′, s′)}. For any relationR ∈ Dn × Dn, we considerR0 to be

the identity relation, and we defineRi+1 = Ri ◦ R, for all i ≥ 0. The pre-image of a
setS ⊆ Dn via R is the setpreR(S) = {s ∈ Dn | ∃s′ ∈ S . R(s, s′)}. It is easy to
check thatpreiR(S) = preRi(S), for anyS ⊆ Dn and for alli ≥ 0. For anyi ≥ 0, we
writeRi for the formula defining the relationRi andR−i(⊤) for the formula defining
the setpreRi(Dn).

Definition 1. A relationR is said to be∗-consistentif and only if, for anyk > 0, there
exists a sequence of statess1, . . . , sk, such thatR(si, si+1), for all i = 1, . . . , k− 1.R
is said to bewell-foundedif and only if there is no infinite sequence of states{si}i>0,
such thatR(si, si+1), for all i > 0.

Notice that if a relation is not∗-consistent, then it is also well-founded. However the
dual is not true. For instance, the relationR = {(n, n− 1) | n > 0} is both∗-consistent
and well-founded.



Definition 2. A setS ⊆ Dn is said to be anon-termination preconditionfor R if,
for each states ∈ S there exists an infinite sequence of statess0, s1, s2, . . . such that
s = s0 andR(si, si+1), for all i ≥ 0.

If S0, S1, . . . are all preconditions for non-termination forR, then the (possibly infi-
nite) union

⋃

i=0,1,... Si is a precondition for non-termination forR as well. The set
wnt(R) =

⋃

{S ∈ Dn | S is a precondition for non-termination forR} is called the
weakest non-termination preconditionfor R. A relationR is well-founded if and only
if wnt(R) = ∅. A setS such thatS∩wnt(R) = ∅ is called atermination precondition.

Definition 3. A setS ⊆ Dn is said to berecurrentfor a relationR ∈ Dn ×Dn if and
only if S ⊆ preR(S).

Proposition 1. Let S0, S1, . . . ∈ Dn be a (possibly infinite) sequence of sets, all of
which are recurrent for a relationR ∈ Dn × Dn. Then their union

⋃

i=0,1,... Si is
recurrent forR as well.

The setwrs(R) =
⋃

{S ∈ Dn | S is a recurrent set forR} is called theweakest recur-
rent setforR. By Proposition 1,wrs(R) is recurrent forR. Next we define the weakest
recurrent set as the greatest fixpoint of the transition relation’s pre-image.

Lemma 1. Given a relationR ∈ Dn × Dn, the weakest recurrent set forR is the
greatest fixpoint of the functionX 7→ preR(X).

As a consequence, we obtainwrs(R) =
⋂

i>0 pre
i
R(D

n), by the Kleene Fixpoint The-
orem. SincepreiR = preRi , we havewrs(R) =

⋂

i>0 preRi(Dn). In other words,
from any state in the weakest recurrent set for a relation, aniteration of any finite length
of the given relation is possible. The following lemma showsthat in fact, this is exactly
the set of states from which an infinite iteration is also possible.

Lemma 2. Given a relationR ∈ Dn × Dn, the weakest recurrent set forR equals its
weakest precondition for non-termination.

The characterization of weakest recurrent sets as greatestfixpoints of the pre-image
function suggests a method for computing such sets. In this section we show that, for
certain classes of relations, these sets are definable in Presburger arithmetic, which gives
a decision procedure for the well-foundedness problem for certain classes of relations,
and consequently, for the termination problem for several classes of program loops.

Definition 4. Given a relationR ∈ Dn×Dn defined by an arithmetic formulaR(x,x′),
theclosed formof R is a formulaR(k)(x,x′), with free variablesx ∪ x′ ∪ {k}, such
that for every integer valuationi > 0 of k,R(i)(x,x′) defines the relationRi.

ExampleConsider for instance the relationR(x, x′) ≡ x ≥ 0 ∧ x′ = x − 1. Then we
haveR(k)(x, x′) ≡ x ≥ k − 1 ∧ x′ = x− k. ⊓⊔

Since, by Lemma 1, we havewrs(R) = gfp(preR) =
⋂

i>0 preRi(Dn), using the
closed form ofR, one can now define:

wrs(R) ≡ ∀k > 0 ∃x′ .R(k)(x,x′) (1)



Because Presburger arithmetic has quantifier elimination,wrs(R) can be defined
in Presburger arithmetic6 wheneverR(k) can. In [5] we show three classes of relations
for whichR(k) is Presburger definable: difference bounds, octagonal and finite-monoid
affine relations (the formal definitions of these classes aregiven in the next section).
For each of these classes of loops termination is decidable,by the above argument.

Example Consider again the relationR(x, x′) ≡ x ≥ 0 ∧ x′ = x − 1 for which
R(k)(x, x′) ≡ x ≥ k − 1 ∧ x′ = x− k. Quantifier elimination yieldswrs(R) ≡ ∀k >
0 ∃x′ . x ≥ k− 1∧ x′ = x− k ≡ ∀k > 0 . x ≥ k− 1 ≡ false. Hence the relationR is
well-founded. ⊓⊔

3 Difference Bounds Relations

In this and the following sections, we assume that the variablesx = {x1, . . . , xn} range
over integers i.e., thatD = Z.

Definition 5. A formulaφ(x) is a difference bounds constraintif it is equivalent to a
finite conjunction of atomic propositions of the formxi − xj ≤ aij , for 1 ≤ i, j ≤
n, i 6= j, whereaij ∈ Z.

Given a difference bounds constraintφ, a difference bounds matrix(DBM) repre-
sentingφ is a matrixmφ ∈ Zn×n∞ such that(mφ)ij = aij , if xi − xj ≤ aij is an
atomic proposition inφ, and∞, otherwise. Ifφ is inconsistent (logically equivalent to
false) we also say thatmφ is inconsistent. The next definition gives a canonical form
for consistent DBMs.

Definition 6. A consistent DBMm ∈ Zn×n∞ is said to beclosedif and only ifmii = 0
andmij ≤ mik +mkj , for all 1 ≤ i, j, k ≤ n.

Given a consistent DBMm, we denote bym∗ the (unique) closed DBM equivalent
with it. It is well-known that, ifm is consistent, thenm∗ is unique, and can be computed
fromm in timeO(n3), by the classical Floyd-Warshall algorithm. The closure ofDBM
provides an efficient means to compare difference bounds constraints.

Proposition 2 ([17]). Given two consistent difference bounds constraintsϕ(x) and
ψ(x), the following conditions are equivalent:

– ∀x . ϕ(x)→ ψ(x)
– (m∗

ϕ)ij ≤ (m∗
ψ)ij , for all 1 ≤ i, j ≤ n

In the following, letR be a relation defined by a difference bounds constraint. It is
easy to show that, for anyi ≥ 0, the relationRi is a difference bounds relation as well –
in other words, difference bounds relations are closed under composition. Moreover, if
S is a set defined by a difference bounds constraint, then the set preRi(S) is defined by
a difference bounds constraint as well. But sincewrs(R) =

⋂

i>0 preRi(Zn), it turns
out thatwrs(R) can be defined by a difference bounds constraint, since the class of
difference bounds constraints is closed under (possibly infinite) intersections.

We are now ready to describe the procedure computing the weakest recurrent set
for a difference bounds relationR. Sincewrs(R) is a (possibly inconsistent) difference
bounds constraint, we use the templateµ(x,p) ≡

∧

1≤i6=j≤n xi − xj ≤ pij , wherepij

6 Or, for that matter, in any theory that has quantifier elimination.



are parameters ranging overZ±∞ (we clearly do not need to track the constraints of the
form xi − xi ≤ pii). Moreover, we assume that the template is closed (Definition 6),
which can be encoded as a system of inequalities of the form:

pij ≤ min
{

pik + pkj | k 6= i, k 6= j
}

(2)

Next, we compute the (symbolic) difference bounds constraint corresponding to the set
preR(µ) ≡ ∃x′ . R(x,x′) ∧ µ(x′,p). This step requires computing the closure of the
DBM corresponding toR∧µ, and elimination of thex′ variables. The result is a closed
symbolic DBMπ, whose entries aremin-terms consisting of sums ofpij and integer
constants. Further, we encode the recurrence conditionµ ⊆ preR(µ), again as a system
of inequalities (Proposition 2) of the form:

pij ≤ πij , i 6= j (3)

By conjoining the inequalities (2) and (3), we obtain a system of inequalities with vari-
ablespij , whose right-hand sides are linear combinations ofpij with addition andmin.
We are interested in the maximal solution of this system, which can be obtained using
an efficient policy iteration algorithm [14] in the completelattice ofZ±∞ with addition,
min andmax operators. This solution defines the weakest recurrent set forR, and con-
sequently, the weakest precondition for non-termination of theR loop. Sincewrs(R)
is a difference bounds constraint, for any relationR definable by a difference bounds
constraint, the maximal solution of the system is unique. Itis to be noted that, if for
some1 ≤ i 6= j ≤ n we obtainpij = −∞, then the weakest recurrent set is empty i.e.,
the relationR is well-founded, as shown by the following example.

Example Let us computewrs(R) for R(x, x′) ≡ z − x ≤ 0 ∧ x′ = x − 1 ∧ z′ = z.
The template used isµ(x, z) ≡ x − z ≤ p1 ∧ z − x ≤ p2. We computepreR(µ) ≡
x − z ≤ min(p1 + 1, 1) ∧ z − x ≤ p2 − 1. The recurrence conditionµ ⊆ preR(µ)
is given by the following system:{p1 ≤ min(p1 + 1, 1), p2 ≤ p2 − 1}, whose unique
maximal solution isp1 = 1, p2 = −∞. This proves the well-foundedness ofR. ⊓⊔

Lemma 3. Computing the weakest recurrent set of a difference bounds relation can be
done in timeO(n2 · 2n), wheren is the number of variables.

4 Octagonal Relations

Definition 7. A formulaφ(x) is an octagonal constraintif it is equivalent to a finite
conjunction of terms of the form±xi ± xj ≤ aij , whereaij ∈ Z and1 ≤ i, j ≤ n.

We represent octagons as difference bounds constraints over thedualset of variables
y = {y1, y2, . . . , y2n}, with the convention thaty2i−1 stands forxi andy2i for −xi,
respectively. For example, the octagonal constraintx1 + x2 = 3 is represented asy1 −
y4 ≤ 3 ∧ y2 − y3 ≤ −3. To handle the dual variables in the following, we define
ı̄ = i − 1, if i is even, and̄ı = i + 1 if i is odd. We say that a DBMm ∈ Z2n×2n

∞ is
coherentiff mij = mj̄ı̄ for all 1 ≤ i, j ≤ 2n. The coherence property is needed because
any atomic propositionxi−xj ≤ a, in φ can be represented as bothy2i−1− y2j−1 ≤ a
andy2j − y2i ≤ a, 1 ≤ i, j ≤ n. We denote byφ the difference bounds formula



φ[y1/x1, y2/ − x1, . . . , y2n−1/xn, y2n/ − xn] with free variablesy. The following
equivalence relatesφ andφ :

φ(x)⇔ (∃y2, y4, . . . , y2n . φ ∧
n
∧

i=1

y2i−1 + y2i = 0)[x1/y1, . . . , xn/y2n−1] (4)

Given a coherent DBMm representingφ, we say thatm is octagonal-consistentif and
only if φ is consistent. The following definition gives the canonicalform of a DBM
representing an octagonal-consistent constraint.

Definition 8. An octagonal-consistent coherent DBMm ∈ Z2n×2n is said to betightly
closedif and only if the following hold:

1. mii = 0, ∀1 ≤ i ≤ 2n 3. mij ≤ mik +mkj , ∀1 ≤ i, j, k ≤ 2n
2. miı̄ is even, ∀1 ≤ i ≤ 2n 4. mij ≤ ⌊

miı̄

2 ⌋+ ⌊
mj̄j

2 ⌋, ∀1 ≤ i, j ≤ 2n

Given an octagonal-consistent DBMm, we denote bymt the equivalent tightly closed
DBM. The tight closure of an octagonal-consistent DBMm is unique and can be com-

puted in timeO(n3) asmt
i,j = min

{

m∗
i,j ,

⌊

m∗

i,̄i

2

⌋

+
⌊

m∗

j̄,j

2

⌋}

[1]. This generalizes to

unbounded finite compositions of octagonal relations [4]:

∀k ≥ 0 . (mt
Rk)i,j = min

{

(m∗

R
k)i,j ,

⌊

(m∗

R
k)i,̄i

2

⌋

+

⌊

(m∗

R
k)j̄,j

2

⌋}

(5)

Notice that the above relates the entries of the tightly closed DBM representation ofRk

with the entries of the closed DBM representation of the relation defined byR
k
.

We are now ready to introduce a result [5] that defines the “shape” of the closed form
R(k) for an octagonal relationR. Intuitively, for eachi ≥ 0, Ri is an octagon, whose
bounds evolve in a periodic way. The following definition gives the precise meaning of
periodicity for relations that have a matrix representation.

Definition 9. An infinite sequence of matrices{Mk}∞k=1 ∈ Zm×m
∞ is said to beulti-

mately periodicif and only if:

∃b > 0 ∃c > 0 ∃Λ0, Λ1, . . . , Λc−1 ∈ Zm×m
∞ . Mb+(k+1)c+i = Λi +Mb+kc+i

for all k ≥ 0 and i = 0, 1, . . . , c − 1. The smallestb, c for which the above holds are
calledprefixandperiodof the{Mk}∞k=1 sequence, respectively.

A result reported in [5] is that the sequence{mt
Ri}i≥0 (5) of tightly closed matrices

representing the sequence{Ri}i≥0 of powers of an octagonal relationR is ultimately
periodic, in the sense of the above definition. The constantsb andc from Definition 9
will also be called theprefix and period of the octagonal relationR, throughout this
section.

For a setv of variables, letU(v) = {±v1 ± v2 | v1, v2 ∈ v} denote the set of
octagonal terms overv. As a first remark, by the periodicity of the sequence{mt

Ri}i≥0,
the closed form of the subsequence{Rb+cℓ}ℓ≥0 (of {Ri}i≥0) can be defined as:

R
(ℓ)
b,c ≡

∧

u∈U(x∪x′)

u ≤ auℓ+ du (6)



for all ℓ ≥ 0, whereau anddu are entries(i, j) corresponding to the termu = yi − yj
in the octagonal DBMsΛ0 andmt

Rb , respectively. This is the case, since the matrix
sequence{mt

Rb+cℓ}ℓ≥0 is ultimately periodic i.e.,mt
Rb+cℓ = mt

Rb + ℓΛ0, for all ℓ ≥ 0.

ExampleGiven an octagonal relationR ≡ x+y≤5∧x′=x+2∧y′=y−1, we compute

R
(ℓ)
b,c ≡ x+y≤−ℓ+5 ∧ x′−x=2ℓ+2 ∧ y−y′=ℓ+ 1

∧ x+y′≤−2ℓ+4 ∧ x′+y≤ℓ+7 ∧ x′+y′≤6

We haveb=c=1, andR(k) ≡ R
(k)
b,c . ⊓⊔

Second, we notice that the greatest fixpoint of a monotonic7 function can be com-
puted by an infinite subsequence of the classical decreasingKleene iteration. Con-
cretely, we have thatwrs(R) =

⋂

k>0 pre
k
R(Z

n) =
⋂

ℓ≥0 pre
b+cℓ
R (Zn). The latter

set can now be defined using the closed form of the subsequence(6) i.e.,wrs(R) ≡

∀ℓ ≥ 0 ∃x′ .R
(ℓ)
b,c.

The proof of periodicity from [5] relies on the fact that the DBM encoding of the
closed form ofR is tightly closed for any unfolding lengthk, see (5). Hence, the ex-
istential quantifier∃x′ can be eliminated by simply deleting all atomic propositions
involving primed variables from (6). Further, we obtain:

wrs(R) ≡ ∀ℓ ≥ 0
∧

u∈U(x) u ≤ auℓ+ du ≡
∧

u∈U(x) u ≤ inf {auℓ+ du | ℓ ≥ 0}

where, for a setS ⊆ Z, inf S denotes the minimal element ofS, if one exists, or−∞,
otherwise. We have

inf {auℓ+ du | ℓ ≥ 0} =

{

−∞ if au < 0
du otherwise

Hencewrs(R) is the empty set, ifau < 0 for someu ∈ U(x). Otherwise, we obtain
wrs(R) ≡

∧

u∈U(x) u ≤ du. However, this is exactly the set defined byR−b(⊤) ≡

∃x′ . Rb(x,x′) ≡ ∃x′ . R
(0)
b,c , by (6). The following complexity upper bound is a

consequence of this fact.

Lemma 4. Computing the weakest recurrent set of an octagonal relation can be done
in timeO(b · n3), whereb is its prefix andn is the number of variables. Alternatively,
this problem hasO(n3 · 5n) worst-case time complexity.

Example(continued) Following the decision procedure above, we obtain

wrs(R) ≡ ∀ℓ ≥ 0 ∃x′ .R
(ℓ)
b,c ≡ ∀ℓ ≥ 0 . x+y≤−ℓ+5

Hencewrs(R) = ∅ i.e.,R is well-founded. ⊓⊔

4.1 On the Existence of Linear Ranking Functions

A ranking function for a given relationR constitutes a proof of the fact thatR is
well-founded. We distinguish here two cases. IfR is not ∗-consistent, then the well-
foundedness ofR is witnessed simply by an integer constanti > 0 such thatRi = ∅.

7 In our case,prek1
R (Zn) ⊇ pre

k2
R (Zn), for k1 ≤ k2.



Otherwise, ifR is ∗-consistent, we need a better argument for well-foundedness. In
this section we show that, for any∗-consistent well-founded octagonal relationR, the
(strenghtened) relation defined byR−b(⊤) ∧ R is well-founded and has a linear rank-
ing function, even whenR alone does not have one. For space reasons, we do not give
here all the details of the construction of such a function. However, the existence proof
suffices, as one can usecompleteranking function extraction tools (such as e.g. Rank-
Finder [18]) in order to find them.

Definition 10. Given a relationR ⊆ Zn×Zn, a linear ranking functionforR is a term
f(x) =

∑n

i=1 aixi such that, for all statess, s′ : x→ Z:

1. f is decreasing: R(s, s′)→ f(s) > f(s′)
2. f is bounded: R(s, s′)→ (f(s) > h ∧ f(s′) > h), for someh ∈ Z.

The main result of this section is the following:

Theorem 1. LetR ⊆ Zn × Zn be a∗-consistent and well-founded octagonal relation,
with prefixb ≥ 0. Then, the relation defined byR−b(⊤) ∧R is well founded and has a
linear ranking function.

The first part of the theorem is proved by the following lemma:

Lemma 5. LetR ⊆ Zn×Zn be a relation, andm > 0 be an integer. Thenwrs(R) = ∅
if and only ifwrs(Rm) = ∅, whereRm is the relation defined byR−m(⊤) ∧R.

It remains to prove that the witness relation defined byR−b(⊤) ∧ R has a linear
ranking function, provided that it is well-founded. The proof is organized as follows.
First we show that well-foundedness of an octagonal relation R is equivalent to the
well-foundedness of its difference bounds representationR (Lemma 6). Second, we
use a result from [7], that the constraints in the sequence ofiterated difference bounds

relations{R
i
}i≥0 can be represented by a finite-state weighted automaton, called the

zigzag automatonin the sequel. If the relation defined byR is well-founded, then this
weighted automaton must have a cycle of negative weight. Thestructure of this cycle,
representing several of the constraints inR, is used to show the existence of the linear
ranking function for the witness relationR−b(⊤) ∧R.

Lemma 6. LetR ⊆ Zn×Zn be an octagonal relation andRdb be the difference bounds
relation defined byR. ThenR is well-founded if and only ifRdb is well-founded.

The above lemma reduces the problem of showing existence of aranking function for
an octagonal relationR(x,x′) to showing existence of a ranking function for its differ-
ence bounds encodingR(y,y′). Assume thatf(y) is a ranking function forR. Then
f [xi/y2i−1,−xi/y2i]ni=1 is a linear ranking function forR. Hence, in the rest of this
section, we consider without loss of generality thatR is a difference bounds relation.

Zigzag Automata For the later developments, we need to introduce thezigzag au-
tomatoncorresponding to a difference bounds relationR. Intuitivelly, for anyi > 0, the
relationRi can be represented by a constraint graph which is thei-times repetition of
the constraint graph ofR. The constraints induced byRi can be represented as shortest
paths in this graph, and can be recognized (in the classical automata-theoretic sense)



by a weighted automatonAR. The structure of this automaton is needed to show the
existence of a linear ranking function.

For a difference bounds relationR, we define the directed graphGR, whose set of
vertices is the setx ∪ x′, and in which there is an edge fromxi to xj labeledaij if and
only if the atomic propositionxi − xj ≤ aij occurs inR. Clearly,mR is the incidence
matrix ofGR. We define the concatenation ofGR with itself as the disjoint union of two
copies ofGR, in which thex vertices of the second copy overlap with thex′ vertices
of the first copy. ThenRm corresponds to the graphGmR , obtained by concatenating the
graph ofR to itselfm > 0 times.

ExampleLetR ≡ x3−x′2 ≤ 0 ∧ x1−x′3 ≤ 0 ∧ x′4−x4 ≤ 0 ∧ x′3−x2 ≤ 0. Figure 1
(b) showsGR8 , the8-times unfolding of the graphGR representingR. ⊓⊔
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Fig. 1. (a) Unfolding ofGR. Herex(i) = {x(i) | x ∈ x}. (b) A run of the zigzag automaton over
a path inGR8 .

Given a difference bounds relationR, thezigzag automatonAR recognizes all paths
from xi to xj in GkR. Intuitively, a pathπ betweenxi andxj in GkR, is represented by
a wordw of lengthk, as follows: thewl symbol representssimultaneouslyall edges of
π that involve only nodes fromx(l) ∪ x(l+1), for all 0 ≤ l < k. The alphabet of the
zigzag automaton consists of subgraphs ofGR, where the weight of a subgraph is the
sum of the weights on its edges. The set of control states of the zigzag automaton is8

{l, r, lr, rl,⊥}n. Clearly, the size of the zigzag automaton is at most5n. For a complete
definition, the interested reader may consult [7].

Example Consider the relationR ≡ x2−x
′
1 ≤ −1 ∧ x3−x

′
2 ≤ 0 ∧ x1−x

′
3 ≤

0 ∧ x′4−x4 ≤ 0 ∧ x′3−x2 ≤ 0. An example of a run ofAR recognizing a path of
constraints inG8R is given in Figure 1 (b). The word accepted byπ is a subgraph ofG8R
shown in Figure 1 (a). The cycleπ : q1

G1−−→ q2
G2−−→ q3

G3−−→ q1 is taken several times

in this run. The weights of the symbols on the run arew(G1) = w(G2) = w(G4) = 0
andw(G3) = −1. ⊓⊔

The following lemma proves the existence of a negative weight cycle in the zigzag
automata corresponding to well-founded difference boundsrelation. The intuition be-
hind this fact is that the rates of the DBM sequence{mRi}i>0 are weights of optimal

8 The intuition behind the names{l, r, lr, rl,⊥} of components of control states is that they
capture the direction of incoming and outgoing edges (l for left, r for right).



ratio (weight per length) cycles in the zigzag automaton. According to the previous sec-
tion, if R is well-founded, there exists a negative rate for{mRi}i>0, which implies the
existence of a negative cycle in the zigzag automaton.

Lemma 7. If R is a∗-consistent well-founded difference bounds relation of prefixb ≥
0, andAR is its corresponding zigzag automaton, then there exists a cycleπ from a
stateq to itself, such thatw(π) < 0 and there exists pathsπi from an initial state toq,
andπf from q to a final state, such that|πi|+ |πf | = b.

Next we prove the existence of a linear decreasing function,based on the existence
of a negative weight cycle in the zigzag automaton.

Lemma 8. If R is a∗-consistent well-founded difference bounds relation of prefixb ≥
0, then there exists a linear functionf(x) such that, for all statess, s′ : x→ Z we have
R−b(⊤)(s) ∧R(s, s′)→ f(s) > f(s′).

Example We illustrate the construction of linear decreasing function on the relation
R ≡ x2−x′1 ≤ −1 ∧ x3−x′2 ≤ 0 ∧ x1−x′3 ≤ 0 ∧ x′4−x4 ≤ 0 ∧ x′3−x2 ≤ 0
from the previous example. Summing the edges inπ, we obtainx2 − x′1 + x1 − x′3 +
x3 − x

′
2 + x′4 − x4 + x′4 − x4 + x′4 − x4 ≤ −1, which simplifies tox1 + x2 + x3 −

3x4 − (x′1 + x′2 + x′3 − 3x4) ≤ −1. Lettingf(x) = −(x1 + x2 + x3 − 3x4), we have
thatf(x) > f(x′). ⊓⊔

Last, we prove that the functionf of Lemma 8 is bounded from below, concluding
that it is indeed a ranking function. Since each run in the zigzag automaton recognizes
a path from somexi to somexj , a run that repeats a cycle can be decomposed into a
prefix, the cycle itself and a suffix. The path recognized may traverse the cycle several
times, however each exit point from the cycle must match a subsequent entry point.
These paths from the exit to the corresponding entries givesus the necessary lower
bound. In fact, these paths appear already on graphsGRi for i ≥ b, whereb is the prefix
of R (Lemma 9). Hence the need for a strenghtened witnessR−b(⊤) ∧ R, asR alone
is not enough for proving boundedness off .

Lemma 9. LetR be a∗-consistent octagonal relation with prefixb and periodc. Then,
for any1 ≤ i, j ≤ 2n andk ≥ 1, we have(mR−k(⊤))i,j <∞→ (mR−b(⊤))i,j <∞.

Lemma 10. If R is a ∗-consistent well-founded difference bounds relation of prefixb,
andf(x) is the linear decreasing function from Lemma 8, there existsan integerh such
that, for all statess, s′ : x→ Z, (Rb(⊤)(s) ∧ R(s, s′))→ (f(s) ≥ h ∧ f(s′) ≥ h).

Example (continued) We will continue the previous example and illustrate the bound-
edness off = −(x1 + x2 + x3 − 3x4) (see Figure 1b). Since there is a path fromx(6)

2

to x
(6)
4 in G3G4 (and hence inG2R), thenR2 → (x2 − x4 ≤ −1), and by Lemma 9, we

obtainRb → (x2 − x4 ≤ −1). Similarly, since there is a pathx(5)
3 ; x

(5)
4 in G2G3G4

(and hence inG3R), we obtainRb → (x3 − x4 ≤ −1). Similarly, since there is a path

x
(4)
1 ; x

(4)
4 in G1G2G3G4 (and hence inG4R), we obtainRb → (x3 − x4 ≤ −1).

Summing up these inequalities, we obtain thatf(x) = −(x1 + x2 + x3 − 3x4) ≥ 3
and, thusR−b(⊤) ∧R → (f ≥ 3).

As an experiment, we have tried the RANK FINDER [18] tool (complete for linear
ranking functions), which failed to discover a ranking function on this example. This
comes with no surprise, since no linear decreasing functionthat is bounded after the
first iteration exists. ⊓⊔



5 Linear Affine Relations

Let x = 〈x1, . . . , xn〉⊤ be a column vector of variables ranging over integers. A linear
affine relation is a relation of the formR(x,x′) ≡ Cx ≥ d ∧ x′ = Ax + b, where
A ∈ Zn×n, C ∈ Zp×n are matrices, andb ∈ Zn, d ∈ Zp are column vectors of integer
constants. Notice that we consider linear affine relations to be deterministic, unlike the
difference bounds and octagonal relations considered in the previous. In the following,
it is convenient to work with the equivalent homogeneous form:

R(x,x′) ≡ Chxh ≥ 0 ∧ x′
h = Ahxh

Ah =

(

A b

0 1

)

Ch =
(

C −d
)

xh =

(

x

xn+1

) (7)

The closed form of a linear affine relation is defined by the following formula:

R(k)(x,x′) ≡ ∃xn+1, x
′
n+1.x

′
h = Akhxh∧∀0 ≤ ℓ < k.CAℓhx ≥ 0 ∧ xn+1 = 1 (8)

Intuitively, the first conjunct defines the (unique) outcomeof iterating the relationx′ =
Ax+ b for k steps, while the second (universally quantified) conjunct ensures that the
condition (Cx ≥ d) has been always satisfied all along the way. The definition ofthe
weakest recursive set of a linear affine relation is (after the elimination of the trailing
existential quantifier):

wrs(R)(x) ≡ ∃xn+1∀k > 0 . ChA
k
hx ≥ 0 ∧ xn+1 = 1 (9)

The main difficulty with the form (9) comes from the fact that the powers of a matrixA
cannot usually be defined in a known decidable theory of arithmetic. In the following,
we discuss the case ofA having the finite monoid property [2, 25], which leads to
wrs(R) being Presburger definable. Further, we relax the finite monoid condition and
describe a method for generating sufficient termination conditions, i.e. setsS ∈ Zn

such thatS ∩ wrs(R) = ∅.
Some basic notions of linear algebra are needed in the following. If A ∈ Zn×n is

a square matrix, andv ∈ Zn is a column vector of integer constants, then any com-
plex numberλ ∈ C such thatAv = λv, for some complex vectorvCn, is called an
eigenvalueofA. The vectorv in this case is called aneigenvectorofA. It is known that
the eigenvalues ofA are the roots of thecharacteristic polynomialdet(A − λIn) = 0,
which is an effectively computable univariate polynomial in λ. A complex numberr is
said to be aroot of the unityif rd = 1 for some integerd > 0.

In the previous work of Weber and Seidl [25], Boigelot [2], and Finkel and Leroux
[12], a restriction of linear affine relations has been introduced, with the goal of defining
the closed form of relations in Presburger arithmetic. A matrix A ∈ Zn×n is said to have
thefinite monoid propertyif and only if its set of powers{Ai | i ≥ 0} is finite. A linear
affine relation has the finite monoid property if and only if the matrixA defining the
update has the finite monoid property.

Lemma 11 ([12, 2]).A matrixA ∈ Zn×n has the finite monoid property iff:

1. all eigenvalues ofA are either zero or roots of the unity, and
2. all non-zero eigenvalues are of multiplicity one.

Both conditions are decidable.



In the following, we drop the second requirement of Lemma 11,and consider only
linear relations, such that all non-zero eigenvalues ofA are roots of the unity. In this
case,R(k) cannot be defined in Presburger arithmetic any longer, thus we renounce
definingwrs(R) precisely, and content ourselves with the discovery ofsufficient con-
ditions for termination. Basically given a linear affine relationR, we aim at finding
a disjunctionφ(x) of linear constraints onx, such thatφ ∧ wrs(R) is inconsistent,
without explicitly computingwrs(R).

Lemma 12. Given a square matrixA ∈ Zn×n, whose non-zero eigenvalues are all
roots of the unity. Then(Am)i,j ∈ Q[m], for all 1 ≤ i, j ≤ n, are effectively computable
polynomials with rational coefficients.

We turn now back to the problem of definingwrs(R) for linear affine relationsR
of the form (9). First notice that, if all non-zero eigenvalues ofA are roots of the unity,
then the same holds forAh (7). By Lemma 12, one can find rational polynomialspi,j(k)
defining(Akh)i,j , for all 1 ≤ i, j ≤ n. The condition (9) resumes to a conjunction of the
form:

wrs(R)(x) ≡
n
∧

i=1

∀k > 0 . Pi(k,x) ≥ 0 (10)

where eachPi = ai,d(x) · kd + . . .+ ai,1(x) · k + ai,0(x) is a polynomial ink whose
coefficients are the linear combinationsai,d ∈ Q[x]. We are looking after a sufficient
condition for termination, which is, in this case, any set ofvaluations ofx that would
invalidate (10). The following proposition gives sufficient invalidating clauses for each
conjunct above. By taking the disjunction of all these clauses we obtain a sufficient
termination condition forR.

Lemma 13. Given a polynomialP (k,x) = ad(x) · kd+ . . .+ a1(x) · k+ a0(x), there
existsn > 0 such thatP (n,x) < 0 if, for somei = 0, 1, . . . , d, we havead−i(x) < 0
andad(x) = ad−1(x) = . . . = ad−i+1(x) = 0.

ExampleConsider the following program [10], and its linear transformation matrixA.

while (x ≥ 0)
x′ = x+ y
y′ = y + z

A =





1 1 0
0 1 1
0 0 1





Ak =





1 k k(k−1)
2

0 1 k
0 0 1





The characteristic polynomial ofA is det(A − λI3) = (1 − λ)3, hence the only
eigenvalue is1, with multiplicity 3. Then we computeAk (see above), andx′ =

x + k · y + k(k−1)
2 z gives the value ofx afterk iterations of the loop. Hence the (pre-

cise) non-termination condition is:∀k > 0 . z2 · k
2 +(y− z

2 ) · k+ x ≥ 0 The sufficient
condition for termination is:(z < 0)∨ (z = 0∧ y < 0)∨ (z = 0∧ y = 0∧ x < 0) ⊓⊔

We can generalize this method further to the case where all eigenvalues ofA are
of the formq · r, with q ∈ R andr ∈ C being a root of the unity. The main reason
for not using this condition from the beginning is that we are, to this point, unaware of
its decidability status. With this condition instead, it issufficient to consider only the
eigenvalues with the maximal absolute value, and the polynomials obtained as sums of
the polynomial coefficients of these eigenvalues (see Corollary 2 in Appendix 5). The
result of Lemma 12 and the sufficient condition of Lemma 13 carry over when using
these polynomials instead.

6 Experimental Evaluation

We have validated the methods described in this paper by automatically verifying ter-
mination of all the octagonal running examples, and of several integer programs syn-
thesized from (i) programs with lists [3] and (ii) VHDL models [21]. We have first
computed automatically their precise transition invariant T by adapting the method for
reachability analysis for counter automata, described in [6], and implemented in the



FLATA tool [13]. Then we automatically proved thatT is contained in a disjunction of
octagonal relations, which are found to be well-founded by the procedure described in
Section 4.

We first verified termination of the LISTCOUNTER and LISTREVERSAL programs,
which were obtained using a translation scheme from [3], which generates an inte-
ger program from a program manipulating dynamically allocated single-selector linked
lists. Using the same technique, we also verified the COUNTERand SYNL IFO programs,
obtained by translating VHDL designs of hardware counter and synchronous LIFO [21].
These models have infinite runs for any input values, which isto be expected, as they
encode the behavior of synchronous reactive circuits.

Second, we compared (Table 1) our method for termination of linear affine loops
with the examples given in [10], and found the same termination preconditions as they
do, with one exception, in which we can prove universal termination in integer input
values (row 3 of Table 1). The last example from [10] is the Euclidean Greatest Com-
mon Divisor algorithm, for which we infer automatically thecorrect termination pre-
conditions using a disjunctively well-founded octagonal abstraction of the transition
invariant.

PROGRAM COOK ET. AL [10] L INEAR AFFINE LOOPS

if (lvar ≥ 0)
while (lvar< 230)

lvar = lvar<< 1;
lvar > 0 ∨ lvar < 0 ∨ lvar ≥ 230

lvar(k)=2k·lvar(0)

¬(lvar=0)∨lvar≥230

while (x≤ N)
if (*) {

x=2*x+y;
y=y+1;

} else
x ++;

x > N ∨ x+ y ≥ 0

x(k)≥2k·(x(0)+y(0)+1)−k−y(0)−1

y(k)≤y(0)+k

x>N∨x+y≥0

while (x ≥ N)
x = -2*x + 10; x > 5 ∨ x+ y ≥ 0

x(k)=(−2)k·(x(0)− 10
3

)+ 10
3

x 6= 10
3

⇐⇒ true
//@ requiresn > 200
x = 0;
while (1)

if (x < n) {
x=x+y;
if (x ≥ 200) break;}

y > 0
x(k)=x(0)+k·y(0)

y>0

Table 1. Termination preconditions for several program fragments from [10]. The even rows of
column 3 represent the closed form of the transition relation, while the rows give the termination
preconditions.

7 Conclusions

We have presented several methods for deciding conditionaltermination of several
classes of program loops manipulating integer variables. The universal termination
problem has been found to be decidable for octagonal relations and linear affine loops
with the finite monoid property. In other cases of linear affine loops, we give sufficient
termination conditions. We have implemented our method in the FLATA tool [13] and
performed a number of preliminary experiments.
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A Proofs from Section 2

Proof of Proposition 1For eachi we haveSi ⊆ preR(Si) ⊆ preR(
⋃

j=0,1,... Sj). The
last inclusion is by the monotonicity ofpreR. Hence

⋃

j=0,1,... Sj ⊆ preR(
⋃

j=0,1,... Sj).
⊓⊔

Proof of Lemma 1By the Knaster-Tarski Fixpoint Theorem, gfp(preR) =
⋃

{S | S ⊆
preR(S)} = wrs(R). ⊓⊔

Proof of Lemma 2“wrs(R) ⊆ wnt(R)” Let s0 ∈ wrs(R) be a state. Then there exists
s1 ∈ wrs(R) such thatR(s0, s1). Applying this argument infinitely many times, one
can construct an infinite sequences0, s1, s2, . . . such thatR(si, si+1), for all i ≥ 0.
Hences0 ∈ wnt(R).

“wnt(R) ⊆ wrs(R)” Let s0 ∈ wnt(R). Then there exists an infinite sequence
s0, s1, s2, . . . such thatR(si, si+1) for all i ≥ 0. Then, for alli ≥ 0, s0 ∈ preiR(si) ⊆
preiR(D

n), by monotonicity ofpreR. Hences0 ∈
⋂

i≥0 pre
i
R(D

n) = gfp(preR). By
Lemma 1,s0 ∈ wrs(R). ⊓⊔

B Proofs from Section 3

Proof of Lemma 3The algorithm of Gawlitza and Seidl [14] runs in time at most
O(n · |S|), wheren is the number of variables in the system, and|S| denotes the size of
the system i.e., the sum of the expression sizes of the right-hand sides. In our case, the
min-terms in the first system (2) are of size at mostO(n), while in the second system
(3), we have min-terms of size at mostO(2n). Since the number of variables in both
systems isn2, the result follows. ⊓⊔

C Proofs from Section 4

Proof of Lemma 4Let b andc be the prefix and period ofR, respectively. IfΛ0 has
at least one negative entry, thenwrs(R) = ∅. Otherwise,wrs(R) ≡ R−b(⊤), and
we can compute it by composingR with itself b times. Each composition requires a
quantifier elimination which takes at mostO(n3). Since there are exactlyb quantifier
eliminations, we have the result. For the second part,b+ c is the length of a path in the
zigzag automatonAR, with no repeated states. Henceb + c is bounded by the number
of states in the zigzag automatonAR, which is at most5n. Also, computingΛ0 of R
requires iteratingR up tob+ c. ⊓⊔

Proof of Lemma 5“⇒” By the fact thatR ← R−m(⊤) ∧ R and the monotonicity
of wrs. “⇐” We prove the dual. Assume thatwrs(R) 6= ∅ i.e., there exists an infinite
sequences1, s2, . . . such thatR(si, si+1), for all i > 0. Then allsi belong to the set
defined byR−m(⊤), hences1, s2, . . . is an infinite sequence for the relation defined by
R−m(⊤) ∧R as well. ⊓⊔

Proposition 3. Let{an}∞n=0 and{bn}∞n=0 be sequences. Then the following hold:

– if inf{
⌊

an
2

⌋

}∞n=0 = −∞ theninf{an}∞n=0 = −∞



– if inf{an + nb}∞n=0 = −∞ theninf{an}∞n=0 = −∞ or inf{bn}∞n=0 = −∞
– if inf{min(an, bn)}∞n=0 = −∞ theninf{an}∞n=0 = −∞ or inf{bn}∞n=0 = −∞

Proof. By contraposition. Suppose thatinf S1 6= −∞ andinf S2 6= −∞. Then,∃k1 ≥
1 . ∀l1 ≥ k1 . ak1 = al1 and∃k2 ≥ 1 . ∀l2 ≥ k2 . bk2 = bl2 . Let k = max{k1, k2}.
Then clearly,∀l ≥ k .

⌊

ak
2

⌋

=
⌊

al
2

⌋

∧ak+bk = al+bl∧min{ak, bk} = min{al, bl}.
Henceinf St 6= −∞, inf Sp 6= −∞, andinf Sm 6= −∞. ⊓⊔

Proof of Lemma 6Let b andc be the prefix and period ofR. In Section 4 we proved
that a∗-consistent octagonR is well-founded if and only if the closed form of the
sequence{Rb+cℓ}ℓ≥0 contains an atomic proposition of the formu ≤ auℓ + du,
whereu ∈ U(x) is an octagonal term, andau < 0. We will show that the same

holds if we use the closed form of the sequence{R
b+cℓ
}ℓ≥0 instead. Notice that for

anyk ≥ 0, the difference bounds encoding ofR−k(⊤) is the projection ofmt
Rk on

the entries corresponding to unprimed variables i.e.,(mt
Rk)↓y. By the monotonicity

of preR, the sequence{(mt
Rk)↓y}k≥0 is decreasing. Since the elements of the se-

quence are defined by (5), we can apply Proposition 3 and observe that if for some
1 ≤ i, j ≤ 2n, inf{(mt

Rk)i,j}k≥0 = −∞, then alsoinf{(m∗

R
k)i2,j2}k≥0 = −∞ for

some(i2, j2) ∈ {(i, j), (i, ī), (j̄, j)}. HenceR is well-founded iff there exists a nega-

tive coefficientau in the closed form of{R
b+cℓ
}ℓ≥0 iff Rdb is well founded. ⊓⊔

Definition 11. The sequence{gk}∞k=0 is ultimately geometric if there existb ∈ N0,
c ∈ N, andλ ∈ Q∞ such that

∀k ≥ 0, ∀s ∈ {0, . . . , c−1} . gb+s+(k+1)c = λ+ gb+s+kc

Definition 12. The sequence{gk}∞k=0 is ultimately periodic if there existb ∈ N0, c ∈
N, andλ0, . . . , λc−1 ∈ Q∞ such that

∀k ≥ 0, ∀s ∈ {0, . . . , c−1} . gb+s+(k+1)c = λs + gb+s+kc

For the sake of completeness, we present key results of [20].Let G = (V,E, ν :
E → Z) be a weighted digraph andMG the associated incidence matrix. LetG(V ′), V ′ ⊆
V be a subgraph induced byV ′. We say thatG(V ′) is strongly connected if for any two
differentverticesv1, v2 ∈ V ′, v1 6= v2 there exists a path fromv1 to v2. G(V ′) is a
strongly connected component ofG if there is noV ′ ⊂ V ′′ ⊆ V such thatG(V ′′) is
strongly connected.

Given a pathπ : v0
c1−→ v1

c2−→ v2 . . . vp−1
cp
−→ vp, the length ofπ is |π| = p, the

weight ofπ is w(π) =
∑p

i=1 ci, average weight ofπ is w(π)
|π| . A cycle is a path where

v0 = vp. A cycle of a strongly connected graphG is critical if it has maximum average
weight among all cycles ofG.

A cycle of a strongly connected graphG is critical if it has minimum average weight
and cyclicity ofG is the greatest common divisor of lengths of critical cyclesin G.

Theorem 2. (Theorem 2.4 in [20]) LetG be a strongly connected digraph,c its cyclic-
ity andλ the minimum average weight of critical cycles inG. Then,MG is ultimately
geometric with periodc and rateΛ, whereΛi,j = cλ for all i, j.



Theorem 3. (Corollary of Theorem 3.3 in [20]) LetG be a digraph and let{c1, . . . , cm}
and {λ1, . . . , λm} be cyclicities and minimum average weights of critical cycles of
strongly connected components ofG. Then,MG is ultimately periodic with period
c = lcm(c1, . . . , cm) and rates{Λ′

0, . . . , Λ
′
c−1}, where(Λ′

k)i,j ∈ {cλ1, . . . , cλm}
for all 0 ≤ k < c and for all i, j.

Corollary 1. For all v1, v2 ∈ V s.t. (Λ0)v1,v2 6= ∞ there exists a critical cycleπ :
v ; v of lengthp and pathsπi : v1 ; v andπf : v ; v2 s.t.|πi|+ |πf | = b s.t.

∀k ≥ 0 . (M b+pk
G )v1,v2 = w(πi) + kw(π) + w(πf )

Notice that zigzag automaton can be viewed as a digraph and hence Theorems 2 and
3 apply to them. This means that difference bounds relationsare ultimately periodic. Let
b, c, Λ0, . . . , Λc−1 be the prefix, period, and rates ofR. Then,b+2, c, Λ0, . . . , Λc−1 are
the prefix, period, and rates ofMR, the incidence matrix of a zigzag automatonAR.
Moreover, the closed form of{Rb+cℓ}ℓ≥0 is

R
(l)
b,c ≡

∧

i6=j

xi−xj ≤ (Λ0)Ii,j ,Fi,j
ℓ+ (MRb)i,j (11)

or, equivalently

R
(l)
b,c ≡

∧

i6=j

xi−xj ≤ (Λ0)Ii,j ,Fi,j
ℓ+ (Mb+2

R )Ii,j ,Fi,j
(12)

Proof of Lemma 7By the decision procedure in Section 4, ifR is ∗-consistent and
well-founded, then the closed formϕ(l)

r of {Rb+cℓ}ℓ≥0 contains an atomic formula
xi−xj ≤ aℓ+d wherea, d ∈ Z, a < 0. By the Equation (11),a = (Λ0)Ii,j ,Fi,j

. By
Theorems 2 and 3,(Λ0)Ii,j ,Fi,j

is a c-multiple of the average weight of some critical
cycle in some SCC ofAR. One of these cycles isπ of lengthp from Corollary 1 (since
b + 2 in this lemma corresponds tob in Corollary 1, due to special initial and final
transitions inAR). a < 0 implies (Λ0)Ii,j ,Fi,j

< 0, which in turn impliesw(π) =
p
c
(Λ0)Ii,j ,Fi,j

< 0. Other properties stated in this lemma follow from Corollary 1 for
special casek = 1. ⊓⊔

Proof of Lemma 8By Lemma 7, there is a negative critical cycleπ of lengthp in the

zigzag automaton:q1
G1−−→ q2 . . . qp

Gp

−−→ q1. LetGj = (x ∪ x′, Ej) for all 1 ≤ j ≤ p.

Consider the following sum of all constraints represented by edges appearing in the
zigzag cycle (note that the sum of weights of these edges equalsw(π)):

∑

1≤j≤p





∑

(xi−→x′

j)∈Ej

(xi − x
′
j) +

∑

(x′

i−→xj)∈Ej

(x′i − xj)



 ≤ w(π) (13)

The left-hand side of (13) can be written equivalently as

∑

1≤j≤p







∑

1≤i≤n,
(qj)i=r

(xi−x′i) +
∑

1≤i≤n,
(qj)i=l

(−xi+x′i) +
∑

1≤i≤n,
(qj)i=lr

(−xi+xi) +
∑

1≤i≤n,
(qj)i=rl

(−x′i+x
′
i)






(14)



and thus, after simplifications (−xi+xi = 0,−x′i+x
′
i = 0), (13) can be written equiv-

alently as

∑

1≤j≤p







∑

1≤i≤n,
(qj)i=r

(xi − x′i) +
∑

1≤i≤n,
(qj)i=l

(−xi + x′i)






≤ w(π) (15)

Let f denote the negated sum of all unprimed terms in (14) andf ′ denote the negated
sum of all primed terms in (14). Then, clearlyf ′ = −f [x′/x]. Thus, (15) can be written
as

f ′ − f ≤ w(π) (16)

Notice that sincew(π) < 0, we establish thatf ′− f < 0 hencef is strictly decreasing.
Since, for all statess, s′ we haveR(s, s′)→ f(s) > f ′(s), we have thatR−b(⊤)(s) ∧
R(s, s′)→ f(s) > f ′(s). ⊓⊔

Proof of Lemma 9(Case1 ≤ k ≤ b) By monotonicity ofpreR, (mR−k(⊤))i,j ≥
(mR−b(⊤))i,j . Thus if (mR−k(⊤))i,j 6=∞, then clearly(mR−b(⊤))i,j <∞.

(Casek > b) Let p = ⌈k−b
c
⌉, andk′ = b + pc. Note thatRk

′

= R
(ℓ)
b,c[p/ℓ]. Since

k′ ≥ k, by the same argument as for case (1 ≤ k ≤ b), (mR−k′ (⊤))i,j < ∞. Since

R
(ℓ)
b,c is closed,yi − yj ≤ aℓ+ d, wherea, d ∈ Z, is one of its conjuncts. SinceR(ℓ)

b,c is
closed,(mR−b(⊤))i,j = d 6=∞. ⊓⊔

Proof of Lemma 10Letf be a linear decreasing function from Lemma 8. Letπ : q1
G1−−→

q2 . . . qp
Gp

−−→ q1 be the negative cycle used to constructf , andπf be the suffix from

Lemma 8. By construction of the zigzag automaton, for any1 ≤ j ≤ p,

|{i | (qj)i = r}| = |{i | (qj)i = l}|

It follows from (15) that each(qj)i = r contributes tof with a term−xi and that
each(qj)i = l contributes tof with a term+xi and that each(qj)i 6∈ {r, l} doesn’t
contribute at all. We now demonstrate that for each1 ≤ j ≤ p, there exists a bijective
matchingβj : {i | (qj)i = r} → {i | (qj)i = l} such that for any1 ≤ i1 ≤ n s.t.
βj(i1) = i2, the differencexi2 − xi1 is bounded inR−b(⊤) ∧R, formallyR−b(⊤) ∧
R → (xi2−xi1 ≥ h) for someh ∈ Z.

Let j ∈ {1, . . . , p}. By construction of the zigzag automaton, the concatenated
graphGjGj+1 . . . Gpπf connects each(qj)i1 s.t. (qj)i1 = r with a unique(qj)i2 s.t.
(qj)i2 = l. This induces the required bijectionβj . SinceGjGj+1 . . .Gpπf is a sub-

graph ofGp+|πf |
R , it follows that there is a pathx(0)

i1
; x

(0)
i2

in Gp+|πf |
R , in other words,

Rp+|πf | → xi1 − xi2 ≤ h for someh ∈ Z. By Lemma 9,Rb → xi1 − xi2 ≤ h′ for
someh′ ∈ Z too.

Clearly,R−b(⊤) ∧ R → xi1 − xi2 ≤ h′ too. Sincexi1 − xi2 ≤ h′ if and only if
xi2 − xi1 ≥ −h

′, we obtain the required property.
Now sincef =

∑

1≤j≤p

∑

1≤i1,i2≤n
βj(i1)=i2

(xi2 − xi1 ) and since we proved that each of

the differencesxi2 − xi1 in the sum is bounded inR−b(⊤) ∧ R, it follows thatf is
bounded inR−b(⊤) ∧R too, formallyR−b(⊤) ∧R → (f ≥ h) for someh ∈ Z. ⊓⊔



D Proofs from Section 5

Definition 13. A functionf : N→ C is said to be aC-finite recurrenceif and only if:

f(m+ d) = ad−1f(m+ d− 1) + . . .+ a1f(m+ 1) + a0f(n), ∀m ≥ 0

for somed ∈ N and a0, a1, . . . , ad−1 ∈ C, with ad−1 6= 0. The polynomialxd −
ad−1x

d−1 − . . . a1x− a0 is called thecharacteristic polynomialof f .

A C-finite recurrence always admits a closed form.

Theorem 4 ([11]).The closed form of a C-finite recurrence is:

f(m) = p1(m)λm1 + . . .+ ps(m)λms

whereλ1, . . . , λs ∈ C are non-zero distinct roots of the characteristic polynomial of
f , and p1, . . . , ps ∈ C[m] are polynomials of degree less than the multiplicities of
λ1, . . . , λs, respectively.

Next, we define the closed form for the sequence of powers ofA.

Corollary 2. Given a square matrixA ∈ Zn×n, we have:

(Am)i,j = p1,i,j(m)λm1 + . . .+ ps,i,j(m)λms

whereλ1, . . . , λs ∈ C are non-zero distinct eigenvalues ofA, andp1,i,j , . . . , ps,i,j ∈
C[m] are polynomials of degree less than the multiplicities ofλ1, . . . , λs, respectively.

Proof. If det(A−xIn) = xd−ad−1x
d−1−. . .−a1x−a0 is the characteristic polynomial

of A, then we have

Ad − ad−1A
d−1 − . . .− a1A− a0 = 0

by the Cayley-Hamilton Theorem. If we definefi,j(m) = (Am)i,j , then we have

xAm+d = ad−1A
m+d−1 + . . .+ a1A

m+1 + a0A
m

fi,j(m+ d) = ad−1fi,j(m+ d− 1) + . . .+ a1fi,j(m+ 1) + a0fi,j(m)

By Theorem 4, we have that

(Am)i,j = p1,i,j(m)λm1 + . . .+ ps,i,j(m)λms

for some polynomialsp1,i,j , . . . , ps,i,j ∈ C[m] of degrees less than the multiplicities of
λ1, . . . , λs, respectively. ⊓⊔

Proof of Lemma 12Assume from now on that all non-zero eigenvaluesλ1, . . . , λs
of A are such thatλd11 = . . . = λdss = 1, for some integersd1, . . . , ds > 0. The
method given in [2] for testing the finite monoid condition for A gives also bounds for
d1, . . . , ds. Then we haveλL1 = . . . λLs = 1, whereL = lcm(d1, . . . , ds). Asd1, . . . , ds
are effectively bounded, so isL. By Corollary 2, we have that, ifm is a multiple of
L, then(Am)i,j = pi,j(m) for some effectively computable polynomialpi,j ∈ C[m]
i.e., form multiple ofL,Am is polynomially definable. But sincepi,j(m) assumes real



values in an infinity of pointsm = kL, k > 0, the it must be that its coefficients are
all real numbers, i.e.pi,j ∈ R[m]. Moreover, these coefficients are the solutions of the
integer system:







pi,j(L) = (AL)i,j
. . .

pi,j((d+ 1)L) = (A(d+1)L)i,j

Clearly, sinceA ∈ Zn×n, Ap ∈ Zn×n, for anyp ≥ 0. Hencepi,j ∈ Q[m]. ⊓⊔

Proof of Lemma 13Assuming the conditionad−i(x) < 0 andad(x) = ad−1(x) =
. . . = ad−i+1(x) = 0, for some0 ≤ i ≤ d, we haveP (k,x) = ad−i(x) · kd + . . . +
a1(x) · k + a0(x). Since the dominant coefficientad−i(x) is negative, the polynomial
will assume only negative values, from some point on. ⊓⊔


