
HAL Id: hal-00722489
https://hal.science/hal-00722489v1

Submitted on 15 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Statistical Abstraction and Model-Checking of Large
Heterogeneous Systems

Ananda Basu, Saddek Bensalem, Marius Bozga, Benoît Delahaye, Axel Legay

To cite this version:
Ananda Basu, Saddek Bensalem, Marius Bozga, Benoît Delahaye, Axel Legay. Statistical Abstraction
and Model-Checking of Large Heterogeneous Systems. International Journal on Software Tools for
Technology Transfer, 2012, 14 (1), pp.53-72. �10.1007/s10009-011-0201-2�. �hal-00722489�

https://hal.science/hal-00722489v1
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Statistical Abstraction and Model-Checking of Large
Heterogeneous Systems

Ananda Basu · Saddek Bensalem · Marius Bozga · Benôıt Delahaye ·

Axel Legay

the date of receipt and acceptance should be inserted later

Abstract We propose a new simulation-based tech-

nique for verifying applications running within a large
heterogeneous system. Our technique starts by perform-

ing simulations of the system in order to learn the

context in which the application is used. Then, it cre-

ates a stochastic abstraction for the application, which

takes the context information into account. This smaller
model can be verified using efficient techniques such as

statistical model checking. We have applied our tech-

nique to an industrial case study: the cabin communi-

cation system of an airplane. We use the BIP toolset
to model and simulate the system. We have conducted

experiments to verify the clock synchronization proto-

col i.e., the application used to synchronize the clocks

of all computing devices within the system.

1 Introduction

Systems integrating multiple heterogeneous distributed

applications communicating over a shared network are

This work has been supported by the Combest EU project. A
preliminary version of the paper [6] was published in the Interna-
tional Conference on Formal Techniques for Distributed Systems.

A. Basu, S. Bensalem and M. Bozga
Verimag Laboratory,
Université Joseph Fourier
Grenoble, CNRS

B. Delahaye
Université de Rennes 1/IRISA,
Rennes, France

A. Legay
INRIA/IRISA,
Rennes, France

typical in various sensitive domains such as aeronautic

or automotive embedded systems. Verifying the correct-
ness of a particular application inside such a system is

known to be a challenging task, which is often beyond

the scope of existing exhaustive validation techniques.

The main difficulty comes from network communication

which makes all applications interfering and therefore
forces exploration of the full state-space of the system.

Statistical Model Checking [16,25,28,29,20,23,15,7]

has recently been proposed as an alternative to avoid an

exhaustive exploration of the state-space of the model.
The core idea of the approach is to conduct some simu-

lations of the system and then use statistical results in

order to decide whether the system satisfies the prop-

erty or not. Statistical model checking techniques can
also be used to estimate the probability that a system

satisfies a given property [16,15]. Of course, in contrast

with an exhaustive approach, a simulation-based solu-

tion does not guarantee a correct result. However, it

is possible to bound the probability of making an er-
ror. Simulation-based methods are known to be far less

memory and time intensive than exhaustive ones, and

are sometimes the only option [30,18]. Statistical model

checking is widely accepted in various research areas
such as systems biology [13,19] or software engineering,

in particular for industrial applications. There are sev-

eral reasons for this success. First, it is very simple to

implement, understand and use. Second, it does not re-

quire extra modeling or specification effort, but simply
an operational model of the system, that can be simu-

lated and checked against state-based properties. Third,

it allows model-checking of properties [12] that cannot

be expressed in classical temporal logics. Nevertheless,
statistical-model checking still suffers from the system’s

complexity. In particular, for the case of heterogeneous

systems, the number of components and their interac-

2

tions are limiting factors on the number and length of

simulations that can be conducted and hence on the

accuracy of the statistical estimates.

We propose to exploit the structure of the system in

order to increase the efficiency of the verification pro-
cess. The idea is conceptually simple: instead of per-

forming an analysis of the entire system, we propose

to analyze each application separately, but under some

particular context/execution environment. This context
is a stochastic abstraction that represents the interac-

tions with other applications running within the sys-

tem and sharing the computation and communication

resources. We propose to build such a context automat-

ically by simulating the system and learning the proba-
bility distributions of key characteristics impacting the

functionality of the given application.

The overall contribution of this paper is an applica-

tion of the above method on an industrial case study,

the heterogeneous communication system (HCS for
short) deployed for cabin communication in a civil air-

plane. HCS is a heterogeneous system providing enter-

tainment services (e.g., audio/video on passengers de-

mand) as well as administrative services (e.g., cabin
illumination, control, audio announcements), which are

implemented as distributed applications running in par-

allel, across various devices within the plane and com-

municating through a common Ethernet-based network.
The HCS system has to guarantee stringent require-

ments, such as reliable data transmission, fault toler-

ance, timing and synchronization constraints. An im-

portant requirement, which will be studied in this pa-

per, is the accuracy of clock synchronization between
different devices. This latter property states that the

difference between the clocks of any two devices should

be bounded by a small constant, which is provided by

the system designer and depends on his needs. Hence,
one must be capable of computing the smallest bound

for which synchronization occurs and compare it with

the bound expected by the designer. Unfortunately, due

to the large number of heterogeneous components that

constitute the system, deriving such a bound manu-
ally from the textual specification is an unfeasible task.

In this paper, we propose a formal approach that con-

sists in building a formal, operational model of the

HCS, then applying simulation-based algorithms to this
model in order to deduce the smallest value of the bound

for which synchronization occurs. We start with a fixed

value of the bound and check whether synchronization

occurs. If yes, then we make sure that this is the best

one. If no, we restart the experiment with a new value.

At the top of our approach, there should be a tool

that is capable of modeling heterogeneous systems as

well as simulating their executions and the interactions

between components. In this paper, we propose to use

the BIP1 toolset [5] for doing so. BIP supports a

methodology for building systems from atomic compo-

nents encapsulating behavior, that communicate

through interactions, and coordinate according to pri-
orities. BIP also offers a powerful engine to simulate

the system and can thus be combined with a statistical

model checking algorithm in order to verify properties.

Our first contribution is to study all the requirements
for the HCS to work properly and then derive a model

in BIP. Our second contribution is to study the accu-

racy of clock synchronization between several devices

of the HCS. In HCS the clock synchronization is en-

sured by the Precision Time Protocol (PTP for short)
[2], and the challenge is to guarantee that PTP main-

tains the difference between a master clock (running on

a designated server within the system) and all the slave

clocks (running on other devices) under some bound.
Since this bound cannot be pre-computed, we have to

verify the system for various values of the bound until

we find a suitable one. Unfortunately, the full system

is too big to be analyzed with classical exhaustive ver-

ification techniques. A solution could be to remove all
the information that is not related to the devices under

consideration. This is in fact not correct as the behav-

ior of the PTP protocol is influenced by the other ap-

plications running in parallel within the heterogeneous
system. Our solution to this state-space explosion prob-

lem is in two steps (1) we build a stochastic abstraction

for a part of the PTP application between the server

and a given device; the stochastic part will be used to

model the general context in which PTP is used, and
(2) we apply statistical model checking on the resulting

model.

Thanks to this approach, we have been able to de-

rive precise bounds that guarantee proper synchroniza-
tion for all the devices of the system. We also computed

the probability of satisfying the property for smaller

values of the bound, i.e., bounds that do not satisfy

the synchronization property with probability 1. Being

able to provide such information is of clear importance,
especially when the best bound is too high with respect

to the designer’s requirements. We have observed that

the values we obtained strongly depend on the position

of the device in the network. We also estimated the av-
erage and worst proportion of failures per simulation

for bounds that are smaller than the one that guaran-

tees synchronization. Checking this latter property has

been made easy because BIP allows us to reason on one

execution at a time.
As another contribution, we have also considered

the influence of clock drift on the synchronisation re-

1 BIP states for Behaviour-Interaction-Priority.

3

sults. Drift can be used to model that, due to the in-

fluence of the hardware, clocks of the various compo-

nents may not progress at the same rate. We have ob-

served that small values of the drifts have no influence

on the results. Again, we observe that it is easy to han-
dle drift when reasoning on an execution at a time.

Finally, we have also studied the influence on synchro-

nization due to scheduling policies applied within the

network for different categories of traffic. For doing so,
we have compared two different scheduling algorithms:

fixed priorities and weighted fair queuing. We have ob-

served that fixed priorities, with highest priority given

to PTP packets, guarantees the best precision, but may

prevent some packets to be sent. The experiments high-
light the generality of our technique, which can be ap-

plied to other versions of the HCS as well as to other

heterogeneous applications [4].

Structure of the paper. Section 2 introduces the

concept of stochastic abstraction that will be used to
reduce the complexity of the model under verification.

Sections 3 and 4 are dedicated to introductions to the

BIP toolset and Statistical Model Checking, respec-

tively. The HCS case study is introduced in Section 5

and the experiments are reported in Section 6. Finally,
Section 7 concludes the paper and discusses future and

related works.

2 Problem and Approach

Consider a system consisting of a set of distributed ap-

plications running on several computers and exchang-
ing messages on a shared network infrastructure. As-

sume also that network communication is subject to

given bandwidth restrictions as well as to routing and

scheduling policies applied on network elements. Our
method attempts to reduce the complexity of validation

of a particular application of such system by decoupling

the timing analysis of the network and functional anal-

ysis of each application.

We start by constructing a model of the whole sys-

tem. This model must be executable, i.e., it should be

possible to obtain execution traces, annotated with tim-

ing information. For a chosen application, we then learn
the probability distribution laws of its message delays

by simulating the entire system. The method then con-

structs a reduced stochastic model by combining the

application model where the delays are defined accord-
ing to the laws identified at the previous step. Finally,

the method applies statistical model-checking on the

resulting stochastic model.

Our models are specified within the BIP

framework [5]. BIP is a component-based framework

for construction, implementation and analysis of sys-

tems composed of heterogeneous components. In partic-

ular, the tool fulfills all the requirements of the method
suggested above, that are models are operational and

can be thoroughly simulated. BIP models can easily in-

tegrate timing constraints, which are represented with

discrete clocks. Probabilistic behaviour can also be added
by using external C functions.

The BIP toolset [8], which includes a rich set of tools

for modeling, execution, analysis (both static and on-

the-fly) and static transformations of models. It pro-

vides a dedicated programming language for describing
BIP models. The front-end tools allow editing and pars-

ing of BIP programs, and generating an intermediate

model, followed by code generation (in C) for execu-

tion and analysis on a dedicated middleware platform.
The platform also offers connections to external analy-

sis tools. A more complete description of BIP is given

in the next section.

3 An Overview of BIP

The BIP framework, presented in [5], supports a method-

ology for building systems from atomic components. It

uses connectors, to specify possible interaction patterns

between components, and priorities, to select amongst
possible interactions.

Atomic components are finite-state automata that

are extended with variables and ports. Variables are

used to store local data. Ports are action names, and
may be associated with variables. They are used for in-

teraction with other components. States denote control

locations at which the components await for interac-

tion. A transition is a step, labeled by a port, from a

control location to another. It has associated a guard
and an action, that are respectively, a Boolean condi-

tion and a computation defined on local variables. In

BIP, data and their transformations are written in C.

For a given valuation of variables, a transition can
be executed if the guard evaluates to true and some in-

teraction involving the port is enabled. The execution

is an atomic sequence of two microsteps: 1) execution

of the interaction involving the port, which is a syn-

chronization between several components, with possible
exchange of data, followed by 2) execution of internal

computation associated with the transition.

We provide in Figure 1 a graphical representation

for an atomic component, named Router, that models
the behavior of a simplified network router. The router

receives network packets through an input port and de-

livers them to the respective output port(s), based on

4

t=0;
gap [t==p]subNetSend

s0 [to_all]

s1

s2

s3

su
bN

et
Se

nd
 [

to
_s

ub
]

s3
 [

to
_3

]

s2
 [

to
_2

]

s1
 [

to
_1

]

s0
 [

to
_0

]

RECV

tick [t<p]
t++; t++;

t=0;

done
[t==frameGap]

subNetSend

tick [t<frameGap]

tick

srvRecv
route(...); t=0;

SEND2

SEND1

SEND3

SEND0 SEND

GAPSENDING

tick

s0 s1 s2 s3

recv

Fig. 1: An atomic component: Router.

the destination address of the packets. The port recv

acts as an input port, while s0, s1, s2, s3, and subNet-

Send act as output ports. The port tick is used for mod-

eling discrete time progress: an interaction through this

port corresponds to the progress of time by one (tick)
unit. The control locations are RECV, SEND, SEND0,

SEND1, SEND2, SEND3, SENDING and GAP, with

RECV being the initial location. An example transi-

tion is from the initial location RECV to SEND, which
is executed when an interaction including the port recv

takes place (i.e., the guard being true). On execution,

the internal computation step is the execution of the C

routine route(...), followed by the reset of the variable

t. The complete description of the Router component
using the BIP language is provided below.

atomic type Router

/* parameters* /
(int id, // ID of the router

bool server, // if it is in a server
bool device, // if it is in a device
int frameRate, // rate of frame transmission
int frameGap) // inter frame time-gap
/* local variables */

data Frame f
data int t = 0 // the clock
data int p = 0 // frame propagation time
data bool to 0 = false
data bool to 1 = false
data bool to 2 = false
data bool to 3 = false
data bool to Subnet = false
data bool to All = false

/* interface ports */
export port FramePort recv(f) = recv

export port FramePort s0(f) = s0

export port FramePort s1(f) = s1

export port FramePort s2(f) = s2

export port FramePort s3(f) = s3

export port FramePort subNetSend(f) = subNetSend

export port TickPort tick = tick

/* internal ports */
port Port done

port Port gap

/* places */
place RECV

place SEND, SEND0, SEND1, SEND2, SEND3

place SENDING

place GAP

/* initialization */
initial to RECV

/* transitions */
on tick from RECV to RECV
on recv from RECV to SEND

do { route(f, id, server, device,
to 0, to 1, to 2, to 3, to Subnet, to All);
t = 0;
p = f.getSize() / frameRate; }

on s0 from SEND to SENDING provided (to 0)

on s1 from SEND to SENDING provided (to 1)

on s2 from SEND to SENDING provided (to 2)

on s3 from SEND to SENDING provided (to 3)

on subNetSend from SEND to SENDING
provided (to Subnet)

on s0 from SEND to SEND0 provided (to All)

on s1 from SEND0 to SEND1
on s2 from SEND1 to SEND2
on s3 from SEND2 to SEND3
on subNetSend from SEND3 to SENDING
on tick from SENDING to SENDING

provided (t < p) do t = t + 1;

on gap from SENDING to GAP
provided (t == p) do t = 0;

on tick from GAP to GAP
provided (t < frameGap) do t = t + 1;

on done from GAP to RECV
provided (t == frameGap) do t = 0;

end

Composite components are defined by assembling

sub-components (atomic or composite) using connec-

tors. Connectors relate ports from different sub-

components. They represent sets of interactions, that
are, non-empty sets of ports that have to be jointly ex-

ecuted. For every such interaction, the connector pro-

vides the guard and the data transfer, that are, respec-

tively, an enabling condition and an exchange of data
across the ports involved in the interaction.

Figure 2 shows the graphical representation of a
composite component, named Server. The server con-

tains atomic components e.g., Master Clock, Audio Gen-

erator, Smoke Detector, Video Surveillance, and com-

posite components e.g., Classifier. The connectors are

shown by lines joining the ports of the components.
With the exception of the tick interaction which in-

volve 5 components, all other interactions are binary.

The textual BIP description is provided below.

compound type Server

5

send recv

Classifier

r0 r1 send

send recv send

Master

Clock Generator

Audio Smoke

Detector Surveillance

Video

r3r2

send recv recv

time stamp

Frame Receiver

tick tick tick

tick tick

Fig. 2: Composite Component: Server.

/* parameters */
(int frameRate, int frameGap,

int audioDelay, int nChunk, int fChunk)
/* network subcomponents */

component FrameReceiver FRecv(frameRate)

component Classifier3X1 C(frameRate, frameGap)

/* services sub-components */
component MasterClock Master(2000)

component AudioGenerator

AudioGen (audioDelay, nChunk, fChunk)
component SmokeDetector SmokeDetect

component VideoSurveillance VideoSurv

/* connectors */
connector SendMatchingFrame

FRecv Master(FRecv.send, Master.recv)
connector SendMatchingFrame

FRecv EventDetect (FRecv.send, SmokeDetect.recv)
connector SendMatchingFrame

FRecv VideoSurv (FRecv.send, VideoSurv.recv)
connector SendFrame Master C (Master.send, C.r0)
connector SendFrame AudioGen C (AudioGen.send, C.r1)
connector SendFrame

SmokeDetect C (SmokeDetect.send, C.r2)
connector ReadTime

Master AudioGen (Master.time, AudioGen.stamp)
/* tick connector */

connector Tick5
Tick (FRecv.tick, Master.tick, AudioGen.tick,

VideoSurv.tick, C.tick,)
/* interface ports */

export port FramePort send is C.send

export port FramePort recv is FRecv.recv

export port TickPort tick is Tick

end

Finally, priorities provide a mean to coordinate the

execution of interactions within a BIP system. They are

used to specify scheduling or similar arbitration policies

between simultaneously enabled interactions. More con-
cretely, priorities are rules, each consisting of an ordered

pair of interactions associated with a condition. When

the condition holds and both interactions of the corre-

sponding pair are enabled, only the one with higher-

priority can be executed.

4 An Overview of Statistical Model Checking

Consider a stochastic system2 S and a property φ. Sta-

tistical model checking refers to a series of simulation-

based techniques that can be used to answer two ques-

tions: (1) Qualitative: Is the probability that S satis-

fies φ greater or equal to a certain threshold? and (2)
Quantitative: What is the probability that S satis-

fies φ? Contrary to numerical approaches, the answer is

given up to some correctness precision. In the rest of the

section, we overview several statistical model checking
techniques. Let Bi be a discrete random variable with

a Bernoulli distribution of parameter p. Such a variable

can only take 2 values 0 and 1 with Pr[Bi = 1] = p and

Pr[Bi = 0] = 1 − p. In our context, each variable Bi is

associated with one simulation of the system. The out-
come for Bi, denoted bi, is 1 if the simulation satisfies

φ and 0 otherwise.

4.1 Qualitative Answer using Statistical Model

Checking

The main approaches [28,25] proposed to answer the

qualitative question are based on hypothesis testing. Let

p = Pr(φ), to determine whether p ≥ θ, we can test
H : p ≥ θ against K : p < θ. A test-based solution does

not guarantee a correct result but it is possible to bound

the probability of making an error. The strength (α, β)

of a test is determined by two parameters, α and β,

such that the probability of accepting K (respectively,
H) when H (respectively, K) holds, called a Type-I

error (respectively, a Type-II error), is less or equal to

α (respectively, β).

A test has ideal performance if the probability of the
Type-I error (respectively, Type-II error) is exactly α

(respectively, β). However, these requirements make it

impossible to ensure a low probability for both types of

errors simultaneously (see [28] for details). A solution

to this problem is to relax the test by working with
an indifference region (p1, p0) with p0≥p1 (p0 − p1 is

the size of the region). In this context, we test the hy-

pothesis H0 : p≥ p0 against H1 : p≤ p1 instead of H

against K. If the value of p is between p1 and p0 (the
indifference region), then we say that the probability

is sufficiently close to θ so that we are indifferent with

respect to which of the two hypotheses K or H is ac-

cepted. The thresholds p0 and p1 are generally defined

2 A stochastic system is aa process that evolves over time, and
whose evolution can be predicted in terms of probabilities.

6

in terms of the single threshold θ, e.g., p1 = θ − δ and

p0 = θ + δ. We now need to provide a test procedure

that satisfies the requirements above. In the next two

subsections, we recall two solutions proposed by Younes

in [28,29].

Single Sampling Plan. To test H0 against H1, we spec-

ify a constant c. If
∑n

i=1 bi is larger than c, then H0 is
accepted, else H1 is accepted. The difficult part in this

approach is to find values for the pair (n, c), called a

single sampling plan (SSP in short), such that the two

error bounds α and β are respected. In practice, one

tries to work with the smallest value of n possible so
as to minimize the number of simulations performed.

Clearly, this number has to be greater if α and β are

smaller but also if the size of the indifference region is

smaller. This results in an optimization problem, which
generally does not have a closed-form solution except

for a few special cases [28]. In his thesis [28], Younes

proposes a binary search based algorithm that, given

p0, p1, α, β, computes an approximation of the minimal

value for c and n.

Sequential Probability Ratio Test. The sample size for

a single sampling plan is fixed in advance and inde-

pendent of the observations that are made. However,
taking those observations into account can increase the

performance of the test. As an example, if we use a sin-

gle plan (n, c) and the m > c first simulations satisfy

the property, then we could (depending on the error
bounds) accept H0 without observing the n − m other

simulations. To overcome this problem, one can use the

sequential probability ratio test (SPRT in short) pro-

posed by Wald [27]. The approach is briefly described

below.

In SPRT, one has to choose two values A and B

(A > B) that ensure that the strength of the test is

respected. Let m be the number of observations that

have been made so far. The test is based on the follow-
ing quotient:

p1m

p0m

=

m∏

i=1

Pr(Bi = bi | p = p1)

Pr(Bi = bi | p = p0)
=

pdm

1 (1 − p1)
m−dm

pdm

0 (1 − p0)m−dm

,(1)

where dm =
∑m

i=1 bi. The idea behind the test is to

accept H0 if p1m

p0m
≥ A, and H1 if p1m

p0m
≤ B. The SPRT

algorithm computes p1m

p0m
for successive values of m until

either H0 or H1 is satisfied; the algorithm terminates

with probability 1[27]. This has the advantage of min-

imizing the number of simulations. In his thesis [28],
Younes proposed a logarithmic based algorithm SPRT

that given p0, p1, α and β implements the sequential

ratio testing procedure.

4.2 Quantitative Answer using Statistical Model

Checking

In [16,21] Peyronnet et al. propose an estimation pro-

cedure to compute the probability p for S to satisfy

φ. Given a precision δ, Peyronnet’s procedure, which

we call PESTIMATION, computes a value for p′ such
that |p′ − p|≤δ with confidence 1 − α. The procedure

is based on the Chernoff-Hoeffding bound [17]. Consider

n be a number of experiments et let p′ = (
∑n

i=1 bi)/n.

The Chernoff-Hoeffding bound [17] gives Pr(|p′ − p| >

δ) < 2e−
nδ

2

4 . As a consequence, if we take n≥ 4
δ2 log(2

α
),

then Pr(|p′ − p|≤δ) ≥ 1 − α. Observe that if the value

p′ returned by PESTIMATION is such that p′≥θ − δ,

then S |= Pr≥θ with confidence 1 − α.

Peyronnet’s method can be used to decide whether

S |= Pr≥θ(φ) in a way similar to the single sampling
plan method. In the rest of the document, we will use

the name PESTIMATION to refer to an implementa-

tion that allows to compute p′ based on the above ap-

proach. In his work, Younes showed that the single sam-
pling plan method will always be at least as efficient as

(i.e., will never require to perform more simulations)

PESTIMATION Algorithm.

4.3 Playing with Statistical Model Checking
Algorithms

The efficiency of the above algorithms is characterized
by the number of simulations needed to obtain an an-

swer. This number may change from executions to ex-

ecutions and can only be estimated (see [28] for an ex-

planation). However, some generalities are known. For
the qualitative case, it is known that, except for some

situations, SPRT is always faster than SSP. When θ = 1

(resp. θ = 0) SPRT degenerates to SSP; this is not prob-

lematic since SSP is known to be optimal for such val-

ues. PESTIMATION can also be used to solve the qual-
itative problem, but it is always slower than SSP [28].

If θ is unknown, then a good strategy is to estimate it

using PESTIMATION with a low confidence and then

validate the result with SPRT and a strong confidence.

5 Case Study: Heterogeneous Communication

System

The case study concerns a distributed heterogeneous

communication system (HCS) providing an all electronic

communication infrastructure to be deployed, typically
for cabin communication in airplanes or for building au-

tomation. HCS contains various devices such as sensors

(video camera, smoke detectors, temperature, pressure,

7

etc.) and actuators (loudspeakers, light switches, tem-

perature control, signs, etc.) connected through a wired

communication network to a central server. The server

runs a set of services to monitor the sensors and to

control the actuators. The devices are connected to the
server using network access controllers (NAC) as shown

for an example architecture in Figure 3.

������

���
���
���
���

��
��
��
��

����

Server

NAC

NAC

NAC

NAC

Smoke Sensor

Camera(Cabin)

Camera(Front Door)

Audio Player + PTP Slave Clock

(1)

(2)

(3)

(0)

(3, 0)(3, 1)

(0, 0) (0, 1) (0, 2) (0, 3)

(3, 2)(3, 3)

Fig. 3: HCS Example Model.

The architecture and functionalities delivered by

HCS are highly heterogeneous. The system includes dif-

ferent hardware components, which run different pro-

tocols and software services ensuring functions with

different characteristics and degree of criticality e.g,
audio streaming, device clock synchronization, sensor

monitoring, video surveillance. Moreover, HCS has to

guarantee stringent requirements, such as reliable data

transmission, fault tolerance, timing and synchroniza-
tion constraints. For example, the latency for deliver-

ing alarm signals from sensors, or for playing audio an-

nouncements should be smaller than certain predefined

thresholds. Or, the accuracy of clock synchronization

between different devices, should be guaranteed under
the given physical implementation of the system.

The HCS case study poses challenges that require

component-based design techniques, since it involves

heterogeneous components and communication mecha-
nisms, e.g. streaming based on the data-flow paradigm

as well as event driven computation and interaction.

Its modeling needs combination of executable and ana-

lytic models especially for performance evaluation and

analysis of non-functional properties.

5.1 Overview

We have developed a structural model of HCS using

BIP. At top level, the structure of the model follows the

natural decomposition into physical elements e.g., the
server, the network access controllers and the devices

are the top-level components. Moreover, these compo-

nents are connected and interact according to the wired

network connections defined in the original system.

Then, one level down, every physical component has
a functional decomposition. Subcomponents realize the

main functionalities corresponding to network opera-

tion (e.g., packet delivery, filtering, routing, scheduling,

...), protocols (e.g., clock synchronization) or services
(e.g., audio/video streaming, event handling, etc.).

Let us remark that most of the atomic components

are subject to timing constraints (e.g., periodicity con-

straints, network transport delays, execution delays, ...).

They are represented as discrete time components, that
are, components using a particular tick port to react on

progress of time. All tick ports are strongly synchro-

nized, therefore, time progress is global and uniformly

observed by all components in the system. In our model,

every tick interaction corresponds to the progress of
time by a fixed amount, which is one microsecond.

We have completely modeled an instance of HCS

in BIP. As shown in Figure 3, the system consists of

one Server connected to a daisy chain of four NACs,
addressed 0 · · · 3, and several devices. Devices are con-

nected in daisy chains with the NACs, the length of

each chain being limited to four in our example. For

simplicity, devices are addressed (i, j), where i is the

address of the NAC and j is the address of the de-
vice. The model contains three types of devices, namely

Audio Player, Video Camera and Smoke Sensor. The

devices connected to NAC(0) and NAC(2) have simi-

lar topology. The first two daisy-chains consist of only
Audio Player devices. The third daisy-chain ends with

a Smoke Sensor, and the fourth daisy-chain consists

of just one Video Camera. The devices connected to

NAC(1) and NAC(3) have exactly the same topology,

consisting of several Audio Players and one Smoke Sen-
sor devices.

A description of the top-level components is given

in the following paragraphs.

8

5.2 Server

The server, previously illustrated in Figure 2, runs var-

ious protocols and services including: 1) PTP Master

Clock, that runs the PTP master-clock protocol be-

tween the server and the devices in order to keep the

device (hardware) clocks synchronized with the master-
clock. The protocol exchanges PTP packets of size 512

bits between the server and the devices, and runs once

every 2 seconds. 2) Audio Generator, that generates

audio streams to be play-backed by the Audio Player
devices. It generates audio streams at 32kHz with 12

bit resolution (audio chunks). We have assumed that

100 audio chunks are sent in a single packet over the

network, (that gives the size of an audio packet to be

1344 bits) at the rate of 33 packets per second. 3) Smoke
Detector service that keeps track of the event packets

(size 736 bits) sent from the Smoke Sensor, and 4) Video

Surveillance service for monitoring the Video Cameras.

In addition, the server needs to handle the scheduling
and routing of outgoing packets over the communica-

tion backbone.

5.3 Network Access Controller

The NACs perform the packet routing from the server

to the subnet devices and vice versa. A NAC consists

of a Router (see Figure 1), that transmits the packets
forward, from server to devices, and a Classifier (see

Figure 4), that sends the packets backward, from de-

vices to the server. The Classifier selects the packets to

be sent, based on their types and a scheduling policy.
As a result, packets may be served differently, and get

delayed on their route to the server. Hence, the schedul-

ing policy in the Classifier plays an determinant role in

the transmission delay of different types of the packets.

The packets sent on the network are classified in four
categories that are (1) PTP, (2) Audio, (3) Events and

(4) Video. The PTP packets are exchanged in the pro-

cess of the PTP synchronization. They will be further

detailed in Section 6.1. Audio packets are sent between
the server and audio devices. Events packets are sent

by smoke detectors to the server. Finally, Video pack-

ets are sent by video camera devices to the server.

We have considered two scheduling policies, amongst

the most commonly supported by commercial network
routers. The first scheduling policy is based on static

fixed-priorities of the packets. The second policy, that

is called Weighted Fair Queuing (WFQ for short), en-

sures a fair share of the bandwidth of the network to
each type of packets, according to some fixed, prede-

fined ratios. We now give more details on these schedul-

ing algorithms.

send send send

send

send

recv

send

recv recv recv

recv recv recv

recv

ptpeventaudiovideo

...

Forwarder

Scheduler

Video

Queue

Audio

Queue

Events

Queue

PTP

Queue

Fig. 4: Composite Component: Classifier

5.3.1 Fixed priorities

It is possible to classify the packets by their order of

importance. The highest priority goes to PTP packets.

Indeed, they need to be transmitted as soon as possi-

ble because they are critical for clock synchronization
within the system. Audio and Events packets may be

critical in case of a problem during the system opera-

tion e.g., if fire is detected, then the information has to

be transmitted as soon as possible to the server. On the
other hand, system users have to be informed without

delay. Finally, the Video packets are less critical.

One can use this classification to define the schedul-

ing in the NACs by following the order of importance

it defines. This is the principle of fixed priorities: use
as many FIFO queues to store the incoming packets

as there are levels of priorities. When several queues

are ready to send, empty first the one with the highest

priority, then the next, etc...

The static priority policy is straightforward to im-

plement in BIP using priorities. In our model, there are

four interactions between the queues and the scheduler

components namely ptp · send, event · send, audio ·

send and video · send. The static priority is simply en-
forced by adding the following priority to the model,

that is video · send ≺ audio · send ≺ event · send ≺

ptp · send.

Unfortunately, the static policy has an important
drawback. If the network is flooded by high-priority

packets (e.g., in case of a faulty equipment), then low-

priority packets get accumulated within their respective

9

queues, and either get (rarely) sent with important de-

lays or get dropped, due to queue size limitations. This

problem may be solved by using another scheduling al-

gorithm that we now present.

5.3.2 Weighted fair queuing (WFQ)

Weighted fair queueing[22] is a dynamic scheduling pol-

icy which attempts to serve different queues by dividing

the available network band-width according to prede-
fined ratios.

The scheduling proceeds as follows. All incoming

packets are timestamped on a virtual time line. This

virtual time line re-constructs a common time refer-

ence for all queues which takes into account the avail-
able network bandwidth (r) and the allocated service

ratios (ri)i=1,m. Notice that, in general,
∑

ri can be

different from r. Let us fix a queue i and consider the

kth incoming packet. Assume the packet has length Lk

and enters the queue at absolute time ak. Its virtual

start time Si(k), respectively virtual finish time Fi(k),

are computed by the following (mutually dependent)

equations:

Si(k) = max(Fi(k − 1), ak·r∑
ri

)

Fi(k) = Si(k) + Lk

ri

where, initially, Fi(0) = 0. Using this virtual times-

tamping, the weighted fair scheduling policy serves pack-

ets in increasing order of their virtual start times. For

more details, please refer to [22].

This mechanism has been implemented as such in
BIP. The Scheduler component keeps track of the ab-

solute time and computes the virtual time stamps for

packets, as soon as they enter the waiting queues. Then,

the packet with the minimal virtual start time is se-
lected and delivered to the Forwarder component, and

transmitted further on the network.

Clearly, this policy hardly depends on the ratio used

for each type of packets. For example, modifying the

ratio may have a significant effect on the delay intro-
duced on PTP packets. This will be further studied in

Section 6.4.

5.4 Devices

Each device runs one or more services that communi-
cate with their counter-parts in the server. As devices

are connected in daisy chains, they also perform a min-

imal networking functionality i.e., routing and schedul-

ing of packets on the daisy-chain. Services considered in
our example are Audio Player, PTP Slave Clock, Smoke

Sensor and Video Camera. More specifically for the lat-

ter, video packets are generated at a rate of 25 packets

Name S Vd Vt C Size Number

Router 8 7 1 5-120 211 -

Forwarder 4 1 1 5-120 28 -
Frame Receiver 2 1 1 5-120 27 -
Master Clock 3 1 1 0-2000 212 -
Audio Generator 2 1 1 0-3125 213 -
Smoke Detector 3 1 1 0-300 210 -
Video Generator 3 1 1 0-40000 216 -

NAC - - - - 234 4
Server - - - - 2120 1
Audio Player - - - - 268 52
Camera - - - - 284 2
Smoke Sensor - - - - 285 4

HCS System - - - - 23122 1

Table 1: State-space estimation.

per second, the size of the video packets being given

as a probability distribution. Different distributions are
provided for high-resolution camera (with mean packet

size of 120 kb) and for the low-resolution camera (with

mean packet size of 30kb).

5.5 Wrap-up

The system depicted in Figure 3 contains 58 devices in

total. The BIP model contains 297 atomic components,

245 clocks (that are, discrete variables used to enforce

timing constraints), and its state-space is of order 23000.

The size of the BIP code for describing the system is
approximately 2500 lines, which is translated to an ex-

ecutable simulation model of approximately 10000 lines

in C++.

Table 1 gives an overview about the number and the

complexity of model components defined in BIP. The
first half of the table provides information about atomic

components. The relevant columns are as follows: S is

the number of control locations; Vd is the number of dis-

crete variables (can be Boolean or arbitrary type like

an abstract packet (including type, size and destina-
tion) or an array of packets); Vt is the number of clocks;

C is the clock range; Size is a rough approximated of

the size of the state-space. The second half of the table

provides information about composite components and
their number of occurrences in the HCS system (the

Number column).

6 Experiments on the HCS

One of the core applications of the HCS case study is
the PTP protocol, which allows the synchronization of

the clocks of the various devices with the one of the

server. It is important that this synchronization occurs

10

properly, i.e., that the difference between the clock of

the server and the one of any device is bounded by a

small constant. Studying this problem is the subject of

this section. Since the BIP model for the HCS is ex-

tremely large (number of components, size of the state
space, ...), there is no hope to analyse it with an exhaus-

tive verification technique. Here, we propose to apply

our stochastic abstraction. Given a specific device, we

will proceed in two steps. First, we will conduct simula-
tions on the entire system in order to learn the probabil-

ity distribution on the communication delays between

this device and the server. Second, we will use this in-

formation to build a stochastic abstraction of the appli-

cation on which we will apply statistical model check-
ing. We start with the stochastic abstraction for PTP

(Section 6.1), then we report on learning distributions

(Section 6.3). Finally, we report our results (Section

6.4).

6.1 The Precision Time Protocol IEEE 1588

The Precision Time Protocol [2] has been defined to

synchronize clocks of several computers interconnected

over a network. The protocol relies on multicast com-

munication to distribute a reference time from an accu-
rate clock (the master) to all other clocks in the network

(the slaves) combined with individual offset correction,

for each slave, according to its specific round-trip com-

munication delay to the master. The accuracy of syn-

chronization is negatively impacted by the jitter (i.e.,
the variation) and the asymmetry of the communica-

tion delay between the master and the slaves. Obvi-

ously, these delay characteristics are highly dependent

on the network architecture as well as on the ongoing
network traffic.

We present below the abstract stochastic model of

the PTP protocol between a device and the server in the
HCS case study. The model consists of two (determin-

istic) application components respectively, the master

and the slave clocks, and two probabilistic components,

the media, which are abstraction of the communication

network between the master and the slave. The for-
mer represent the behaviour of the protocol and are de-

scribed by extended timed automata. The latter repre-

sent a random transport delay and are simply described

by probability distributions. Recap that randomization
is used to represent the context, i.e., behaviors of other

devices and influence of these behaviors on those of the

master and the device under consideration.

The time of the master process is represented by

the clock variable θm. This is considered the reference

time and is used to synchronize the time of the slave

!followUp(t1)

?request

[x = P]x := 0
!sync

t1 := θm

t4 := θm

!reply(t4)

?followUp(t1)

t2 := θs

?sync

!request

t3 := θs

?reply(t4)

θs := θs − o
o := (t2 + t3 − t1 − t4)/2

ρ1

ρ2

sync, followUp, reply

request

Fig. 5: Abstract stochastic PTP between the server and a device.

clock, represented by the clock variable θs. The syn-

chronization works as follows. Periodically, the mas-

ter broadcasts a sync message and immediately after

a followUp message containing the time t1 at which
the sync message has been sent. Time t1 is observed

on the master clock θm. The slave records in t2 the

reception time of the sync message. Then, after the re-

ception of the followUp, it sends a delay request mes-
sage to the master and records its emission time t3.

Both t2 and t3 are observed on the slave clock θs. The

master records on t4 the reception time of the request

message and sends it back to the slave on the reply

message. Again, t4 is observed on the master clock θm.
Finally, upon reception of reply, the slave computes

the offset between its time and the master time based

on (ti)i=1,4 and updates its clock accordingly. In our

model, the offset is computed differently in two differ-
ent situations. In the first situation, which is depicted

in Figure 5, the average delays from master to slave and

back are supposed to be equal i.e., µ(ρ1) = µ(ρ2). In

the second situation, delays are supposed to be asym-

metric, i.e., µ(ρ1) 6= µ(ρ2). In this case, synchroniza-
tion is improved by using an extra offset correction

which compensates for the difference, more precisely,

o := (t2 + t3− t1− t4)/2+(µ(ρ2)−µ(ρ1))/2. This offset

computation is an extension of the PTP specification
and has been considered since it ensures better preci-

sion when delays are not symmetric (see Section 6).

Encoding the abstract model of timed automata

given in Figure 5 in BIP is quite straightforward and

can be done with the method presented in [5]. The dis-

tribution on the delays is implemented as a new C func-
tion in the BIP model. It is worth mentioning that, since

the two automata are deterministic, the full system de-

picted in Figure 5 is purely stochastic.

The accuracy of the synchronization is defined by

the absolute value of the difference between the mas-

11

ter and slave clocks |θm − θs|. Our aim is to check the

(safety) property of bounded accuracy φ∆, that is, al-

ways |θm−θs| ≤ ∆ for arbitrary fixed non-negative real

∆.

We introduce hereafter an analytic method to es-

timate the precision achieved within one round of the
PTP protocol, depending on several (abstract) parame-

ters such as the initial difference and the bounds (lower,

upper) on the allowed drift of the two clocks, the bounds

(lower, upper) of the communication delay between the
master and the slave, etc.

t
4
m

a1 a
′

1 a2 a3 a4 a5

t
1
s

t
1
m t

5
m

t
2
s t

3
s t

5
s θ

′

s

θm

θs

real

θ
′

m

α ?sync

followUp

request

reply

Fig. 6: One round of the PTP protocol.

The difference between the master and the slave

clocks after one PTP round can be determined from

a system of arithmetic non-linear constraints extracted

from the model of the protocol and communication me-
dia. Let us consider one complete round of the protocol

as depicted in Figure 6. The first two axes correspond to

the (inaccurate) clocks of the master and slave respec-

tively. The third axis corresponds to a perfect reference

clock. Using the notation defined on the figure we can
establish several constraints relating initial and final

values of the master and slave clocks (θm, θs, θ
′
m, θ′s),

timestamps (t1, t2, t3, t4), offset (o), communication de-

lays (L1, U1, L2, U2), reference dates (a1, a
′
1, a2, a2, a4)

as follows:

– initial constraints and initial clock difference α
θm − θs = α, θm = t1m, θs = t1s

– evolution of the master clock is constrained by some

maximal drift ǫm

(1 − ǫm)(a4 − a1) ≤ t4m − t1m ≤ (1 + ǫm)(a4 − a1)

(1 − ǫm)(a5 − a4) ≤ t5m − t4m ≤ (1 + ǫm)(a5 − a4)
– evolution of the slave clock is constrained by some

maximal drift ǫs

(1 − ǫs)(a2 − a1) ≤ t2s − t1s ≤ (1 + ǫs)(a2 − a1)

(1 − ǫs)(a3 − a2) ≤ t3s − t2s ≤ (1 + ǫs)(a3 − a2)
(1 − ǫs)(a5 − a3) ≤ t5s − t3s ≤ (1 + ǫs)(a5 − a3)

– communication delays, forward (L1, U1) and back-

ward (L2, U2)

L1 ≤ a2 − a1 ≤ U1

L1 ≤ a3 − a′
1 ≤ U1

L2 ≤ a4 − a3 ≤ U2

L1 ≤ a5 − a4 ≤ U1

– internal master delay (l, u) for sending the followUp
after sync

l ≤ a′
1 − a1 ≤ u

– offset computation and final clocks values

o = (t2s + t3s − t1m − t4m)/2, θ′m = t5m, θ′s = t5s − o

This system of constraints encodes precisely the evo-

lution of the two clocks within one round of the proto-

col. The synchronization achieved corresponds to the
difference θ′m − θ′s. We analyze different configurations

and we obtain the following results:

1. symmetric delays (L1 = L2 = L, U1 = U2 = U), no

drift (ǫm = ǫs = 0) then −U−L
2 ≤ θ′m − θ′s ≤ U−L

2

2. symmetric delays (L1 = L2 = L, U1 = U2 = U), no

master drift (ǫm = 0) then −U−L
2 − ǫs(5U−L+u)

2 ≤

θ′m − θ′s ≤ U−L
2 + ǫs(2U+2L+u)

2

3. asymmetric delays, no drift (ǫm = ǫs = 0) then

−U2−L1

2 ≤ θ′m − θ′s ≤ U1−L2

2

4. asymmetric delays, no master drift (ǫm = 0) then

−U2−L1

2 − ǫs(3U1+2U2−L1+u)
2 ≤ θ′m − θ′s ≤ U1−L2

2 +
ǫs(2U1+2L2+u)

2

We remark that, in general, the precision achieved

does not depend on the initial difference between the

two clocks. Nevertheless, it is strongly impacted by the

communication jitter, which is, the difference U − L in

the symmetric case and differences U2 −L1, U1 −L2 in
the asymmetric case.

Moreover, we remark that in the asymmetric case,

the lower and upper bounds are not symmetric i.e., the

precision interval obtained is not centered around 0.

The bounds of the interval suggest us an additional
offset correction:

δo =
(U2 − U1) + (L2 − L1)

4

which will shift the interval towards 0. For example,
using this additional correction we obtain in the case

of asymmetric delays with no drift better precision:

− (U2+U1)−(L1+L2)
4 ≤ θ′m − θ′s ≤ (U1+U2)−(L1+L2)

4

This analysis shows that it is indeed possible to pre-

cisely relate the precision of clock synchronization to
the network communication jitter (and the clock drift,

if any). That is, a bound on the jitter can be used to

derive an upper bound on the precision guaranteed by

PTP. Nevertheless, this estimation method appears too
pessimistic for concrete application to the HCS case

study: the bounds on the jitter being far too big than

the expected clock synchronization accuracy. For this

12

reason, we turn to a stochastic analysis, which can pro-

vide finer answers, such as, probabilities for satisfying

the synchronization, or the average proportion of fail-

ures, etc.

6.2 Model Simulations

In this section, we describe our approach to learn the

probability distribution over the delays. Consider the

server and a given device. In a first step, we run simula-
tions on the system and measure the end-to-end delays

of all PTP messages between the selected device and

the server. For example, consider the case of delay re-

quest messages and assume that we made 33 measures.
The result will be a series of delay values and, for each

value, the number of times it has been observed. As

an example, delay 5 has been observed 3 times, delay

19 has been observed 30 times. The probability distri-

bution is represented with a table of 33 cells. In our
case, 3 cells of the table will contains the value 5 and

30 will contain the value 19. The BIP engine will se-

lect a value in the table following a uniform probability

distribution.
According to our experiments, 2000 delay measure-

ments are enough to obtain an accurate estimation of

the probability distribution. However, for confidence

reasons, we have conducted 4000 measurements for each

device. In Figure 8, we give the distributions that are
obtained using 4000, 8000, 16000, 24000 and 32000 mea-

sures on Devices (0,3) and (3,3). One can observe that

the increment in terms of number of measures does not

influence the shape of the distribution.
We have also observed that the value of the distri-

bution clearly depends on the position of the device

in the topology. This is shown in Figure 7, where Fig-

ure 7a shows the distribution of delays from Device(0,3)

to the server and Figure 7b shows the delay from De-
vice(3,3)to the server. It is worth mentioning that run-

ning one single simulation allowing 4000 measurements

of the delay of PTP frames requires running the PTP

protocol with an increased frequency i.e., the default
PTP period (2 seconds) being far too big compared

with the period for sending audio/video packets (tens

of milliseconds). Therefore, we run simulations where

PTP is executed once every 2 milliseconds and, we ob-

tain 4000 measurements by simulating approximately 8
seconds of the global system lifetime. Each simulation

uses microsecond time granularity and takes around 40

minutes on a Pentium 4 running under a Linux distri-

bution.
The reader could wonder whether the distribution

on the delays is not time or state dependent. The rea-

son is that we experimentally observed that the delays

are independent from the time when they appear. See

Figure 9 for an illustration.

Remark 1 In BIP, simulations of the heterogeneous sys-

tem are generated by computing on-the-fly part of the
composition of the many components that participate

in the design. When performing this computation, one

has to resolve the non-determinism that arises from the

composition of the components. This is done by random

choices using uniform distributions among enabled in-
teractions. The key observation, which is relevant to

statistics, is that the mixing of those many random ef-

fects results in smooth distributions characterizing the

random behaviors of the subsystems of interest. Fur-
thermore, the particular form for the random choices

performed during the simulation does not really influ-

ence the resulting stochastic behavior of the stochastic

abstraction — this relies on arguments of convergence

toward so-called stable distributions [31]. Our approach
is thus clearly different from those who would have ar-

tificially characterized the stochastic behavior of the

subsystems.

6.3 Experiments on Precision Estimation for PTP

We now report on our experiments. We first assume
that packets are scheduled with the fixed-priority mech-

anism introduced in Section 5.3.1. At the end of the

section, we report on the influence of using another

scheduling algorithm that is the WFQ scheduling al-
gorithm of Section 5.3.2.

Three sets of experiments are conducted. The first

one is concerned with the bounded accuracy property

(see Section 6.1). In the second one, we study aver-

age failure per execution for a given bound. Finally, we
study the influence of drift on the results.

Property 1 : Synchronization. Our objective is to

compute the smallest bound ∆ under which synchro-

nization occurs properly for any device. We start with

an experiment that shows that the value of the bound
depends on the place of the device in the topology. For

doing so, we use ∆ = 50µs as a bound and then com-

pute the probability for synchronization to occur prop-

erly for all the devices. In the paper, for the sake of

presentation, we will only report on a sampled set of
devices :(0, 0), (0, 3), (1, 0), (1, 10), (2, 0), (2, 3), (3, 0),

(3, 3), but our global observations extend to any de-

vice. We use PESTIMATION with a confidence of 0.1.

The results, which are reported in Figure 10a, show
that the place in the topology plays a crucial role. De-

vice (3, 3) has the best probability value and Device

(2, 0) has the worst one. All the results in Figure 10a

13

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 50 100 150 200 250

P
ro

po
rt

io
n

Delay

Distribution of delays for Device (0,3) - 4000 measures

(0,3)

(a) Distribution of delays for Device (0,3) with 4000
measures

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 50 100 150 200 250 300 350 400 450

P
ro

po
rt

io
n

Delay

Distribution of delays for Device (3,3) - 4000 measures

(3,3)

(b) Distribution of delays for Device (3,3) with 4000
measures

Fig. 7: Delay distribution for Device(0,3) and Device(3,3).

have been conducted on the PTP model with asym-

metric delays correction. For the symmetric case, the

probability values are much smaller. As an example,

for Device (0, 0), it decreases from 0.388 to 0.085. The

above results have been obtained in less than 4 seconds.
As a second experiment, we have used SPRT and SSP

to validate the probability value found by PESTIMA-

TION with a higher degree of confidence. The results,

which are presented in Table 2 for Device (0, 0), show
that SPRT is faster than SSP and PESTIMATION.

Our second step was to estimate the best bound. For

doing so, for each device we have repeated the previous
experiments for values of ∆ between 10µs and 120µs.

Figure 11a gives the results of the probability of satis-

fying the bounded accuracy property as a function of

the bound ∆ for the asymmetric version of PTP. The

figure shows that the smallest bound which ensure syn-
chronization for any device is 105µs (for Device (3, 0)).

However, devices (0, 3) and (3, 3) already satisfy the

property with probability 1 for ∆ = 60µs.

Table 3 shows, for Device (0,0), a comparison of the

time and number of simulations required for PESTI-

MATION and SSP with the same degree of confidence.

The above experiments have been conducted assum-

ing simulations of 1000 BIP interactions and 66 rounds

of the PTP protocol. Since each round of the PTP takes

two minutes, this also corresponds to 132 minutes of the
system’s life time. We now check whether the results

remain the sames if we lengthen the simulations and

hence system’s life time. Figure 12 shows, for Devices

(0, 0) and (3, 0), the probability of synchronization for
various values of ∆ and various length of simulations

(1000, 4000, 8000 and 10000 (660 minutes of system’s

life time) steps). We used PESTIMATION with a pre-

cision and a confidence of 0.1. The best bounds do not

change. However, the longest the simulations are, the

more the probability tends to be either 0 or 1 depending

on the bound.

Property 2 : Average failure. In the previous ex-

periment, we have computed the best bound to guaran-

tee the bounded accuracy property. It might be the case

that the bound is too high regarding the user’s require-
ments. In such case, using the above results, we can

already report on the probability for synchronization

to occur properly for smaller values of the bound. We

now give a finer answer by quantifying the average and
worst number of failures in synchronization that occur

per simulation when working with smaller bounds, that

means, how often the synchronization property gets vio-

lated. For a given simulation, the proportion of failures

is obtained by dividing the number of failures by the
number of rounds of PTP. We will now estimate, for a

simulation of 1000 steps (66 rounds of the PTP), the

average and worst value for this proportion. To this pur-

pose, we have measured (for each device) this propor-
tion on 1199 simulations with a synchronization bound

of ∆ = 50µs. As an example, we obtain average propor-

tions of 0.036 and 0.014 for Device (0, 0) using the sym-

metric and asymmetric versions of PTP respectively. As

a comparison, we obtain average proportions of 0.964
and 0.075 for Device (3, 0). The average proportion of

failures with the bound ∆ = 50µs and the asymmet-

ric version of PTP is given in Figure 10b. Figure 13a

presents, for the sampled devices, the worst proportion
of failures using the asymmetric version of PTP. The

worst value is 0, 25, which is obtained for Device (2, 0).

On the other hand, the worst value is only 0, 076 for

14

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 50 100 150 200 250

P
ro

po
rt

io
n

Delay

Distribution of delays for Device (0,3) - 8000 measures

(0,3)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 50 100 150 200 250

P
ro

po
rt

io
n

Delay

Distribution of delays for Device (0,3) - 16000 measures

(0,3)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 50 100 150 200 250

P
ro

po
rt

io
n

Delay

Distribution of delays for Device (0,3) - 24000 measures

(0,3)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 50 100 150 200 250

P
ro

po
rt

io
n

Delay

Distribution of delays for Device (0,3) - 32000 measures

(0,3)

(a) Distributions of delays for Device (0,3)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 50 100 150 200 250 300 350 400 450

P
ro

po
rt

io
n

Delay

Distribution of delays for Device (3,3) - 8000 measures

(3,3)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 50 100 150 200 250 300 350 400 450

P
ro

po
rt

io
n

Delay

Distribution of delays for Device (3,3) - 16000 measures

(3,3)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 50 100 150 200 250 300 350 400 450

P
ro

po
rt

io
n

Delay

Distribution of delays for Device (3,3) - 24000 measures

(3,3)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 50 100 150 200 250 300 350 400 450

P
ro

po
rt

io
n

Delay

Distribution of delays for Device (3,3) - 32000 measures

(3,3)

(b) Distributions of delays for Device (3,3)

Fig. 8: Probability distributions over the delays for devices (0,3) and (3,3) observed with different number of measures.

15

 0

 100

 200

 300

 400

 500

time

Evolution of the delays with time for device (0,3)

(0,3)

Fig. 9: Evolution of the delays with time for device (0,3)

 0

 0.2

 0.4

 0.6

 0.8

 1

(0,0) (0,3) (1,0) (1,10) (2,0) (2,3) (3,0) (3,3)

Device

Probability of bounded accuracy

(a) Probability of satisfying bounded accuracy.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

(0,0) (0,3) (1,0) (1,10) (2,0) (2,3) (3,0) (3,3)

Device

Average proportion of failures

(b) Average proportion of failures.

Fig. 10: Probability of satisfying the bounded accuracy property and average proportion of failures for a bound ∆ = 50µs and the
asymmetric version of PTP.

Device (0, 0). The experiment, which takes about 6 sec-

onds per device, was then generalized to other values of
the bound. Figures 11b and 13b give the average and

worst proportion of failure as a function of the bound.

The above experiment gives, for several values of

∆ and each device, the worst failure proportion with

respect to 1199 simulations. We have also used PES-

TIMATION with confidence of 0.1 and precision of 0.1
to verify that this value remains the same whatever

the number of simulations is. The result was then vali-

dated using SSP with precision of 10−3 and confidence

of 10−10. Each experiment took approximately two min-
utes. Finally, we have conducted experiments to check

whether the same results hold for longer simulations.

Figure 14a shows that the average proportion does not

change and Figure 14b shows that the worst proportion

decreases when the length of the simulation increases.

Clock Drift. We have considered a modified version
of the stochastic PTP model with drifting clocks. Drift

is used to model the fact that, due to the influence of

the hardware, clocks of the master and the device may

not progress at the same rate. In our model, drift is in-

corporated as follows: each time the clock of the server
is increased by 1 time unit, the clock of the device is

increased by 1 + ε time units, with ε ∈ [−10−3, 10−3].

Using this modified model, we have re-done the exper-

iments of the previous sections and observed that the
result remains almost the same. This is not surprising

as the value of the drift significantly smaller than the

communication jitter, and therefore it has less influ-

16

Precision 10−1 10−2 10−3

Confidence 10−5 10−10 10−5 10−10 10−5 10−10

PESTIMATION
4883 9488 488243 948760 48824291 94875993
17s 34s 29m 56m > 3h > 3h

SSP
1604 3579 161986 368633 16949867 32792577
10s 22s 13m 36m > 3h > 3h

SPRT
316 1176 12211 22870 148264 311368
2s 7s 53s 1m38s 11m 31m

Table 2: Number of simulations / Amount of time required for PESTIMATION, SSP and SPRT.

Precision 10−1 10−2 10−3

Confidence 10−5 10−10 10−5 10−10 10−5 10−10

SSP / SPRT
110 219 1146 2292 11508 23015
1s 1s 6s 13s 51s 1m44s

Table 3: Number of simulations / Amount of time required for PESTIMATION and SSP.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

Bound

Probability of bounded accuracy

(0,0)
(0,3)
(1,0)

(1,10)
(2,0)
(2,3)
(3,0)
(3,3)

(a) Probability of satisfying bounded accuracy.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 20 40 60 80 100 120

Bound

Proportion of failures

(0,0)
(0,3)
(1,0)

(1,10)
(2,0)
(2,3)
(3,0)
(3,3)

(b) Average proportion of failures.

Fig. 11: Probability of satisfying the bounded accuracy property and average proportion of failures as functions of the bound ∆ for
the asymmetric version of PTP.

ence of the synchronization. A drift of 1 time unit has

a much higher impact on the probability. As an exam-
ple, for Device (0, 0), it goes from a probability of 0, 387

to a probability of 0, 007. It is worth mentioning that

exhaustive verification of a model with drifting clocks is

not an easy task as it requires to deal with complex dif-
ferential equations. When reasoning on one execution

at a time, this problem is avoided.

Experiments with WFQ. We now consider the in-

fluence of the scheduling policy by replacing the fixed

priorities mechanism with the WFQ algorithm
presented in Section 5.3.2. As we already said, the result

of applying this algorithm depend on the pre-defined al-

located service ratio for every category of packets. We

consider 3 scenarios. Probabilities are estimated and
validated using PESTIMATION, SSP, and SPRT.

We start with a scenario that should lead to results

that are close to those we obtained for fixed-priorities.

This scenario consists in giving a very high ratio to

the PTP packets. This is done to ensure that these
packets never have to wait before being sent. More pre-

cisely, we used the following ratio: PTP packets have

a ratio rPTP = 5, Audio packets have a ratio rA = 2,

Event packets have a ratio rE = 2 and Video packets
have a ratio rV = 1. This configuration of the ratios

is addressed as 5:2:2:1. The results of this experiments

are given in Figure 15. We observe that the results are

not as good as for fixed-priorities. More precisely, the

best and worst bounds for satisfying bounded accuracy
with probability 1 are 70µs (obtained for Device (0,0))

and 130µs (obtained for Device (2,0)), respectively. For

fixed-priorities, we obtained 60µs and 105µs, respec-

tively.

In the second scenario, we decrease the importance
of PTP packets in order to observe degradations in the

results, if any. PTP packets have a ratio rPTP = 4, Au-

dio packets have a ratio rA = 3, Event packets have a

17

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

Bound

Probability of satisfying bounded accuracy for device (0,0)

l = 1000
l = 4000
l = 8000

l = 10000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

Bound

Probability of satisfying bounded accuracy for device (3,0)

l = 1000
l = 4000
l = 8000

l = 10000

Fig. 12: Evolution of the probability of satisfying the bounded accuracy property with the length of the simulations for the asymmetric
version of PTP.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

(0,0) (0,3) (1,0) (1,10) (2,0) (2,3) (3,0) (3,3)

Device

Worst proportion of failures

(a) Worst proportion of failures for bound ∆ =
50µs.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 20 40 60 80 100 120

Bound

Worst proportion of failures

(0,0)
(0,3)
(1,0)

(1,10)
(2,0)
(2,3)
(3,0)
(3,3)

(b) Worst proportion of failures as a function of
the bound ∆.

Fig. 13: Worst proportion of failures for the industrial bound ∆ = 50µs and as a function of the bound ∆ for the asymmetric version
of PTP.

ratio rE = 2 and Video packets have a ratio rV = 1.

This configuration of the ratios is addressed as 4:3:2:1.
Results of this experiment are given in Figure 16. Those

results are worse than those obtained for the first sce-

nario. Indeed, the best bound for satisfying bounded

accuracy with probability 1 is now 120µs, that is ob-

tained for Device (0,0), and the worst bound is 295µs,
that is obtained for Device (2,0).

The last scenario consists in considering ratios that

are closer to the reality of the bandwidth needed for

each type of packets. PTP packets have a ratio rPTP =
2, Audio packets have a ratio rA = 3, Event packets

have a ratio rE = 1 and Video packets have a ratio

rV = 4. This configuration of the ratios is addressed

as 2:3:1:4. Results of this experiment are given in Fig-
ure 17. The results are even worse than those obtained

for the second scenario. Indeed, the best bound for sat-

isfying bounded accuracy with probability 1 is 140µs,

that is obtained for Device (0,3), and the worst bound

is 425µs, that is obtained for Device (2,0).

7 Conclusion and Future Work

This paper introduces the concept of stochastic ab-

straction and studies one of its applications in the con-

text of verifying properties of a large heterogeneous

case study that cannot be handled by existing formal

method techniques. It is worth mentioning that we have
also applied the stochastic abstraction principle to ver-

ify properties of a Avionics Full Duplex Switched Eth-

ernet (AFDX) [1]. For this AFDX case study, we have

shown that stochastic abstraction and statistical model
checking perform better and are more general than tech-

niques such as network calculus [10,11,24] or timed

model checking [3].

18

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 20 40 60 80 100 120

Bound

Average proportion of failures for device (0,0)

l = 1000
l = 4000
l = 8000

l = 10000

(a) Average proportion of failure for Device
(0,0).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 20 40 60 80 100 120

Bound

Worst proportion of failures for Device (3,0)

l = 1000
l = 4000
l = 8000

l = 10000

(b) Worst proportion of failure for Device (3,0).

Fig. 14: Evolution of the average and worst proportion of failures with the length of the simulations for the asymmetric version of
PTP.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

Bound

Probability of bounded accuracy

(0,0)
(0,3)
(1,0)

(1,10)
(2,0)
(2,3)
(3,0)
(3,3)

(a) Probability of satisfying bounded accuracy using
WFQ with ratio 5:2:2:1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 20 40 60 80 100 120

Bound

Proportion of failures

(0,0)
(0,3)
(1,0)

(1,10)
(2,0)
(2,3)
(3,0)
(3,3)

(b) Average proportion of failures using WFQ with ratio
5:2:2:1

Fig. 15: Probability of satisfying bounded accuracy and average proportion of failures using WFQ with ratio 5:2:2:1

As a future work, one could improve the applicabil-
ity of existing statistical model checking techniques by

considering properties that cannot be verified on finite-

time traces [23,25]. Another interesting direction is to

improve the efficiency of statistical model checking. Due

to his engineering knowledge about the system, the de-
signer may guess some prior knowledge regarding the

probability for the system to violate the property. This

information could be used to improve the efficiency of

the statistical model checking algorithms by making
prior hypothesis on the probability for the system to

be correct, which may reduce the number of simulations

needed to conclude. Also, as the system is assumed to

be “well-designed”, one can postulate that the property

under verification should rarely be falsified. This means
that we are trying to compute probabilities of violation

that should be very close to 0. Statistical model check-
ing algorithms should address this issue in an efficient

manner. A solution could be to combine the statistical

model checking approach with the concept of rare event

simulation [9].

As we have seen, the stochastic abstraction is ob-

tained by computing simulations of the entire hetero-

geneous (system level model). The objective is to learn

an estimate of the distribution representing the environ-
ment where the subsystem under consideration is run-

ning. For the HCS case study, the estimation was com-

puted from a high number of simulations, which should

guarantee a good accuracy (even though we were not
able to characterize it). However, in general, generat-

ing simulations of a complex design may take time. We

thus suggest to use techniques from the statistical area

19

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

Bound

Probability of bounded accuracy

(0,0)
(0,3)
(1,0)

(1,10)
(2,0)
(2,3)
(3,0)
(3,3)

(a) Probability of satisfying bounded accuracy using
WFQ with ratio 4:3:2:1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 50 100 150 200 250 300

Bound

Proportion of failures

(0,0)
(0,3)
(1,0)

(1,10)
(2,0)
(2,3)
(3,0)
(3,3)

(b) Average proportion of failures using WFQ with ratio
4:3:2:1

Fig. 16: Probability of satisfying bounded accuracy and average proportion of failures using WFQ with ratio 4:3:2:1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450

Bound

Probability of bounded accuracy

(0,0)
(0,3)
(1,0)

(1,10)
(2,0)
(2,3)
(3,0)
(3,3)

(a) Probability of satisfying bounded accuracy using
WFQ with ratio 2:3:1:4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 50 100 150 200 250 300 350 400 450

Bound

Proportion of failures

(0,0)
(0,3)
(1,0)

(1,10)
(2,0)
(2,3)
(3,0)
(3,3)

(b) Average proportion of failures using WFQ with ratio
2:3:1:4

Fig. 17: Probability of satisfying bounded accuracy and average proportion of failures using WFQ with ratio 2:3:1:4

such as bootstrap [14] to better exploit the simulations

in generating an accurate estimate of the distribution.

Stochastic abstraction may also be combined with clas-

sical abstraction techniques, especially when memory
has to be considered in the design.

In this paper, we have observed that the BIP frame-

work allows to describe a faithful model of the HCS, and

the observation made on the BIP model should also re-

main valid on the concrete implementation. However,
this is only an observation, not a theoretical guarantee.

This means that in order to cope with many other in-

dustrial case studies, we will certainly have to integrate

our technology in the tool chain of industrials. Such an
integration introduces new difficulties. As an example,

it requires to be able to jointly simulate models of dif-

ferent parts of the system, possibly expressed using dif-

ferent formalisms. Fortunately, corresponding so-called

“hosted and co simulation” technologies (see [26] for an

illustration) have been recently developed by tool ven-

dors (such as our industrial partner) to cope with this
problem. We will integrate this technology and extend

it to a more general context. Another major difficulty

will be to provide feedback to the designer in case his

requirements are not satisfied.

Finally, we believe it is a very challenging problem

to relate the confidence we have on the estimated distri-

bution with the confidence degree of SMC algorithms.
Being able to answer this question, which was not con-

sidered in this paper, would give a higher confidence on

the correctness of the heterogeneous system.

20

References

1. ARINC 664, Aircraft Data Network, Part 7: Avionics Full
Duplex Switched Ethernet (AFDX) Network. (2005)

2. 61588, I.I.: Precision clock synchronization protocol for net-
worked measurement and control systems (2004)

3. Alur, R., Dill, D.: A Theory of Timed Automata. Theoretical
Computer Science 126, 183–235 (1994)

4. Basu, A., Bensalem, S., Bozga, M., Delahaye, B., Legay, A.,
Siffakis, E.: Verification of an afdx infrastructure using simu-
lations and probabilities. In: Proc 1st Conference on Runtime
Verification (RV), Malta, 2010. Springer-Verlag (2010)

5. Basu, A., Bozga, M., Sifakis, J.: Modeling Heterogeneous
Real-time Systems in BIP. In: SEFM06, Pune, India. pp.
3–12 (September 2006)

6. Basu, A., Bensalem, S., Bozga, M., Caillaud, B., Delahaye,
B., Legay, A.: Statistical abstraction and model-checking of

large heterogeneous systems. In: FORTE 2010. pp. 32–48.
LNCS 6117, Springer-Verlag (2010)

7. Bensalem, S., Delahaye, B., Legay, A.: Statistical model
checking: Present and future. In: Proc 1st Conference on
Runtime Verification (RV), Malta, 2010. Springer-Verlag
(2010)

8. The BIP Toolset, http://www-
verimag.imag.fr/∼async/bip.php

9. Bucklew, J.: Introduction to Rare event Simulation. Springer
(2004)

10. Charara, H., Fraboul, C.: Modelling and simulation of an
avionics full duplex switched ethernet. In: Proceedings of
the Advanced Industrial Conference on Telecommunications/
Service Assurance with Partial and Intermittent Resources
Conference/E-Learning on Telecommunication Workshop.
IEEE (2005)

11. Charara, H., Scharbarg, J.L., Ermont, J., Fraboul, C.: Meth-
ods for bounding end-to-end delays on AFDX network. In:
ECRTS. IEEE Computer Society (2006)

12. Clarke, E.M., Donzé, A., Legay, A.: Statistical model check-
ing of mixed-analog circuits with an application to a third
order delta-sigma modulator. In: HVC. LNCS, vol. 5394, pp.
149–163. Springer (2008), to appear

13. Clarke, E.M., Faeder, J.R., Langmead, C.J., Harris, L.A.,
Jha, S.K., Legay, A.: Statistical model checking in biolab:
Applications to the automated analysis of t-cell receptor sig-
naling pathway. In: CMSB. LNCS, vol. 5307, pp. 231–250.
Springer (2008)

14. Efron, B., Tibshirani, R.: An Introduction to the Bootstrap.
Hall/CRC Press Monographs on Statistics and Applied Prob-
ability (1994)

15. Grosu, R., Smolka, S.A.: Monte carlo model checking. In:
TACAS. LNCS, vol. 3440, pp. 271–286. Springer (2005)

16. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Ap-
proximate probabilistic model checking. In: VMCAI. LNCS,
vol. 2937, pp. 73–84. Springer (2004)

17. Hoeffding, W.: Probability inequalities. Journal of the Amer-
ican Statistical Association 58, 13–30 (1963)

18. Jansen, D.N., Katoen, J.P., M.Oldenkamp, Stoelinga, M.,
Zapreev, I.S.: How fast and fat is your probabilistic model
checker? an experimental performance comparison. In: HVC.
LNCS, vol. 4899. Springer (2007)

19. Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer,
A., Zuliani, P.: A bayesian approach to model checking bi-
ological systems. In: CMSB. LNCS, vol. 5688, pp. 218–234.
Springer (2009)

20. Katoen, J.P., Zapreev, I.S.: Simulation-based ctmc model
checking: An empirical evaluation. In: Proc. of 6th Int. Con-
ference on the Quantitative Evaluation of Systems (QEST).
pp. 31–40. IEEE Computer Society (2009)

21. Laplante, S., Lassaigne, R., Magniez, F., Peyronnet, S.,
de Rougemont, M.: Probabilistic abstraction for model check-
ing: An approach based on property testing. ACM Trans.

Comput. Log. 8(4) (2007)
22. Parekh, A.K., Gallagher, R.G.: A generalized processor shar-

ing approach to flow control in integrated services networks:
the multiple node case. IEEE/ACM Trans. Netw. 2(2), 137–
150 (1994)

23. Rabih, D.E., Pekergin, N.: Statistical model checking using
perfect simulation. In: Proc. 7th Int. Conference on Auto-
mated Technology for Verification and Analysis (ATVA).
Lecture Notes in Computer Science, vol. 5799, pp. 120–134.
Springer (2009)

24. Scharbarg, J.L., Fraboul, C.: Simulation for end-to-end de-
lays distribution on a switched ethernet. In: ETFA. IEEE
(2007)

25. Sen, K., Viswanathan, M., Agha, G.: Statistical model check-
ing of black-box probabilistic systems. In: CAV. pp. 202–215.
LNCS 3114, Springer (2004)

26. Steinkellner, S., Andersson, H., Lind, I., Krus, P.: Hosted
simulation for heterogeneous aircraft system development.
In: Proc. of 26th Int. Congress of the Aeronautical Sciences
(2008)

27. Wald, A.: Sequential tests of statistical hypotheses. Annals
of Mathematical Statistics 16(2), 117–186 (1945)

28. Younes, H.L.S.: Verification and Planning for Stochastic Pro-
cesses with Asynchronous Events. Ph.D. thesis, Carnegie
Mellon (2005)

29. Younes, H.L.S.: Error control for probabilistic model check-
ing. In: VMCAI. pp. 142–156. LNCS 3855, springer-verlag
(2006)

30. Younes, H.L.S., Kwiatkowska, M.Z., Norman, G., Parker, D.:
Numerical vs. statistical probabilistic model checking. STTT
8(3), 216–228 (2006)

31. Zolotarev, V.M.: One-dimensional stable distribution. Amer-
ican Mathematical Society (1986)

