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Abstract. We show how to evaluate the performance of solutions to finite-horizon
scheduling problems where task durations are specified by bounded uniform dis-
tributions. Our computational technique, based on computing the volumes of
zones, constitutes a contribution to the computational study of scheduling under
uncertainty and stochastic systems in general.

1 Introduction

Scheduling, the allocation of limited reusable resources over time to competing tasks,
is a universal activity. It is performed routinely in domains of very different scales in
terms of time, space and energy. These include the allocation of airways and runways to
flights, allocating machines to different product lines in a factory, and the efficient allo-
cation of computation and communication resources to information-processing tasks.
This latter activity is becoming of prime importance in many scales, ranging from
world-wide cloud computing, via the realization of multiple distributed control loops,
down to mapping and scheduling tasks onto multi-core computers. In all such situations
one wants to synthesize schedulers which are optimal or good in some sense, or at least
to be able to compare the performance of proposed schedulers and choose the better
ones. Performance and optimality of such schedulers are typically based on the quan-
tity of work performed over time, which in the case of a finite amount of work can be
expressed as termination time. Good schedules are typically associated with intensive,
almost idle-free, utilization of critical bottleneck resources.

In a deterministic setting one assumes that everything is known in advance about
the demand for work, including the tasks to be executed, their arrival times and the
durations for which they occupy resources. In other words, once the scheduling policy
itself is determined, the system admits a unique execution scenario (run, realization).
Evaluating a scheduler based on this unique run is straightforward — just simulate it —
while finding an optimal scheduler for any non-trivial scheduling problem (such as job-
shop) is NP-hard or worse. However, determinism is rarely the case in real life and exact
duration of tasks, their arrival times and many other features may vary to large extents.
Each instance in this uncontrollable space yields a different schedule and the overall
evaluation of a scheduler or a scheduling policy, which can be viewed as a strategy in
a two-person timed game [7] with uncertainty viewed as an adversary, should be based
on some quantification over all possible behaviors it induces [28].



This adversarial time-optimality problem has been tackled in [6, 1] using a worst-
case approach on models of different types of uncertainty. In [6], using, the general
model of timed game automaton [7] where the adversary is discrete, the following
problem was proved to be decidable: synthesize a controller which is worst-case time-
optimal in the sense that the maximal (over all possible runs induced by the adversary)
time to reach a goal state is minimal. In [1] the case of job-shop scheduling with un-
certain task durations each ranging over a bounded interval was treated. For this prob-
lem, worst-case optimality is defined trivially by the optimal solution to a deterministic
scheduling problem associated with the worst case where all tasks take their respec-
tive maximal duration. One has to define a new notion of optimality (d-future optimal
strategies) to make the optimal synthesis problem meaningful, resulting in a synthesis
algorithm based on value iteration over sets of clock valuations (zones) which can be
seen as an offline version of some kind of model-predictive control.

The use of worst-case reasoning is to some extent a residue of the safety-critical
banner under which formal verification has been argued for, but in many (if not most)
real-life situations, temporal uncertainty is modeled probabilistically as a distribution
over the durations of each task and scheduler quality is measured accordingly, for ex-
ample by the expected completion time or by its maximum over all but a small fraction
of the runs. In this paper we develop and implement a computational framework in or-
der to compute the performance of such schedulers, modeled by automata similar in
structure to those used in [1] but whose durations are probabilistic. Such automata are
sufficiently rich to express stochastic variants of well-known scheduling problems such
as job-shop or task-graph. Formal definitions of these duration probabilistic automata
and their semantics can be found in [29].

The study of continuous-time stochastic processes has been going on for many years
in other branches of mathematics where simple computational questions like those we
pose are not typically asked, as well as in closer domains such as probabilistic verifi-
cation and performance evaluation [13, 11]. A well-studied class of such processes are
continuous-time Markov chains (CTMC) where durations are distributed exponentially.
Such distributions are memoryless in the sense that time spent waiting for a task to ter-
minate does not influence the distribution on the remaining time. As a result they are
easy to compute with and problems such as model-checking against qualitative [3] and
quantitative [8] temporal properties or optimal controller synthesis for finite-horizon
problems [1] are well understood. This forgetfulness assumption may be realistic and
useful for modeling request arrivals in queuing models, but seems inappropriate for
modeling the durations of several instances of the same computational task.!

In this paper we assume task durations to be uniform over a bounded interval,
which is a natural “stochastization” of the set-theoretic temporal uncertainty of timed
automata. Handling such systems we find ourselves in the realm of the so-called gen-
eralized semi-Markov processes (GSMP), a class of continuous-time stochastic pro-
cesses [21,22,15,25]. Similar computational studies of GSMPs include [2, 10], [14,
30] and [29]. The former are concerned with verifying temporal properties for some
classes of GSMPs and develop techniques to determine whether the probability of a

! The academic paper industry is perhaps the prime example of an application domain where
this hypothesis is useful.



property-violating behavior is zero. The work of [14,30] is concerned with stochastic
Petri nets for which a computational framework is developed for propagating densities
in the marking graph. This work, as well as [29] on duration probabilistic automata,
use densities on clocks which are auxiliary state variables. At each reachable state and
zone in the clock space, the distribution over clock values is maintained and used to
compute the distribution after the next transition. In contrast, the approach presented in
this paper works directly on the space of the duration random variables and does not
use clocks explicitly. Similar ideas were developed in [24] to compute the probability
of test cases in timed systems.

The rest of the paper is organized as follows. Section 2 defines single and paral-
lel processes, their behaviors (timed and qualitative) and presents a useful coordinate
transformation between durations and time stamps. Section 3 shows how to derive the
timing constraints associated with a qualitative behavior when processes execute inde-
pendently without resource conflicts, and how to compute the volumes of the polytopes
they define. Section 4 extends the framework to the more interesting case of resource
conflicts that have to be resolved by dynamic scheduling strategies and presents very
preliminary experimental results. A discussion of future directions concludes the paper.

2 Preliminaries

We consider a composition S = P|| - - - || P™ of n sequential stochastic processes, each
consisting of a sequence of steps. Each step has a probabilistic duration and cannot start
before its predecessor terminates. We consider two execution frameworks:

1. Independent execution: all processes start simultaneously and each process starts
a step as soon as its preceding step has terminated, regardless of the state of other
processes;

2. Coordinated execution: the initiation of a step is controlled by a scheduler which
may hold a step of one process in a waiting state until the termination of a step of
another process that uses the same resource.

The second framework will allow us to compare schedulers but we start with the first
because it is simpler, does not require knowledge of timed automata and hence accessi-
ble to a wider audience. On this simpler model we will develop the basic computational
machinery that will allow us to compute the probabilities of different qualitative behav-
iors, each corresponding to an equivalence class of timed behaviors associated with a
particular order in which steps of different processes terminate.

Definition 1 (Uniform Distribution). A uniform distribution inside an interval I =
[a, b] is characterized by a density ) defined as

w(y):{l/(b_a) fa<y<b

0 otherwise

and in terms of distribution as

y 0 ify<a
Fy) = / b(r)dr = (y—a)/(b—a) fa<y<b
0 1 ifo<vy



Definition 2 (Process). A sequential stochastic process is a pair P = (Z,W) where
T = {I;};ex is sequence of duration intervals and ¥ = {v;};ck is a matching
sequences of densities with 1; being the uniform density over I; = [a;, b;], indicating
the duration of step j.

We consider finite processes with K = {1,...,k}. Probabilistically speaking, step
durations can be viewed as a finite sequence of independent uniform random variables
{y;}jex that we denote as vectors y = (y1, . .., yx) ranging over a duration space

D=1 x---x I, CR*

with density ¥ (y1,...,yx) = ¥1(y1) - ¥r(yx). Each point y in the duration space
induces a unique behavior of the system written as a time-event sequence of the form

Ey=y1e1y2€2 ~ - Yk k- (1)

Time event sequences are alternations between time elapses represented by real num-
bers and discrete events that take no time. In the case of a single process y; € I; is
the duration of step j and e; is the event of terminating that step. The timed language*
associated with the process consists of all the timed behaviors it may generate, namely
L = {¢, : y € D}. The untimed language associated with the process is L, obtained by
projecting away durations and retaining events and their order. In the case of a single
process L is simply the singleton language {w} where w = e ea - - ey.

Mechanically speaking the process behaviors can be viewed as generated by the
automaton of Fig. 1 in which being at state g; corresponds to executing step j. Each run
of the automaton is associated with a point y in the duration space. Upon entering g; an
auxiliary clock variable z is reset to zero and the termination transition labeled by ¢; is
taken exactly when x = y;.

Fig. 1. An automaton view of a process.

Suppose we want to characterize the probability of a certain subset of L. For ex-
ample those behaviors in which for every j the actual duration of step j it in some
sub-interval ] = [a’,b}] C I;. The total probability of these behaviors is simply the
volume of the rectangle I x --- x I; divided by the volume of the whole rectangle
D. Probabilities of other subsets of the language can be more interesting but harder to
compute. For example, the probability that the whole process terminates before some
deadline r is simply the volume of the subset of D satisfying y; + - - - + y, < r divided
by the volume of D. Our technique is based on computing such volumes for a system
of several parallel processes as described in the sequel.

% In the computer science tradition the term language is often used to denote a set of sequences
or other objects that define dynamic behaviors.



It turns out to be easier to compute volumes after a coordinate transformation from
the space of durations to the space of time stamps consisting of vectors t = (1, ..., tx)
where ; is the absolute occurrence time of event e;, defined as t; = y1 +y2 +- - - +y;.
A behavior &, can thus be written also as a sequence of time-stamped events®

& = (e1,t1), (e2,t2), ..., (ex, ty).

Assuming that all durations admit a positive lower bound a; > 0, all time stamps satisfy
precedence constraints of the form t; < t;.

Converting y to ¢ and vice versa is done by the linear transformations ¢ = 7'y and
y = 1"t where T and T are matrices of the form

1000 1000
_[1100 , -1 100
T=11110] 77| 0-1 10

1111 0 0-1 1

These matrices are lower triangular (the value of ¢; cannot depend on a duration ¥, with
j' > 7) and their diagonal entries are equal to 1. The determinant of a triangular matrix
is equal to the product of the diagonal entries which is 1 and hence the transformations
are volume preserving. This means that the volume of the duration space D is equal to
the volume of the time-stamp space C defined by the constraints

Yo /\ajgtj—tj,lgbj
JjEK

and computing the volume of any subset C’ C C amounts to computing the volume
of its 7" image D’ C D. Let us remark that the density of ¢; is the convolution of the
densities 11, ... ,%; and its support is the Minkowski sum of Iy, ..., I;.

The time-stamp space C' and its subsets that we will encounter are defined as con-
junctions of inequalities of the form z < c or x — 2’ < ¢ where <€ {<, <, =,> >}
and c is an integer constant. They define polytopes which are called zones (or timed
polyhedra). Zones are used extensively in the analysis of timed automata [23, 17,26].
They admit an efficient representation by difference bounds matrices (DBM) [19] and
efficient algorithms based on shortest-path to remove redundant constraints [16].

Definition 3 (Process System). A process system consists of n process
S =P ||P" = {(Z )},

We use notations P} to refer to step j of process ¢ and I} = [a},b}] and ¢} for the
respective intervals and densities. To ease notation we assume all processes to have the

same number k of steps. The event alphabet of the system is
1.1
Y ={ej,e3,...,ep_1,€L}

3 These are the fimed traces used originally in [4] to give semantics to timed automata. More
about the relation between semantic models of timed behaviors can be found in [5].



consisting of all the termination events of the steps of the various processes.
A behavior of the system is induced by a point in the global duration space

n k
y=tw. i) €D =[]] 1 cr™

i=1j=1
which can be transformed into a point ¢ in the time-stamp space
1,1
t=(ty,tg,...,th_1,t5) €C=TD

where 7' is the appropriate block diagonal matrix.

When all processes start simultaneously, the time stamps are taken from the same
global time reference and one can view a global run as merging local runs and sorting
the events according to their time stamps, as illustrated in Fig. 2. The set of all such
global behaviors is denoted by

L=LY---||L™

All timed behaviors that admit the same order of events are said to exhibit the same
qualitative behavior. This can be formalized as an operation among the untimed the
local languages. Let L' = {e! el -- - el } be the untimed language associated with pro-
cess P: it consists of the unique qualitative behavior which satisfies the precedence
constraints of P!. The potential qualitative behaviors of .S constitute the language

L=L-[IL"

which is the shuffle of these languages, that is, the set of sequences consisting of one
occurrence of each event in X and respecting the local precedence constraints for each
process. Mathematically speaking, a qualitative behavior corresponds to a linear order*
which is consistent with the partial order defined by the union of the precedence re-
lations of all the tasks. Such an order is also known as inferleaving in the theory of
concurrency (motivated readers might want to consult [18] or [20]).

We use the term qualitative behavior also for any prefix of a sequence in L. Such
a prefix corresponds naturally to an incomplete run where not all processes have fin-
ished all their steps. From the standpoint of automata, qualitative behaviors correspond
to paths in the transition graph of the global automaton associated with the system
which is the (Cartesian) product A = A*|| - - - || A™ of the automata associated with the
individual processes as illustrated in Fig. 3. Unfortunately, these extremely important
objects are not easy to draw for non-trivial dimensions. Incomplete behaviors corre-
spond to paths not reaching the final state.

In a global state of the form (q}l, ceey q;“) each process 7 is busy executing its step
, that will
win will be the first to satisfy the condition 2' = ¢ . Since 2 has been reset to zero

ji and there is a race between the termination transitions. The transition e

4 Since we are dealing with volumes, our neglect of the possibility of events occurring at exactly
the same time and not paying too much attention to the distinction between strict and non strict
inequalities is justified.



at ti._, this condition will be fulfilled at time ¢} | + y} = ¢} . The outcomes of
all these races are completely determined by the value of y, and this determines the
qualitative behavior which is exhibited. Had there been no timing constraints on task
durations, that is, I J‘ = [0, 00), the system would be completely asynchronous and
all interleavings would, in principle, be possible. When durations are bounded, some
qualitative behaviors may become strictly impossible due to the arithmetics of timing
constraints while others will occur at low probability. In the sequel we develop methods
for computing these probabilities.

pt

~ B N
P2 A L2 I o %

S 3 B N
p3 AN 5 Ve2 b !

ey €7 [ ey ey ey e3 e3 (1

Fig. 2. A global behavior w = e] e e3 €3 €2 e3 e} €3 e obtained by merging local behaviors.
The dashed line indicate the minimal set of additional inter-process constraints that characterize
w.

3 Computing Volumes

The computation of the probability of a qualitative behavior w is performed in two
steps. First we associate with it a zone Z,, C C consisting of all instances of ¢ that yield
this behavior. Then we integrate over this zone to find its volume.

Let (¢ be the constraint describing the whole time-stamp space:

pe: N\ N\ di <t -ty <b)
iEN jEK

with ti = 0 for every i. The zone Z,, for the qualitative behavior of Fig. 2 can be
characterized by adding constraints that specify the particular order of events in w:

Gw: e Nt < <12 <t <2<ty <ty<td<tl
Some of these constraints appear already in (¢ and some are implied via transitivity by
other constraints. After eliminating these redundant constraints one obtains the follow-

ing description:

Pu s pe At <E) A (83 <) A5 <t3) A (5 < 5) A (5 < 15).
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Fig. 3. The product automaton for a process system with n = 2, k = 3. The thick arrows indicate
the path corresponding to the qualitative behavior w = e} e €3 €3 e3 e3 e3 €3 e3. The race
between e3 and €3 in state (g3, ¢3) is indicated by the dashed arrows.

As illustrated in Fig. 2, the constraints that remain in ¢,, are the inter-process con-
straints that are sufficient to characterize w. These constraints can be computed incre-
mentally as we move along the prefix of a qualitative behavior. Let us follow the first
two steps. Initially we have the empty word whose associated zone is C and hence its
probability is 1. After the occurrence of the first event el we know that P} terminated
before P2 and P2. This leads to the constraints:

per pe AT <) A (t <1]) @
After this first event we have a competition between €2, e? and el. The winner of the

race is the next event of w, e? and hence we add the constrains t? < t3 and t? < t]
and remove the constraint ¢} < ¢3 which becomes redundant, yielding:

Perez o pe At <1F) A (8 <tf) A (1 < t3).

In general whenever event e} occurs, we add a constraint stating that t; is smaller than
the time stamps associated with all the pending events in the other processes. The in-
cremental process is illustrated in Fig. 4.

This procedure is probabilistically correct in the following sense. For every w € L
the probability of all behaviors having w as a prefix is the relative volume of the cor-
responding zone Z,,, namely, p(w) = |Z,,|/|C|. This holds trivially for the empty be-
havior when there are no constraints. For the inductive step observe that any qualitative
behavior of the form w e which extends w has to satisfy ,, due to causality as well
as additional constraints that guarantee that e is indeed the next event to win the race.
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Fig. 4. Incremental constraint construction: constraints for e] and then for e e?. The constraint
t1 < t3 becomes redundant after the second event.

The constraints associated with all the extension of w form a partition of Z,, and all the
probabilistic mass p(w) is split among them, satisfying

S p(w e) = plw).

In [29] a similar incremental approach that goes from a path/prefix to its successors
has been developed using the clock auxiliary variables. The use of clocks required the
concept of density transformers to account for the distribution of clock values before
and after transitions (see also [2, 10, 14, 30]). These are not needed in the clock-free
approach presented here. Those acquainted with the verification of timed automata us-
ing a forward computation of the simulation/reachability graph [17, 26] may notice that
for every w the zone Z,, in the time-stamp space is empty exactly when its associated
clock space zone in the reachability graph becomes empty. This suggests an alternative
clock-free analysis algorithm for timed automata which is immediately applicable to
acyclic systems but will require more work to be adapted to the cyclic case.

Having labeled qualitative behaviors by constraints we need to compute the volume
of the zones. We illustrate this procedure on a concrete example withn = 3 and k = 1,
hence D = C = I x I? x I3, with concrete values

[a%ab%] = [275]a [a%’b%] = [374]’ and [a?,b:{’] = [4’7]'

The constraints associated with all qualitative behaviors where process P! wins the first
race are

Per: 2<H <BHABSHF<HAASE ST A <) A (G < 1)

We pick an integration order t3 < t2 < t1, that is, the inside-out order of variable
elimination, and rewrite .1 as

Qer: (2<1t1 <5) A (max(3,t7) <7 < 4) A (max(4,87) <] <7)



Then we split /] into maximal segments where both max(3,¢1) and max(4,t]) are
uniform. In our example [2, 5] splits into [2, 3], [3, 4] and [4, 5] and the volume of the
set can be written as

3 p4 7 4 4 7 5 4 7 3 9
/ / / +/ / / +/ / / dtdi?dt; =3+ - +0= =
2 J3 J4 3 Ji} J4 4 Ji} Jet 2 2

which after dividing by |C| = 9 gives a probability of 1/2 for e} winning the first
race. Figure 5 illustrates two possible splits of a 2-dimensional zone into integration
domains. The number of case splits and the forms of the integration domains may vary
a lot depending on the chosen order.

b2

Fig. 5. Zone volume computation by splitting into integration domains in two different integration
orders which yield 3 and 2 domains, respectively.

Theorem 1 (Probability of Qualitative Behaviors). Given a system of stochastic se-
quential processes as in Def. 3 the probability of any of its qualitative behaviors is
computable.

The global termination time (makespan in the job-shop jargon) of a behavior is @ =
max{t,..., % }. For all behaviors that are qualitatively equivalent the maximum is
attained by the same variable, namely t’}f for any behavior whose last event is eﬁg. To
compute the expected termination time we integrate i, over Z,, and sum up over all w:

n

E(@):ﬁz Z‘/ t.

=1 w=w'el

Before moving to the coordinated execution framework let us mention some use-
ful observations. So far we have treated qualitative behaviors in their finest granularity,
taking note of the ordering between any pair of events. In many situations we are inter-
ested in sets of qualitative behaviors and their probability can often be computed more
efficiently than summing up the probabilities of individual qualitative behaviors.

Suppose we want to characterize the set of all qualitative behaviors that pass through
a global state ¢ = (qJ,, ..., q}.). Let L;» = {e} --- ej_,} be the qualitative behavior



of P! that leads to q; Then the set of qualitative behaviors that lead to q is
L(q) = Lj, |-~ |IL},-

The constraints that characterize L(q) may forget the specific interleaving, that is, the
specific order in which past events have occurred. The only constraints that are relevant
are those that guarantee that the entrance of each process into its respective local state
preceded the exit of all other processes from their respective states, that is,

n
Yq :Pc A /\ /\ t;i_l < t;i,.
i=11'#i

Thus, to compute the expected termination time it suffices to partition the set of quali-
tative behaviors into n classes according to the identity of the /ast transition, letting Z*
be the zone defined by
Q' gpc/\/\t}C <t}€.
i'#i
Then the expected termination time is

1 & .
E(©) = ICIE/ i 3)

A similar observation, made in the context of zone-based verification of timed automata,
underlies the fact that the union of zones reached by interleavings of the same set of
events is convex [31,27,9].

4 Conflicts and Schedulers

Now we adapt the framework to the case where steps of different processes may be
at conflict due to requiring the same resource and hence cannot be executed simulta-
neously. Naturally, this situation is more intuitively expressed using automata, states
and runs. In order not to discourage semantically challenged audience we explain the
automaton-based modeling very informally. Interested readers may consult [1] for a
general framework for modeling and solving scheduling problems with timed automata
as well as [29] for the formal definitions of duration-probabilistic automata (DPA)
which is the model underlying this paper.

As a running example consider a system of two processes with three steps each, ad-
mitting a resource conflict between their respective second steps Py and PZ. Conflicts
are modeled in automata using forbidden states in the global automaton, state (q3, ¢2)
in our example. To be able to prevent the automaton from entering this state® we refine
the process model so that the initiation of step P; does not occur automatically upon
the termination of step P;fr We thus modify the process automaton shown in Fig. 3
by inserting a waiting state cj;- between qji_1 and q; The automaton can leave this state
only when it receives a start command s§- from a scheduler as illustrated in Fig. 6-(a).

3> We consider schedulers that by construction cannot make the system enter a forbidden state.



(1 B
—]

1
S5

L]

L
[ +—

39
@
=
E

Fig. 6. (a) Two parallel processes admitting a resource conflict and their product automaton. The
dashed arrows indicate start transitions which should be under the control of a scheduler while
the dotted arrows indicate post-conflict start transitions; (b) The automaton resulting from com-
position with a FIFO scheduler and the 4 potential conflict resolution and resource utilization
scenarios.



As long as the scheduler is not completely specified the system is open or using an-
other terminology, admits both probabilistic and set-theoretic non-determinism. For ex-
ample in state (72, ¢?) process P! may either start its second step (72, ¢?) — (43, ¢?)
or wait until step P? terminates and let P? take the resource first (73, ¢?) — (¢5,G3) —
(g3, ¢2). A scheduler resolves this type of non-determinism by telling each process in a
waiting state whether to take the resource and proceed to execution or wait until the re-
source is taken and released by another process.® Once such a scheduler is defined, the
set-theoretic non-determinism is eliminated and the only non-determinism that remains
is the one associated with task durations and thus it becomes possible to compute prob-
abilities. To be more precise, probabilities can be computed also for non-deterministic
schedulers that make a probabilistic choice, but we do not consider them here.

A scheduler is thus a mechanism which may observe the state of the system and
decide whether to grant a resource to a process, possibly based on the level of progress
of other processes. The most passive scheduler grants the resource to the first process
whose corresponding step becomes enabled. Under such a FIFO scheduling policy it
is the result of the race between e} and e? which determines the resource granting
decision. The automaton obtained by composing the system with such a scheduler is
shown in Figure 6-(b) where we have chosen to ignore the zero-measure situation when
both processes terminate exactly at the same time (alternatively this situation can be
handled by assigning an arbitrary priority when this is the case).

More active schedulers interfere with the execution order by imposing additional
conditions upon the start transitions. Suppose that the duration of step P4 is much
longer than that of P2 hence it would be reasonable to give P} a priority over PZ even
if the latter becomes enabled earlier. This priority can have different degrees of rigidity.
A strict priority scheduler allows s2 only in global states where P} has terminated, a
condition that we write as A > ¢1. The automaton obtained by composing the system
with such a scheduler is shown in Fig. 7. Note that strict priority schedulers make the
automaton always “bypass” a conflict state from the same side.

Strict priority schedulers can be unnecessarily rigid for tasks with durations vari-
ability as they do not adapt to the actual evolution of the schedule. As an example for
such adaptability consider the case where P? terminates very early so that we can start
PZ so that it will surely terminate before P3 becomes enabled and hence will not block
it. Even if this is not guaranteed with certainty, a scheduler might want to start P2 if
the expected delay incurred to P! is small. Technically, the knowledge of the relative
timing of e? at decision time is encoded by the value of clock z! reset upon starting
P}, The larger is the value of z1, the more we are likely to block P and for a longer
period. Hence the condition for issuing s2 by such a state-dependent scheduler will be
of the form (A > ¢3) V (A < @ A 2! < d) for some constant d.

The labeling of states and qualitative behaviors with constraints in order to compute
volumes, probabilities and expected termination times can be extended to handle all
these types of schedulers. As an illustration consider the FIFO scheduler of Fig. 6-

® Note that we restrict ourselves to non-lazy schedulers: if they do not issue an s} command at
some point, they will not issue it later unless another process has utilized the resource. This
class has been shown [1] to contain the optimal schedulers for the problems we are dealing
with.
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Fig.7. (a) A scheduler that gives strict priority to P*. This is realized by the condition A* > ¢3
which allows PZ to start only after Py terminates.

(b) which admits 4 classes of qualitative behaviors (scenarios) that correspond to the
outcomes of the conflict between P* and P? on the shared resource. These scenarios are
characterized by the identity of the winner (for this scheduler it depends on the relation
between ¢} and t2) and by whether the loser termination time is delayed (depending
on whether the winner releases the resource before the loser becomes enabled). These
cases are summarized in Table 1 and depicted in Fig. 6-(b).

As the alert reader might have noticed, the transformation 7" from the duration space
to the time-stamp space is different from the independent execution framework. It can
nevertheless be shown to be volume preserving along the following lines. First, one
can show that after adding inter-process precedence constraints causality is preserved
and there is always a rearrangement of the indices such that the transformation matrix
remains lower triangular. Secondly the notion of volume preservation can be easily
generalized from linear to piecewise-linear transformations.

The above analysis can be generalized to m distinct resources and to multi-party
conflicts on each of them. For each resource [ one can compute the set U; of all the
utilization scenarios for this resource and their respective zones. A scenario corresponds
to a particular order of resource utilization by conflicting steps and to the waiting delays
incurred to these steps. Then the classes of potential qualitative behaviors of interest
are the combinations of those, that is, U = U; x --- x U, with zones defined by
intersection. While this sounds like a recipe for a severe combinatorial explosion, note
that many scenarios will lead to empty zones, either for logical reasons (inter-process
ordering of conflicting steps is incompatible with local precedence constraints) or due



winner loser delayed loser not delayed
Z12/ Z12
al < t1 <by al < t1 <bi
a? < t? <bv? a? < 2 <b?
Pt tt < t2 tt < 3
th+al< & <t 4+0d| [tt+ad< 2 <t} +0d
2 <l t3 < 2
t34+a3 < t3 <t3+b3| |[t3+ad < 2 <t? 403
Loy Z21
al < t1 <by al < tT <bi
a? < t? <bv? a? < 2 <b?
p? 2 <t} 2 <t}
24ra2< 2 <2402 [2+a2< 2 <2402
2 < 1 T <3
24+a3< t5 <t24+b3| |[t2+ad< t3 <t? 403

Table 1. The zones corresponding to the four possible outcomes of the resource conflict of Fig. 7-
(b). Constraints on ¢3 and t2 are omitted.

to the arithmetics of timing constraints (two conflicting tasks, one at the beginning and
one at the end of their respective processes, are likely to be executed in one order).
Naturally, for priority schedulers there will be less scenarios to analyze.

We have implemented a prototype tool which computes expected termination times
as described in this paper. As input it takes a system description consisting of processes,
steps, duration intervals and conflicts as well as a definition of a scheduling policy.
Then for every utilization scenario it derives the corresponding zone, using the DBM
library of IF [12] to normalize constraints and detect empty zones. Then it performs
integration over the non-empty zones to compute probability and expected termination
time. The integration uses the GNU Multiple Precision Arithmetic Library (GMP) to
avoid rounding errors.

Let us describe our preliminary experiments. For each value of n from 1 to 5 and
for each value of £ from 1 to 40, we choose a number of conflicts (between 0 and 3)
and a number of participants in each conflict (2 or 3). Each choice in this space defines
a problem type for which we draw 10 concrete problems by randomly choosing the
identity of the conflicting steps as well as step duration intervals of the form [¢—d, c+d)
with ¢ drawn uniformly in [40, 50] and d in [0, ¢/10]. Then we try to compute expected
termination times for a FIFO scheduler with a timeout of 3 minutes per problem on an
old laptop.

The experiments with n = 1 compute the volume of one zone, the time-stamp
space. Applying the reverse order integration we can compute up to dimension 63 in
0.4 seconds (currently this is a limitation of our DBM library). In general integration
takes place in R™* and its complexity depends on the following factors. First, the num-
ber of scenarios (orders of resource utilizations and their combinations) determines the
number of zones whose volume we might need to compute, in case they are not de-
tected beforehand to be empty. For each zone and each variable ¢ we compute I, the



projection of the zone on ¢. Then we define a partial order relation between these in-
tervals such that [; < I if the upper bound of I; is smaller than the lower bound of
1. Then we construct a compatible linear order and integrate backwards. The chosen
order determines the number of case splits but also the form of the integration domains
and the polynomials obtained during integration. We experienced orders of integration
that generate more splits but take less overall computation time. Since there is a lot of
exploration and fine tuning ahead it is premature to report performance systematically.
To give an idea, we mention some problem types for which we managed to compute for
all the test cases.These include (n, k) = (2, 12) with 2 conflicts, (3, 6) and (4, 6) with
3 binary conflicts or 2 ternary conflicts and (5,4) with 2 binary conflicts.

5 Concluding Remarks

We have presented a computational technique to evaluate schedulers in a non-Markovian
setting based on splitting the space of valuations of the random variables and comput-
ing volumes. To the best of our knowledge no similar computational results have been
reported. We mention some future work.

1. Integration over zones is the major computational activity in our procedure and its
optimization is an interesting algorithmic problem.

2. To handle larger systems one needs to develop algorithms that do not explore all
classes of qualitative behaviors but restrict the exploration to a high-volume small
subset of those, whenever such exists.

3. While this work solves the analysis problem it would be more challenging to syn-
thesize optimal schedulers automatically using value iteration. It is an open ques-
tion whether such a backward iteration can be defined using the clock-free methods
developed in this paper.

4. Another major challenge is to extend this framework to cyclic systems, define the
appropriate performance measures and study their steady-state behavior.

5. Finally, it would be interesting to compare the analytic method developed here with
statistical approaches based on random simulation. It is intriguing to see how many
simulation runs are needed to approximate our results with a good confidence.
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Bruce Krogh and benefitted from the constructive criticism of Eugene Asarin.
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